1
|
Liu KL, Sun TZ, Yang Y, Gao QX, Tu LM, Yu JY, Tian QZ, Fu LY, Tang SH, Gao HL, Qi J, Kang YM, Yu XJ. Blockade of PVN neuromedin B receptor alleviates inflammation via the RAS/ROS/NF-κB pathway in spontaneously hypertensive rats. Brain Res Bull 2025; 220:111180. [PMID: 39716597 DOI: 10.1016/j.brainresbull.2024.111180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/15/2024] [Accepted: 12/20/2024] [Indexed: 12/25/2024]
Abstract
Neuromedin B (NMB) has potentially great impacts on the development of cardiovascular diseases by promoting hypertensive and sympatho-excitation effects. However, studies regarding the NMB function in paraventricular nucleus (PVN) are lacking. With selective neuromedin B receptor (NMBR) antagonist, BIM-23127, we aim to determine whether the blockade of NMB function in PVN could alleviate central inflammation and attenuate hypertensive responses. Spontaneously hypertensive rats (SHR) and Wistar Kyoto rats (WKY) were chronically infused with BIM-23127 in the PVN for 6 weeks. Mean arterial pressure (MAP) was assessed with tail cuff and electrophysiological acquisition systems. PVN tissues were collected to analyze expressions of Fra-LI, inflammatory cytokines (IL-1β, TNF-α, IL-6, IL-10, and IL-4), renin-angiotensin system (angiotensin-converting enzyme (ACE), ACE2, and AT1-reporter (AT1-R)) and oxidative stress (reactive oxygen species (ROS), superoxide dismutase (SOD)1, NADPH oxidase (NOX)2, and NOX4). ELISA was used to detect inflammation indices, norepinephrine (NE), and nuclear factor κB (NF-κB) p65 in plasma and PVN tissue homogenate. Compared to WKY, SHR exhibited higher mean arterial pressure (MAP), plasma NE, and pro-inflammatory cytokines (PICs). Higher PVN levels of Fra-LI, PICs, ACE, AT1-R, ROS, NOX2, NOX4, and NF-κB p65, while lower central levels of anti-inflammatory cytokines (AICs), ACE2, and SOD1 were observed in SHR. Administration of BIM-23127 in PVN reversed all these changes in SHR. In SHR, blockade of NMBR in the PVN inhibited sympatho-excitation and attenuated hypertensive response. The attenuation mechanism may involve reducing inflammation and the RAS/ROS/ NF-κB pathways in PVN.
Collapse
Affiliation(s)
- Kai-Li Liu
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi'an 710061, China
| | - Tian-Ze Sun
- Department of Medical Imaging, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Yu Yang
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi'an 710061, China; Department of Pharmacology, School of Basic Medical Sciences, Jiamusi University, Jiamusi 154007, China
| | - Qian-Xi Gao
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi'an 710061, China; Shanxi Medical University, Taiyuan 030001, China
| | - Li-Mei Tu
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi'an 710061, China; Shanxi Medical University, Taiyuan 030001, China
| | - Jia-Yue Yu
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi'an 710061, China
| | - Qiao-Zhen Tian
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi'an 710061, China; Shanxi Datong University, Datong 037009, China
| | - Li-Yan Fu
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi'an 710061, China
| | - Shu-Huan Tang
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi'an 710061, China
| | - Hong-Li Gao
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi'an 710061, China
| | - Jie Qi
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi'an 710061, China
| | - Yu-Ming Kang
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi'an 710061, China
| | - Xiao-Jing Yu
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi'an 710061, China.
