1
|
Xie YP, Zhao HF, Lin S, Wang XL, Liu YF, Xie BY. Suppression of certain intestinal microbiota metabolites may lead to gestational diabetes in mice fed a high-fat diet. Front Microbiol 2024; 15:1473441. [PMID: 39351297 PMCID: PMC11439706 DOI: 10.3389/fmicb.2024.1473441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/02/2024] [Indexed: 10/04/2024] Open
Abstract
Background We aim to establish a gestational diabetes mellitus (GDM) mouse model with mice fed with a high-fat diet (HFD) in comparison with pregnant mice with normal blood glucose levels to investigate the role of intestinal microbiota in the development of HFD-induced GDM. Methods We divided healthy 6-week-old female C57BL mice into an HFD-induced GDM group and a normal diet group. Their bacterial flora and metabolites in intestinal fecal exosomes were co-analyzed using 16 s multi-region sequencing and compared. Findings Alpha (α) diversity was lower within the model group compared to the control group. Beta (β) diversity was significantly different between the two groups. The relative abundances of Lactobacillus, Actinomyces, Rothia, and Bacteroidetes were significantly different between the two groups. Fermentation and nitrate consumption were significantly higher in the GDM group. Multiple bacteria were associated with glycerophosphocholine, S-methyl-5'-thioadenosine, quinolinate, galactinol, deoxyadenosine, DL-arginine, and 2-oxoadenic acid. Interpretation Imbalances in the production of Lactobacillus, Bacteroidetes, Actinomyces, and Rothia and their related metabolites may lead to metabolic disturbances in GDM. These indicators may be used to assess changes affecting the intestinal microbiota during pregnancy and thus help modulate diet and alter blood glucose.
Collapse
Affiliation(s)
- Ya-ping Xie
- Nursing Department, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Hui-fen Zhao
- Nursing Department, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Shu Lin
- Centre of Neurological and Metabolic Research, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
- Group of Neuroendocrinology, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Xian-long Wang
- Department of Bioinformatics, Fujian Key Laboratory of Medical Bioinformatics, School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, China
| | - Yi-fei Liu
- Central Laboratory, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Bao-yuan Xie
- Nursing Department, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| |
Collapse
|
2
|
Li X, Zhang L, He Y, Zhang D, Zhang S. Probiotics for the prevention of gestational diabetes mellitus: A meta-analysis of randomized controlled trials. BIOMOLECULES & BIOMEDICINE 2024; 24:1092-1104. [PMID: 38642385 PMCID: PMC11378997 DOI: 10.17305/bb.2024.10377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/06/2024] [Accepted: 04/06/2024] [Indexed: 04/22/2024]
Abstract
Changes of intestinal microbiota have been shown to be involved in the development of gestational diabetes mellitus (GDM). We performed a meta-analysis to systematically evaluate the potential role of probiotics for the prevention of GDM. Systematic literature search was performed in electronic databases including PubMed, Cochrane library, Embase, Web of Science, Wanfang, and China National Knowledge Infrastructure (CNKI) to obtain relevant randomized controlled studies. A random-effects model was used to pool the results by incorporating the impact of the potential heterogeneity. Meta-regression and subgroup analyses were conducted to evaluate the source of heterogeneity. Fourteen studies involving 3527 pregnant women were included. Results showed that probiotics significantly reduced the incidence of GDM as compared to control (risk ratio [RR]: 0.71, 95% confidence interval [CI]: 0.52-0.96, P = 0.03) with significant heterogeneity (I2 = 73%). The meta-regression showed that body mass index (BMI) of women was positively associated with the RR for the effect of probiotics on GDM (coefficient = 0.084, P = 0.01). The results of subgroup analyses also suggested that probiotics significantly reduced the risk of GDM in women with BMI < 26 kg/m2, but not in those with BMI ≥ 26 kg/m2 (P for subgroup difference = 0.001). In addition, the preventative efficacy of probiotics on GDM was remarkable in women < 30 years, but not in those ≥ 30 years (P for subgroup difference < 0.001). In conclusion, probiotics may be effective in reducing the risk of GDM, particularly for women with lower BMI and younger age.
Collapse
Affiliation(s)
- Xue Li
- Department of Obstetrics, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, China
| | - Luwen Zhang
- Department of Obstetrics, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yuanqi He
- Department of Obstetrics, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, China
| | - Dandan Zhang
- Department of Obstetrics, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, China
| | - Shihong Zhang
- Department of Gynaecology and Obstetrics, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, China
| |
Collapse
|
3
|
Chandrasekaran P, Weiskirchen S, Weiskirchen R. Effects of Probiotics on Gut Microbiota: An Overview. Int J Mol Sci 2024; 25:6022. [PMID: 38892208 PMCID: PMC11172883 DOI: 10.3390/ijms25116022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 05/24/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
The role of probiotics in regulating intestinal flora to enhance host immunity has recently received widespread attention. Altering the human gut microbiota may increase the predisposition to several disease phenotypes such as gut inflammation and metabolic disorders. The intestinal microbiota converts dietary nutrients into metabolites that serve as biologically active molecules in modulating regulatory functions in the host. Probiotics, which are active microorganisms, play a versatile role in restoring the composition of the gut microbiota, helping to improve host immunity and prevent intestinal disease phenotypes. This comprehensive review provides firsthand information on the gut microbiota and their influence on human health, the dietary effects of diet on the gut microbiota, and how probiotics alter the composition and function of the human gut microbiota, along with their corresponding effects on host immunity in building a healthy intestine. We also discuss the implications of probiotics in some of the most important human diseases. In summary, probiotics play a significant role in regulating the gut microbiota, boosting overall immunity, increasing the abundance of beneficial bacteria, and helping ameliorate the symptoms of multiple diseases.
Collapse
Affiliation(s)
- Preethi Chandrasekaran
- UT Southwestern Medical Center Dallas, 5323 Harry Hines Blvd. ND10.504, Dallas, TX 75390-9014, USA
| | - Sabine Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), Rheinisch-Westfälische Technische Hochschule (RWTH) University Hospital Aachen, D-52074 Aachen, Germany;
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), Rheinisch-Westfälische Technische Hochschule (RWTH) University Hospital Aachen, D-52074 Aachen, Germany;
| |
Collapse
|
4
|
Li YK, Xiao CL, Ren H, Li WR, Guo Z, Luo JQ. Comparison of the effectiveness of probiotic supplementation in glucose metabolism, lipid profile, inflammation and oxidative stress in pregnant women. Food Funct 2024; 15:3479-3495. [PMID: 38456359 DOI: 10.1039/d3fo04456d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Objective: The optimal probiotic supplementation in pregnant women has not been thoroughly evaluated. By employing a network meta-analysis (NMA) approach, we compared the effectiveness of different probiotic supplementation strategies for pregnant women. Methods: A comprehensive search across multiple databases was performed to identify studies comparing the efficacy of probiotic supplements with each other or the control (placebo) among pregnant women. Results: This NMA, including 32 studies, systematically evaluated 6 probiotic supplement strategies: Lactobacillus, Lacticaseibacillus rhamnosus and Bifidobacterium (LRB), Lactobacillus acidophilus and Bifidobacterium (LABB), Lactobacillus acidophilus, Lacticaseibacillus casei, and Bifidobacterium bifidum (LLB), multi-combination of four probiotics (MP1), and multi-combination of six or more probiotics (MP2). Among these strategies, LLB, MP1, and MP2 all contain LABB. The NMA findings showed that MP1 was the most effective in reducing fasting blood sugar (FBS) (surface under the cumulative ranking curve [SUCRA]: 80.5%). In addition, MP2 was the most efficacious in lowering the homeostasis model assessment of insulin resistance (HOMA-IR) (SUCRA: 89.1%). LABB was ranked as the most effective in decreasing low-density lipoprotein cholesterol (LDLC) (SUCRA: 95.5%), total cholesterol (TC) (SUCRA: 95.5%), and high-sensitivity C-reactive protein (hs-CRP) (SUCRA: 94.8%). Moreover, LLB was ranked as the most effective in raising total antioxidant capacity (TAC) (SUCRA: 98.5%). Conclusion: Multi-combination of probiotic strains, especially those strategies containing LABB, may be more effective than a single probiotic strain in glycolipid metabolism, inflammation, and oxidative stress of pregnant women.
Collapse
Affiliation(s)
- Yi-Ke Li
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha 410011, China
- Institute of Clinical Pharmacy, Central South University, Changsha 410011, China.
| | - Chen-Lin Xiao
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha 410011, China
- Institute of Clinical Pharmacy, Central South University, Changsha 410011, China.
| | - Huan Ren
- Department of Pharmacy, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410005, China
| | - Wen-Ru Li
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha 410011, China
- Institute of Clinical Pharmacy, Central South University, Changsha 410011, China.
| | - Zhen Guo
- Hunan Provincial Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Changsha Medical University, Changsha 410219, China
| | - Jian-Quan Luo
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha 410011, China
- Institute of Clinical Pharmacy, Central South University, Changsha 410011, China.