| |
Collapse
|
2
|
Zhang SY, Yang N, Hao PH, Wen R, Zhang TN. Targeting sirtuins in neurological disorders: A comprehensive review. Int J Biol Macromol 2024; 292:139258. [PMID: 39736297 DOI: 10.1016/j.ijbiomac.2024.139258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 12/09/2024] [Accepted: 12/26/2024] [Indexed: 01/01/2025]
Abstract
The sirtuin (SIRT) family is a group of seven conserved nicotinamide adenine dinucleotide-dependent histone deacetylases (SIRT1-SIRT7), which play crucial roles in various fundamental biological processes, including metabolism, aging, stress responses, inflammation, and cell survival. The role of SIRTs in neuro-pathophysiology has recently attracted significant attention. Notably, SIRT1-SIRT3 have been identified as key players in neuroprotection as they reduce neuroinflammation and regulate mitochondrial function. This review summarizes the latest research advancements in the role of the SIRT family in neurological diseases, mainly including neurodegenerative diseases, ischemia-related diseases, bleeding-related diseases, nervous system injury and other nervous system diseases, emphasizing their critical functions and associated signaling pathways, (e.g., AMPK/SIRT1/PGC-1α, AMPK/SIRT1/IL-1β/NF-κB, STAT2-SIRT4-mTOR, SIRT3/FOXO3α, and other signaling pathways in disease progression, particularly their protective roles in neurodegenerative diseases, ischemic injuries, and neural damage. Additionally, this review discusses progress in clinical studies targeting SIRT-specific small-molecule agonists and inhibitors. Further research on SIRTs may provide new insights into potential therapeutic strategies for the prevention and treatment of neurological disorders.
Collapse
Affiliation(s)
- Sen-Yu Zhang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Ni Yang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Peng-Hui Hao
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Ri Wen
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| | - Tie-Ning Zhang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| |
Collapse
|
3
|
Gao HL, Yang Y, Tian H, Fu LY, Liu KL, Jia XY, Shi XL, Kang YM, Yu XJ. Inhibition of CB1R in the Hypothalamic Paraventricular Nucleus Ameliorates Hypertension Through Wnt/β-Catenin/RAS Pathway. Cardiovasc Toxicol 2024:10.1007/s12012-024-09938-2. [PMID: 39467886 DOI: 10.1007/s12012-024-09938-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 10/20/2024] [Indexed: 10/30/2024]
Abstract
The hypothalamic paraventricular nucleus (PVN), as an important integrating center, plays a prominent role in the pathogenesis of hypertension, in maintaining the stability of cardiovascular activity through peripheral sympathetic nervous activity and secretion of various humoral factors. Acknowledging that the mechanistic targets of the endocannabinoid type 1 receptor (CB1R) are the key signaling systems involved in the regulation of hypertension, we sought to clarify whether inhibition of CB1R within the PVN ameliorates hypertension through Wnt/β-catenin/RAS pathway. Spontaneously hypertensive rats (SHRs) and Wistar Kyoto rats were randomly assigned to different groups and treated with bilateral PVN injections of AM251 (CB1R antagonist, 10 µg/h) or vehicle (artificial cerebrospinal fluid, aCSF) for four weeks. Bilateral PVN injections of AM251 significantly decreased the heart rate, the body weight and the mean arterial pressure in SHRs. AM251 lowered the expression of CB1R, Wnt3, active-β-catenin, p-IKKβ, RAS components, pro-inflammatory cytokines and elevated the expression level of Glycogen synthase kinase3β and Superoxide Dismutase in the PVN of hypertensive rats. Our findings suggest that inhibition of CB1R in the PVN ameliorates hypertension through Wnt/β-catenin/RAS pathway and broaden our current understanding of the pathological mechanism and clinical treatment of hypertension.
Collapse
Affiliation(s)
- Hong-Li Gao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University Health Science Center, Institute of Cardiovascular Sciences, Translational Medicine Institute, Xi'an Jiaotong University, Ministry of Education, Xi'an, 710061, Shaanxi, China
| | - Yu Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University Health Science Center, Institute of Cardiovascular Sciences, Translational Medicine Institute, Xi'an Jiaotong University, Ministry of Education, Xi'an, 710061, Shaanxi, China
- Department of Physiology, Basic Medical College, Jiamusi University, Jiamusi, 154007, Heilongjiang, China
| | - Hua Tian
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University Health Science Center, Institute of Cardiovascular Sciences, Translational Medicine Institute, Xi'an Jiaotong University, Ministry of Education, Xi'an, 710061, Shaanxi, China
- Department of Diagnosis, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Li-Yan Fu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University Health Science Center, Institute of Cardiovascular Sciences, Translational Medicine Institute, Xi'an Jiaotong University, Ministry of Education, Xi'an, 710061, Shaanxi, China
| | - Kai-Li Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University Health Science Center, Institute of Cardiovascular Sciences, Translational Medicine Institute, Xi'an Jiaotong University, Ministry of Education, Xi'an, 710061, Shaanxi, China
| | - Xiu-Yue Jia
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University Health Science Center, Institute of Cardiovascular Sciences, Translational Medicine Institute, Xi'an Jiaotong University, Ministry of Education, Xi'an, 710061, Shaanxi, China
- Department of Physiology, Basic Medical College, Jiamusi University, Jiamusi, 154007, Heilongjiang, China
| | - Xiao-Lian Shi
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University Health Science Center, Institute of Cardiovascular Sciences, Translational Medicine Institute, Xi'an Jiaotong University, Ministry of Education, Xi'an, 710061, Shaanxi, China
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Yu-Ming Kang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University Health Science Center, Institute of Cardiovascular Sciences, Translational Medicine Institute, Xi'an Jiaotong University, Ministry of Education, Xi'an, 710061, Shaanxi, China.