| |
Collapse
|
5
|
Shen W, Chen Q, Lin R, Hu Z, Luo M, Ren Y, Huang K, Wang L, Chen S, Wang L, Ruan Y, Feng L. Imbalance of gut microbiota in gestational diabetes. BMC Pregnancy Childbirth 2024; 24:226. [PMID: 38561737 PMCID: PMC10983739 DOI: 10.1186/s12884-024-06423-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 03/14/2024] [Indexed: 04/04/2024] Open
Abstract
AIM To investigate the differences in gut microbiota composition among nonpregnant women of reproductive age, healthy pregnant women, and gestational diabetes (GD) patients. METHODS A total of 45 outpatients were enrolled and divided into three groups: nonpregnant women of reproductive age (control group, n = 23), healthy pregnant women (normal group, n = 10), and GD patients (GD group, n = 12). Faecal samples were collected and sequenced using 16S rRNA gene sequencing to analyse the microbial composition. RESULTS (1) Pregnant patients exhibited an increase in the abundance of Streptococcus (Pnormal = 0.01286, PGD = 0.002965) and Blautia (Pnormal = 0.0003924, PGD = 0.000246) but a decrease in the abundance of Roseburia (Pnormal = 0.0361, PGD = 0.007075), Phascolarctobacterium (Pnormal = 0.0003906, PGD = 0.02499) and Lachnoclostridium (Pnormal = 0.0003906, PGD = 0.03866). (2) Compared with healthy pregnant women, GD patients had an excessive increase in Streptococcus abundance and decrease in Roseburia abundance. The increase in Blautia abundance and the decrease in Phascolarctobacterium and Lachnoclostridium abundance in GD patients were less than those in healthy pregnant women. (3) The abundance of Faecalibacterium prausnitzii decreased significantly in GD patients (PGD = 0.02985) but not in healthy pregnant patients (Pnormal = 0.1643). CONCLUSIONS Abnormal increases and decreases in the abundances of gut microbiota components, especially Faecalibacterium prausnitzii, were observed in GD patients. TRIAL REGISTRATION The cross-sectional research was conducted in accordance with the Declaration of Helsinki, and approved by Sir Run Run Shaw Hospital Clinical Trials and Biomedical Ethics Committee. The study has been registered in the Chinese Clinical Trial Registry (ChiCTR1900026164, 24/09/2019, http://www.chictr.org.cn/showproj.aspx?proj=43,455 ).
Collapse
Affiliation(s)
- Weiyi Shen
- Department of Pathology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, Zhejiang Province, China
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, Zhejiang Province, China
- Prevention and Treatment Research Center of Senescent Disease, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang Province, China
| | - Qianyi Chen
- Department of Nutriology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, Zhejiang Province, China
| | - Renbin Lin
- Department of Gastroenterology, Hangzhou Hospital of Traditional Chinese Medicine, Zhejiang Chinese Medicine University, Hangzhou, 310005, Zhejiang Province, China
| | - Zhefang Hu
- Department of Nutriology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, Zhejiang Province, China
| | - Man Luo
- Department of Nutriology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, Zhejiang Province, China
| | - Yanwei Ren
- Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, Zhejiang Province, China
| | - Keren Huang
- Department of Nutriology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, Zhejiang Province, China
| | - Li Wang
- Department of Nutriology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, Zhejiang Province, China
| | - Shujie Chen
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, Zhejiang Province, China
- Prevention and Treatment Research Center of Senescent Disease, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang Province, China
| | - Lan Wang
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, Zhejiang Province, China
- Prevention and Treatment Research Center of Senescent Disease, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang Province, China
| | - Yu Ruan
- Department of Endocrinology and Metabolism, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, Zhejiang Province, China
| | - Lijun Feng
- Department of Nutriology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, Zhejiang Province, China.
| |
Collapse
|
6
|
Mahno NE, Tay DD, Khalid NS, Yassim ASM, Alias NS, Termizi SA, Kasian J, Mokhtar NM, Ahmad HF. The Relationship Between Gut Microbiome Estrobolome and Breast Cancer: A Systematic Review of Current Evidences. Indian J Microbiol 2024; 64:1-19. [PMID: 38468730 PMCID: PMC10924874 DOI: 10.1007/s12088-023-01135-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 11/02/2023] [Indexed: 03/13/2024] Open
Abstract
Breast cancer is the most frequent kind of cancer and the second leading cause of mortality worldwide, behind heart disease. Next-generation sequencing technologies enables for unprecedented enumeration of human resident gut microorganisms, conferring novel insights into the role of the microbiota in health and individuals with breast cancer. A growing body of research on microbial dysbiosis seems to indicate an elevated risk of health complications including cancer. Although several dysbiosis indices have been proposed, their underlying methodology, as well as the cohorts and conditions of breast cancer patients are significantly different. To date, these indices have not yet been thoroughly reviewed especially when it comes to researching the estrogen-gut microbiota axis. Instead of providing a thorough rating of the most effective diversity measurements, the current work aims to be used to assess the relevance of each study's findings across the demographic data, different subtypes, and stages of breast cancer, and tie them to the estrobolome, which controls the amount of oestrogen that circulates through humans. This review will cover 11 studies which will go into a detailed discussion for the microbiome results of the mentioned studies, leaving to the user the final choice of the most suited indices as well as highlight the observed bacteria found to be related to the estrobolome in hopes of giving the reader a better understanding for the biological cross-talk between gut microbiome and breast cancer progression. Supplementary Information The online version contains supplementary material available at 10.1007/s12088-023-01135-z.
Collapse
Affiliation(s)
- Noor Ezmas Mahno
- Kulliyyah of Medicine, International Islamic University Malaysia, 25200 Kuantan, Pahang Malaysia
| | - Darren Dean Tay
- Faculty of Industrial Sciences and Technology, Lebuhraya Persiaran Tun Khalil Yaakob, University Malaysia Pahang Al Sultan Abdullah, 26300 Kuantan, Pahang Malaysia
| | - Nurul Syazwani Khalid
- Kulliyyah of Medicine, International Islamic University Malaysia, 25200 Kuantan, Pahang Malaysia
| | - Aini Syahida Mat Yassim
- Kulliyyah of Medicine, International Islamic University Malaysia, 25200 Kuantan, Pahang Malaysia
| | - Nor Syuhada Alias
- Kulliyyah of Medicine, International Islamic University Malaysia, 25200 Kuantan, Pahang Malaysia
| | - Sahrol Azmi Termizi
- Division of Disease Control, Ministry of Health Malaysia, 62590 Putrajaya, Malaysia
| | - Junaini Kasian
- Kulliyyah of Medicine, International Islamic University Malaysia, 25200 Kuantan, Pahang Malaysia
| | - Norfilza Mohd Mokhtar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000 Kuala Lumpur, Malaysia
- GUT Research Group, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000 Kuala Lumpur, Malaysia
| | - Hajar Fauzan Ahmad
- Faculty of Industrial Sciences and Technology, Lebuhraya Persiaran Tun Khalil Yaakob, University Malaysia Pahang Al Sultan Abdullah, 26300 Kuantan, Pahang Malaysia
- GUT Research Group, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000 Kuala Lumpur, Malaysia
| |
Collapse
|
7
|
Bahitham W, Alghamdi S, Omer I, Alsudais A, Hakeem I, Alghamdi A, Abualnaja R, Sanai FM, Rosado AS, Sergi CM. Double Trouble: How Microbiome Dysbiosis and Mitochondrial Dysfunction Drive Non-Alcoholic Fatty Liver Disease and Non-Alcoholic Steatohepatitis. Biomedicines 2024; 12:550. [PMID: 38540163 PMCID: PMC10967987 DOI: 10.3390/biomedicines12030550] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/12/2024] [Accepted: 02/18/2024] [Indexed: 11/22/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH) are closely related liver conditions that have become more prevalent globally. This review examines the intricate interplay between microbiome dysbiosis and mitochondrial dysfunction in the development of NAFLD and NASH. The combination of these two factors creates a synergistic situation referred to as "double trouble", which promotes the accumulation of lipids in the liver and the subsequent progression from simple steatosis (NAFLD) to inflammation (NASH). Microbiome dysbiosis, characterized by changes in the composition of gut microbes and increased intestinal permeability, contributes to the movement of bacterial products into the liver. It triggers metabolic disturbances and has anti-inflammatory effects. Understanding the complex relationship between microbiome dysbiosis and mitochondrial dysfunction in the development of NAFLD and NASH is crucial for advancing innovative therapeutic approaches that target these underlying mechanisms.
Collapse
Affiliation(s)
- Wesam Bahitham
- King Abdullah International Medical Research Center-WR, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard for Health Affairs, Riyadh 11426, Saudi Arabia
- Bioscience, Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Siraj Alghamdi
- King Abdullah International Medical Research Center-WR, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard for Health Affairs, Riyadh 11426, Saudi Arabia
| | - Ibrahim Omer
- King Abdullah International Medical Research Center-WR, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard for Health Affairs, Riyadh 11426, Saudi Arabia
| | - Ali Alsudais
- King Abdullah International Medical Research Center-WR, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard for Health Affairs, Riyadh 11426, Saudi Arabia
| | - Ilana Hakeem
- King Abdullah International Medical Research Center-WR, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard for Health Affairs, Riyadh 11426, Saudi Arabia
| | - Arwa Alghamdi
- King Abdullah International Medical Research Center-WR, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard for Health Affairs, Riyadh 11426, Saudi Arabia
| | - Reema Abualnaja
- King Abdullah International Medical Research Center-WR, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard for Health Affairs, Riyadh 11426, Saudi Arabia
| | - Faisal M Sanai
- Gastroenterology Unit, Department of Medicine, King Abdulaziz Medical City, Jeddah 21423, Saudi Arabia
| | - Alexandre S Rosado
- Bioscience, Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Consolato M Sergi
- Anatomic Pathology, Children's Hospital of Eastern Ontario (CHEO), University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2B7, Canada
| |
Collapse
|
8
|
Poulios E, Pavlidou E, Papadopoulou SK, Rempetsioti K, Migdanis A, Mentzelou M, Chatzidimitriou M, Migdanis I, Androutsos O, Giaginis C. Probiotics Supplementation during Pregnancy: Can They Exert Potential Beneficial Effects against Adverse Pregnancy Outcomes beyond Gestational Diabetes Mellitus? BIOLOGY 2024; 13:158. [PMID: 38534428 PMCID: PMC10967997 DOI: 10.3390/biology13030158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/26/2024] [Accepted: 02/26/2024] [Indexed: 03/28/2024]