| | - Xiao-Jing Yu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University Health Science Center, Institute of Cardiovascular Sciences, Translational Medicine Institute, Xi'an Jiaotong University, Ministry of Education, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
4
|
Aguilar-Garcia IG, Alpirez J, Castañeda-Arellano R, Dueñas-Jiménez JM, Toro Castillo C, León-Moreno LC, Osuna-Carrasco LP, Dueñas-Jiménez SH. Resveratrol and Exercise Produce Recovered Ankle and Metatarsus Joint Movements after Penetrating Lesion in Hippocampus in Male Rats. Brain Sci 2024; 14:980. [PMID: 39451994 PMCID: PMC11506448 DOI: 10.3390/brainsci14100980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/20/2024] [Accepted: 09/25/2024] [Indexed: 10/26/2024] Open
Abstract
Introduction: This study investigates how traumatic injuries alter joint movements in the ankle and foot. We used a brain injury model in rats, focusing on the hippocampus between the CA1 and dentate gyrus. Materials and Methods: We assessed the dissimilarity factor (DF) and vertical displacement (VD) of the ankle and metatarsus joints before and after the hippocampal lesion. We analyzed joint movements in rats after the injury or in rats treated with resveratrol, exercise, or a combination of both. Results: Resveratrol facilitated the recovery of DF in both legs, showing improvements in the ankle and metatarsus joints on the third and seventh days post-injury. The hippocampal lesion affected VD in both legs, observed on the third or seventh day after the injury. Both exercise and resveratrol partially recovered VD in the ankle and metatarsus joints on these days. These effects may be linked to increased hippocampal neurogenesis and reduced neuroinflammation. Conclusions: The study highlights the benefits of resveratrol and exercise in motor recovery following brain injury, suggesting their potential to enhance the quality of life for patients with neurological disorders affecting motor function and locomotion. These findings also suggest that resveratrol could offer a promising or complementary alternative in managing chronic pain and inflammation associated with orthopedic conditions, thus improving overall patient management.
Collapse
Affiliation(s)
- Irene Guadalupe Aguilar-Garcia
- Departamento de Neurociencias, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (I.G.A.-G.); (J.A.)
| | - Jonatan Alpirez
- Departamento de Neurociencias, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (I.G.A.-G.); (J.A.)
| | - Rolando Castañeda-Arellano
- Laboratorio de Farmacología, Centro de Investigación Multidisciplinario en Salud, Centro Universitario de Tonalá, Universidad de Guadalajara, Tonalá 45425, Mexico;
| | - Judith Marcela Dueñas-Jiménez
- Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico;
| | - Carmen Toro Castillo
- Bioingenieria Traslacional, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Guadalajara 44430, Mexico; (C.T.C.); (L.P.O.-C.)
| | - Lilia Carolina León-Moreno
- Unidad de Evaluación Preclinica, Biotecnología Médica y Farmacéutica, CIATEJ, Guadalajara 44270, Mexico;
| | - Laura Paulina Osuna-Carrasco
- Bioingenieria Traslacional, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Guadalajara 44430, Mexico; (C.T.C.); (L.P.O.-C.)
| | - Sergio Horacio Dueñas-Jiménez
- Departamento de Neurociencias, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (I.G.A.-G.); (J.A.)