Abstract
BACKGROUND Probiotics, as supplements or food ingredients, are considered to exert promising healthy effects when administered in adequate quantity. Probiotics' healthy effects are related with the prevention of many diseases, as well as decreasing symptom severity. Currently, the most available data concerning their potential health effects are associated with metabolic disorders, including gestational diabetes mellitus. There is also clinical evidence supporting that they may exert beneficial effects against diverse adverse pregnancy outcomes. The purpose of the current narrative study is to extensively review and analyze the current existing clinical studies concerning the probable positive impacts of probiotics supplementation during pregnancy as a protective agent against adverse pregnancy outcomes beyond gestational diabetes mellitus. METHODS a comprehensive and thorough literature search was conducted in the most precise scientific databases, such as PubMed, Scopus, and Web of Sciences, utilizing efficient, representative, and appropriate keywords. RESULTS in the last few years, recent research has been conducted concerning the potential beneficial effects against several adverse pregnancy outcomes such as lipid metabolism dysregulation, gestational hypertensive disorders, preterm birth, excessive gestational weight gain, caesarean risk section, vaginal microbiota impairment, mental health disturbances, and others. CONCLUSION up to the present day, there is only preliminary clinical data and not conclusive results for probiotics' healthy effects during pregnancy, and it remains questionable whether they could be used as supplementary treatment against adverse pregnancy outcomes beyond gestational diabetes mellitus.
Collapse
Affiliation(s)
- Efthymios Poulios
- Department of Food Science and Nutrition, School of the Environment, University of the Aegean, 81400 Lemnos, Greece; (E.P.); (E.P.); (K.R.); (M.M.)
| | - Eleni Pavlidou
- Department of Food Science and Nutrition, School of the Environment, University of the Aegean, 81400 Lemnos, Greece; (E.P.); (E.P.); (K.R.); (M.M.)
| | - Sousana K. Papadopoulou
- Department of Nutritional Sciences and Dietetics, Faculty of Health Sciences, International Hellenic University, 57400 Thessaloniki, Greece;
| | - Kalliopi Rempetsioti
- Department of Food Science and Nutrition, School of the Environment, University of the Aegean, 81400 Lemnos, Greece; (E.P.); (E.P.); (K.R.); (M.M.)
| | - Athanasios Migdanis
- Faculty of Medicine, University of Thessaly, 41500 Larissa, Greece; (A.M.); (I.M.)
- Department of Nutrition and Dietetics, School of Physical Education, Sport Science and Dietetics, University of Thessaly, 42132 Trikala, Greece;
| | - Maria Mentzelou
- Department of Food Science and Nutrition, School of the Environment, University of the Aegean, 81400 Lemnos, Greece; (E.P.); (E.P.); (K.R.); (M.M.)
| | - Maria Chatzidimitriou
- Department of Biomedical Science, International Hellenic University, 57400 Thessaloniki, Greece;
| | - Ioannis Migdanis
- Faculty of Medicine, University of Thessaly, 41500 Larissa, Greece; (A.M.); (I.M.)
- Department of Nutrition and Dietetics, School of Physical Education, Sport Science and Dietetics, University of Thessaly, 42132 Trikala, Greece;
| | - Odysseas Androutsos
- Department of Nutrition and Dietetics, School of Physical Education, Sport Science and Dietetics, University of Thessaly, 42132 Trikala, Greece;
| | - Constantinos Giaginis
- Department of Food Science and Nutrition, School of the Environment, University of the Aegean, 81400 Lemnos, Greece; (E.P.); (E.P.); (K.R.); (M.M.)
| |
Collapse
|
9
|
Zhang W, Jia Q, Han M, Zhang X, Guo L, Sun S, Yin W, Bo C, Han R, Sai L. Bifidobacteria in disease: from head to toe. Folia Microbiol (Praha) 2024; 69:1-15. [PMID: 37644256 DOI: 10.1007/s12223-023-01087-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Bifidobacteria as a strictly anaerobic gram-positive bacteria, is widely distributed in the intestine, vagina and oral cavity, and is one of the first gut flora to colonize the early stages of life. Intestinal flora is closely related to health, and dysbiosis of intestinal flora, especially Bifidobacteria, has been found in a variety of diseases. Numerous studies have shown that in addition to maintaining intestinal homeostasis, Bifidobacteria may be involved in diseases covering all parts of the body, including the nervous system, respiratory system, genitourinary system and so on. This review collects evidence for the variation of Bifidobacteria in typical diseases among various systems, provides mild and effective therapeutic options for those diseases that are difficult to cure, and moves Bifidobacteria from basic research to further clinical applications.