| |
Collapse
|
5
|
Fu LY, Yang Y, Li RJ, Issotina Zibrila A, Tian H, Jia XY, Qiao JA, Wu JM, Qi J, Yu XJ, Kang YM. Activation AMPK in Hypothalamic Paraventricular Nucleus Improves Renovascular Hypertension Through ERK1/2-NF-κB Pathway. Cardiovasc Toxicol 2024; 24:904-917. [PMID: 39008239 DOI: 10.1007/s12012-024-09888-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 06/29/2024] [Indexed: 07/16/2024]
Abstract
Hypertension is a globally prevalent disease, but the pathogenesis remains largely unclear. AMP-activated protein kinase (AMPK) is a nutrition-sensitive signal of cellular energy metabolism, which has a certain influence on the development of hypertension. Previously, we found a down-regulation of the phosphorylated (p-) form of AMPK, and the up-regulation of the angiotensin II type 1 receptor (AT1-R) and that of p-ERK1/2 in the hypothalamic paraventricular nucleus (PVN) of hypertensive rats. However, the exact mechanism underlying the relationship between AMPK and AT1-R in the PVN during hypertension remains unclear. Thus, we hypothesized that AMPK modulates AT1-R through the ERK1/2-NF-κB pathway in the PVN, thereby inhibiting sympathetic nerve activity and improving hypertension. To examine this hypothesis, we employed a renovascular hypertensive animal model developed via two-kidney, one-clip (2K1C) and sham-operated (SHAM). Artificial cerebrospinal fluid (aCSF), used as vehicle, or 5-amino-1-β-D-ribofuranosyl-imidazole-4-carboxamide (AICAR, an AMPK activator, 60 μg/day) was microinjected bilaterally in the PVN of these rats for 4 weeks. In 2K1C rats, there an increase in systolic blood pressure (SBP) and circulating norepinephrine (NE). Also, the hypertensive rats had lowered expression of p-AMPK and p-AMPK/AMPK, elevated expression of p-ERK1/2, p-ERK1/2/ERK1/2 and AT1-R, increased NF-κB p65 activity in the PVN compared with the levels of these biomarkers in SHAM rats. Four weeks of bilateral PVN injection of AMPK activator AICAR, attenuated the NE level and SBP, increased the expression of p-AMPK and p-AMPK/AMPK, lessened the NF-κB p65 activity, decreased the expression of p-ERK1/2, p-ERK1/2/ERK1/2 and AT1-R in the PVN of 2K1C rats. Data from this study imply that the activation of AMPK within the PVN suppressed AT1-R expression through inhibiting the ERK1/2-NF-κB pathway, decreased the activity of the sympathetic nervous system, improved hypertension.
Collapse
Affiliation(s)
- Li-Yan Fu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center; Institute of Cardiovascular Sciences, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center; Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, 710061, Shaanxi, China
| | - Yu Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center; Institute of Cardiovascular Sciences, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center; Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, 710061, Shaanxi, China
- Basic Medical College, Jiamusi University, Jiamusi, 154007, Heilongjiang, China
| | - Rui-Juan Li
- Department of Infectious Diseases, The Second Affiliated Hospital, Air Force Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Abdoulaye Issotina Zibrila
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center; Institute of Cardiovascular Sciences, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center; Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, 710061, Shaanxi, China
| | - Hua Tian
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center; Institute of Cardiovascular Sciences, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center; Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, 710061, Shaanxi, China
- Department of Diagnosis, Shaanxi University of Chinese Medicine, Xi'an, 712046, Shaanxi, China
| | - Xiu-Yue Jia
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center; Institute of Cardiovascular Sciences, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center; Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, 710061, Shaanxi, China
- Basic Medical College, Jiamusi University, Jiamusi, 154007, Heilongjiang, China
| | - Jin-An Qiao
- Institute of Pediatric Diseases, Xi'an Children's Hospital, Xi'an, 710002, Shaanxi, China
| | - Jin-Min Wu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center; Institute of Cardiovascular Sciences, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center; Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, 710061, Shaanxi, China
| | - Jie Qi
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center; Institute of Cardiovascular Sciences, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center; Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, 710061, Shaanxi, China
| | - Xiao-Jing Yu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center; Institute of Cardiovascular Sciences, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center; Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, 710061, Shaanxi, China.