Collapse
Affiliation(s)
- Weiliang Zhang
- Shandong First Medical University & Shandong Academy of Medical Sciences, Shandong Academy of Occupational Health and Occupational Medicine, Jinan, Shandong, China
| | - Qiang Jia
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Mingming Han
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xin Zhang
- Shandong First Medical University & Shandong Academy of Medical Sciences, Shandong Academy of Occupational Health and Occupational Medicine, Jinan, Shandong, China
| | - Limin Guo
- Rongcheng Municipal Hospital of Traditional Chinese Medicine, Rongcheng, Shandong, China
| | - Shichao Sun
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Shandong University of Traditional Chinese Medicine Doctoral candidate Class of 2022, Jinan, Shandong, China
| | - Wenhui Yin
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Cunxiang Bo
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Ru Han
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China.
| | - Linlin Sai
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China.
| |
Collapse
|
10
|
Mao L, Gao B, Chang H, Shen H. Interaction and Metabolic Pathways: Elucidating the Role of Gut Microbiota in Gestational Diabetes Mellitus Pathogenesis. Metabolites 2024; 14:43. [PMID: 38248846 PMCID: PMC10819307 DOI: 10.3390/metabo14010043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/29/2023] [Accepted: 01/02/2024] [Indexed: 01/23/2024] Open
Abstract
Gestational diabetes mellitus (GDM) is a complex metabolic condition during pregnancy with an intricate link to gut microbiota alterations. Throughout gestation, notable shifts in the gut microbial component occur. GDM is marked by significant dysbiosis, with a decline in beneficial taxa like Bifidobacterium and Lactobacillus and a surge in opportunistic taxa such as Enterococcus. These changes, detectable in the first trimester, hint as the potential early markers for GDM risk. Alongside these taxa shifts, microbial metabolic outputs, especially short-chain fatty acids and bile acids, are perturbed in GDM. These metabolites play pivotal roles in host glucose regulation, insulin responsiveness, and inflammation modulation, which are the key pathways disrupted in GDM. Moreover, maternal GDM status influences neonatal gut microbiota, indicating potential intergenerational health implications. With the advance of multi-omics approaches, a deeper understanding of the nuanced microbiota-host interactions via metabolites in GDM is emerging. The reviewed knowledge offers avenues for targeted microbiota-based interventions, holding promise for innovative strategies in GDM diagnosis, management, and prevention.
Collapse
Affiliation(s)
- Lindong Mao
- State Key Laboratory of Infectious Disease Vaccine Development, Xiang An Biomedicine Laboratory & State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China; (L.M.); (B.G.); (H.C.)
| | - Biling Gao
- State Key Laboratory of Infectious Disease Vaccine Development, Xiang An Biomedicine Laboratory & State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China; (L.M.); (B.G.); (H.C.)
| | - Hao Chang
- State Key Laboratory of Infectious Disease Vaccine Development, Xiang An Biomedicine Laboratory & State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China; (L.M.); (B.G.); (H.C.)
| | - Heqing Shen
- State Key Laboratory of Infectious Disease Vaccine Development, Xiang An Biomedicine Laboratory & State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China; (L.M.); (B.G.); (H.C.)
- Department of Obstetrics, Women and Children’s Hospital, School of Medicine, Xiamen University, Xiamen 361003, China
| |
Collapse
|
11
|
Liang W, Feng Y, Yang D, Qin J, Zhi X, Wu W, Jie Q. Oral probiotics increased the proportion of Treg, Tfr, and Breg cells to inhibit the inflammatory response and impede gestational diabetes mellitus. Mol Med 2023; 29:122. [PMID: 37684563 PMCID: PMC10492300 DOI: 10.1186/s10020-023-00716-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 08/14/2023] [Indexed: 09/10/2023] Open
Abstract
BACKGROUND Children of mothers with gestational diabetes mellitus (GDM) are more prone to acquire type 2 diabetes and obesity as adults. Due to this link, early intervention strategies that alter the gut microbiome may benefit the mother and kid long-term. This work uses metagenomic and transcriptome sequencing to investigate how probiotics affect gut microbiota dysbiosis and inflammation in GDM. METHODS GDM and control metagenomic sequencing data were obtained from the SRA database. This metagenomic data helped us understand gut microbiota abundance and function. KEGG detected and extracted functional pathway genes. Transcriptome sequencing data evaluated GDM-related gene expression. Finally, GDM animal models were given probiotics orally to evaluate inflammatory response, regulatory immune cell fractions, and leptin protein levels. RESULTS GDM patients had more Fusobacteria and Firmicutes, while healthy people had more Bacteroidetes. Gut microbiota composition may affect GDM by altering the L-aspartate and L-asparagine super pathways. Mannan degradation and the super pathway of L-aspartate and L-asparagine synthesis enhanced in GDM mice with leptin protein overexpression. Oral probiotics prevent GDM by lowering leptin. Oral probiotics increased Treg, Tfr, and Breg cells, which decreased TNF-α and IL-6 and increased TGF-β and IL-10, preventing inflammation and preserving mouse pregnancy. CONCLUSION Dysbiosis of the gut microbiota may increase leptin expression and cause GDM. Oral probiotics enhance Treg, Tfr, and Breg cells, which limit the inflammatory response and assist mice in sustaining normal pregnancy. Thus, oral probiotics may prevent GDM, enabling targeted gut microbiota modulation and maternal and fetal health.