| | - Yu-Ming Kang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center; Institute of Cardiovascular Sciences, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center; Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
6
|
Li J, Peng C, He K, Wang Y, Lai X. The central mechanisms of electroacupuncture at LR3 in the treatment of spontaneous hypertension: a PET and mRNA transcriptome study. Front Cardiovasc Med 2024; 11:1358426. [PMID: 39234603 PMCID: PMC11371727 DOI: 10.3389/fcvm.2024.1358426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 07/31/2024] [Indexed: 09/06/2024] Open
Abstract
Objective To reveal the efficacy and potential mechanisms of electroacupuncture (EA) in treating hypertension. Methods Male spontaneously hypertensive rats (SHRs) were randomly assigned to the SHR group, EA group, and Sham-EA group, with Wistar-Kyoto rats (WKY) as the normal control group. SHRs in the EA group received electroacupuncture at the bilateral Taichong (LR3) acupoints for 7 consecutive days. Evaluation of systolic blood pressure (SBP), diastolic blood pressure (DBP), mean arterial pressure (MAP), and heart rate (HR) was conducted. Positron emission tomography-computed tomography (PET-CT) was employed to explore the active brain regions associated with acupuncture-induced blood pressure reduction. Furthermore, mRNA expression profiling was analyzed in the active brain regions to identify differentially expressed genes, and quantitative polymerase chain reaction (qPCR) was used to validate the mRNA expression of differentially expressed genes in the active brain region. Results EA reduced elevated SBP, DBP, MAP and HR in SHR. PET-CT revealed that EA decreased glucose metabolism in the hypothalamus. Genomic analysis suggested that, compared to the SHR group, the differentially expressed genes in the hypothalamus of the EA group included Nr4a1, Sirt1, Trh, GPR88, Cck, and Th. EA downregulated the mRNA expression of Th, Trh, Gpr88, and Nr4a1, while upregulating the expression of Sirt1 and Cck at the mRNA level. Conclusion EA may exert a unique antihypertensive effect in the hypothalamus of SHR, involving the modulation of sympathetic nerve activity, neuroinflammation, and oxidative stress response.
Collapse
Affiliation(s)
- Jing Li
- Integrative Cancer Centre, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Postdoctoral Research Station, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Clinical School of Acupuncture and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Chong Peng
- Postdoctoral Research Station, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Department of Hepatobiliary Disease, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Kejie He
- Department of Acupuncture and Rehabilitation, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Yumei Wang
- Department of Rehabilitation, Shenzhen Bao'an Traditional Chinese Medicine Hospital Group, Shenzhen, Guangdong, China
| | - Xinsheng Lai
- Clinical School of Acupuncture and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| |
Collapse
|
7
|
Gao HL, Yang Y, Tian H, Xu SL, Li BW, Fu LY, Liu KL, Shi XL, Kang YM, Yu XJ. Puerarin Alleviates Blood Pressure via Inhibition of ROS/TLR4/NLRP3 Inflammasome Signaling Pathway in the Hypothalamic Paraventricular Nucleus of Salt-Induced Prehypertensive Rats. Nutrients 2024; 16:2580. [PMID: 39203718 PMCID: PMC11356837 DOI: 10.3390/nu16162580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/23/2024] [Accepted: 07/31/2024] [Indexed: 09/03/2024] Open
Abstract
BACKGROUND Puerarin is an isoflavone compound isolated from the roots of a leguminous plant, the wild kudzu. Various functional activities of this compound in multiple diseases have been reported. However, the effect and mechanism of puerarin in improving blood pressure remain non-elucidated. PURPOSE The current study was designed to assess the preventive effects of puerarin on the onset and progression of hypertension and to verify the hypothesis that puerarin alleviates blood pressure by inhibiting the ROS/TLR4/NLRP3 inflammasome signaling pathway in the hypothalamic paraventricular nucleus (PVN) of salt-induced prehypertensive rats. METHODS Male Dahl salt-sensitive rats were fed low NaCl salt (3% in drinking water) for the control (NS) group or 8% (HS) to induce prehypertension. Each batch was divided into two group and treated by bilateral PVN microinjection with either artificial cerebrospinal fluid or puerarin through a micro-osmotic pump for 6 weeks. The mean arterial pressure (MAP) was recorded, and samples were collected and analyzed. RESULTS We concluded that puerarin significantly prevented the elevation of blood pressure and effectively alleviated the increase in heart rate caused by high salt. Norepinephrine (NE) in the plasma of salt-induced prehypertensive rats also decreased upon puerarin chronic infusion. Additionally, analysis of the PVN sample revealed that puerarin pretreatment decreased the positive cells and gene level of TLR4 (Toll-like receptor 4), NLRP3, Caspase-1 p10, NOX2, MyD88, NOX4, and proinflammatory cytokines in the PVN. Puerarin pretreatment also decreased NF-κBp65 activity, inhibited oxidative stress, and alleviated inflammatory responses in the PVN. CONCLUSION We conclude that puerarin alleviated blood pressure via inhibition of the ROS/TLR4/NLRP3 inflammasome signaling pathway in the PVN, suggesting the therapeutic potential of puerarin in the prevention of hypertension.