Collapse
Affiliation(s)
- Weijie Liang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, People's Republic of China
- Department of Geriatric Endocrinology, Guangdong Provincial Geriatrics Institute (East Zone), Guangdong Academy of Medical Sciences, Guangdong Provincial People's Hospital, No. 3, Chanchugang, Zhongshan 2nd Road, Yuexiu District, Guangzhou, 510080, Guangdong Province, People's Republic of China
- Department of Cardiology, Panyu Central Hospital, Cardiovascular Institute of Panyu District, No. 8, Fuyu East Road, Qiaonan Street, Panyu District, Guangzhou, 511400, Guangdong Province, People's Republic of China
| | - Yuanyi Feng
- Department of Geriatrics, Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital), Shenzhen, 518052, People's Republic of China
| | - Dongmei Yang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, People's Republic of China
- Department of Geriatric Endocrinology, Guangdong Provincial Geriatrics Institute (East Zone), Guangdong Academy of Medical Sciences, Guangdong Provincial People's Hospital, No. 3, Chanchugang, Zhongshan 2nd Road, Yuexiu District, Guangzhou, 510080, Guangdong Province, People's Republic of China
| | - Jiajun Qin
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, People's Republic of China
- Department of Geriatric Endocrinology, Guangdong Provincial Geriatrics Institute (East Zone), Guangdong Academy of Medical Sciences, Guangdong Provincial People's Hospital, No. 3, Chanchugang, Zhongshan 2nd Road, Yuexiu District, Guangzhou, 510080, Guangdong Province, People's Republic of China
| | - Ximei Zhi
- Department of Geriatric Endocrinology, Guangdong Provincial Geriatrics Institute (East Zone), Guangdong Academy of Medical Sciences, Guangdong Provincial People's Hospital, No. 3, Chanchugang, Zhongshan 2nd Road, Yuexiu District, Guangzhou, 510080, Guangdong Province, People's Republic of China
| | - Wen Wu
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, People's Republic of China.
- Department of Geriatric Endocrinology, Guangdong Provincial Geriatrics Institute (East Zone), Guangdong Academy of Medical Sciences, Guangdong Provincial People's Hospital, No. 3, Chanchugang, Zhongshan 2nd Road, Yuexiu District, Guangzhou, 510080, Guangdong Province, People's Republic of China.
| | - Qiang Jie
- Department of Cardiology, Panyu Central Hospital, Cardiovascular Institute of Panyu District, No. 8, Fuyu East Road, Qiaonan Street, Panyu District, Guangzhou, 511400, Guangdong Province, People's Republic of China.
| |
Collapse
|
12
|
Guo K, Figueroa-Romero C, Noureldein M, Hinder LM, Sakowski SA, Rumora AE, Petit H, Savelieff MG, Hur J, Feldman EL. Gut microbiota in a mouse model of obesity and peripheral neuropathy associated with plasma and nerve lipidomics and nerve transcriptomics. MICROBIOME 2023; 11:52. [PMID: 36922895 PMCID: PMC10015923 DOI: 10.1186/s40168-022-01436-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 11/25/2022] [Indexed: 06/18/2023]
Abstract
BACKGROUND Peripheral neuropathy (PN) is a common complication in obesity, prediabetes, and type 2 diabetes, though its pathogenesis remains incompletely understood. In a murine high-fat diet (HFD) obesity model of PN, dietary reversal (HFD-R) to a low-fat standard diet (SD) restores nerve function and the nerve lipidome to normal. As the gut microbiome represents a potential link between dietary fat intake and nerve health, the current study assessed shifts in microbiome community structure by 16S rRNA profiling during the paradigm of dietary reversal (HFD-R) in various gut niches. Dietary fat content (HFD versus SD) was also correlated to gut flora and metabolic and PN phenotypes. Finally, PN-associated microbial taxa that correlated with the plasma and sciatic nerve lipidome and nerve transcriptome were used to identify lipid species and genes intimately related to PN phenotypes. RESULTS Microbiome structure was altered in HFD relative to SD but rapidly reversed with HFD-R. Specific taxa variants correlating positively with metabolic health associated inversely with PN, while specific taxa negatively linked to metabolic health positively associated with PN. In HFD, PN-associated taxa variants, including Lactobacillus, Lachnoclostridium, and Anaerotruncus, also positively correlated with several lipid species, especially elevated plasma sphingomyelins and sciatic nerve triglycerides. Negative correlations were additionally present with other taxa variants. Moreover, relationships that emerged between specific PN-associated taxa variants and the sciatic nerve transcriptome were related to inflammation, lipid metabolism, and antioxidant defense pathways, which are all established in PN pathogenesis. CONCLUSIONS The current results indicate that microbiome structure is altered with HFD, and that certain taxa variants correlate with metabolic health and PN. Apparent links between PN-associated taxa and certain lipid species and nerve transcriptome-related pathways additionally provide insight into new targets for microbiota and the associated underlying mechanisms of action in PN. Thus, these findings strengthen the possibility of a gut-microbiome-peripheral nervous system signature in PN and support continuing studies focused on defining the connection between the gut microbiome and nerve health to inform mechanistic insight and therapeutic opportunities. Video Abstract.
Collapse
Affiliation(s)
- Kai Guo
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109 USA
| | | | - Mohamed Noureldein
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109 USA
| | - Lucy M. Hinder
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109 USA
- Reata Pharmaceuticals, Irving, TX 75063 USA
| | - Stacey A. Sakowski
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109 USA
| | - Amy E. Rumora
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109 USA
- Department of Neurology, Columbia University, New York, NY 10032 USA
| | - Hayley Petit
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109 USA
| | - Masha G. Savelieff
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109 USA
| | - Junguk Hur
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202 USA
| | - Eva L. Feldman
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109 USA
| |
Collapse
|
13
|
The Effects of Probiotics on Small Intestinal Microbiota Composition, Inflammatory Cytokines and Intestinal Permeability in Patients with Non-Alcoholic Fatty Liver Disease. Biomedicines 2023; 11:biomedicines11020640. [PMID: 36831176 PMCID: PMC9953317 DOI: 10.3390/biomedicines11020640] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/02/2023] [Accepted: 02/13/2023] [Indexed: 02/22/2023] Open
Abstract
The prevalence of non-alcoholic fatty liver disease (NAFLD) has soared globally. As our understanding of the disease grows, the role of the gut-liver axis (GLA) in NAFLD pathophysiology becomes more apparent. Hence, we focused mainly on the small intestinal area to explore the role of GLA. We looked at how multi-strain probiotics (MCP® BCMC® strains) containing six different Lactobacillus and Bifidobacterium species affected the small intestinal gut microbiota, inflammatory cytokines, and permeability in NAFLD patients. After six months of supplementation, biochemical blood analysis did not show any discernible alterations in either group. Five predominant phyla known as Actinobacteria, Proteobacteria, Firmicutes, Bacteroidota and Fusobacteria were found in NAFLD patients. The probiotics group demonstrated a significant cluster formation of microbiota composition through beta-diversity analysis (p < 0.05). This group significantly reduced three unclassifiable species: unclassified_Proteobacteria, unclassified_Streptococcus, and unclassified_Stenotrophomonas. In contrast, the placebo group showed a significant increase in Prevotella_melaninogenica and Rothia_mucilaginosa, which were classified as pathogens. Real-time quantitative PCR analysis of small intestinal mucosal inflammatory cytokines revealed a significant decrease in IFN-γ (-7.9 ± 0.44, p < 0.0001) and TNF-α (-0.96 ± 0.25, p < 0.0033) in the probiotics group but an increase in IL-6 (12.79 ± 2.24, p < 0.0001). In terms of small intestinal permeability analysis, the probiotics group, unfortunately, did not show any positive changes through ELISA analysis. Both probiotics and placebo groups exhibited a significant increase in the level of circulating zonulin (probiotics: 107.6 ng/mL ± 124.7, p = 0.005 vs. placebo: 106.9 ng/mL ± 101.3, p = 0.0002) and a significant decrease in circulating zonula occluden-1 (ZO-1) (probiotics: -34.51 ng/mL ± 18.38, p < 0.0001 vs. placebo: -33.34 ng/mL ± 16.62, p = 0.0001). The consumption of Lactobacillus and Bifidobacterium suggested the presence of a well-balanced gut microbiota composition. Probiotic supplementation improves dysbiosis in NAFLD patients. This eventually stabilised the expression of inflammatory cytokines and mucosal immune function. To summarise, more research on probiotic supplementation as a supplement to a healthy diet and lifestyle is required to address NAFLD and its underlying causes.
Collapse
|