Collapse
Affiliation(s)
- Hong-Li Gao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
- Institute of Cardiovascular Sciences, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an 710061, China
| | - Yu Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
- Institute of Cardiovascular Sciences, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an 710061, China
- Department of Pharmacology, Basic Medical College, Jiamusi University, Jiamusi 154007, China
| | - Hua Tian
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
- Institute of Cardiovascular Sciences, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an 710061, China
- Department of Diagnosis, Shaanxi University of Chinese Medicine, Xi'an 712046, China
| | - Shen-Liang Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
- Institute of Cardiovascular Sciences, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an 710061, China
| | - Bo-Wen Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
- Institute of Cardiovascular Sciences, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an 710061, China
| | - Li-Yan Fu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
- Institute of Cardiovascular Sciences, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an 710061, China
| | - Kai-Li Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
- Institute of Cardiovascular Sciences, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an 710061, China
| | - Xiao-Lian Shi
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
- Institute of Cardiovascular Sciences, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an 710061, China
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Yu-Ming Kang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
- Institute of Cardiovascular Sciences, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an 710061, China
| | - Xiao-Jing Yu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
- Institute of Cardiovascular Sciences, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an 710061, China
| |
Collapse
|
8
|
Zhang J, Liu S, Ding W, Wan J, Qin JJ, Wang M. Resolution of inflammation, an active process to restore the immune microenvironment balance: A novel drug target for treating arterial hypertension. Ageing Res Rev 2024; 99:102352. [PMID: 38857706 DOI: 10.1016/j.arr.2024.102352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 05/11/2024] [Accepted: 05/27/2024] [Indexed: 06/12/2024]
Abstract
The resolution of inflammation, the other side of the inflammatory response, is defined as an active and highly coordinated process that promotes the restoration of immune microenvironment balance and tissue repair. Inflammation resolution involves several key processes, including dampening proinflammatory signaling, specialized proresolving lipid mediator (SPM) production, nonlipid proresolving mediator production, efferocytosis and regulatory T-cell (Treg) induction. In recent years, increasing attention has been given to the effects of inflammation resolution on hypertension. Furthermore, our previous studies reported the antihypertensive effects of SPMs. Therefore, in this review, we aim to summarize and discuss the detailed association between arterial hypertension and inflammation resolution. Additional, the association between gut microbe-mediated immune and hypertension is discussed. This findings suggested that accelerating the resolution of inflammation can have beneficial effects on hypertension and its related organ damage. Exploring novel drug targets by focusing on various pathways involved in accelerating inflammation resolution will contribute to the treatment and control of hypertensive diseases in the future.
Collapse
Affiliation(s)
- Jishou Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China; Department of Cardiology, Renmin Hospital of Wuhan University; Cardiovascular Research Institute, Wuhan University; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Siqi Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China; Department of Cardiology, Renmin Hospital of Wuhan University; Cardiovascular Research Institute, Wuhan University; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Wen Ding
- Department of Cardiology, Renmin Hospital of Wuhan University; Cardiovascular Research Institute, Wuhan University; Hubei Key Laboratory of Cardiology, Wuhan, China; Department of Radiology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jun Wan
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China; Department of Cardiology, Renmin Hospital of Wuhan University; Cardiovascular Research Institute, Wuhan University; Hubei Key Laboratory of Cardiology, Wuhan, China.
| | - Juan-Juan Qin
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China; Center for Healthy Aging, Wuhan University School of Nursing, Wuhan, China.
| | - Menglong Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China; Department of Cardiology, Renmin Hospital of Wuhan University; Cardiovascular Research Institute, Wuhan University; Hubei Key Laboratory of Cardiology, Wuhan, China.
| |
Collapse
|
9
|
Fu LY, Yang Y, Tian H, Jia XY, Liu KL, Gao HL, Li Y, Qi J, Yu XJ, Kang YM. Central administration of AICAR attenuates hypertension via AMPK/Nrf2 pathway in the hypothalamic paraventricular nucleus of hypertensive rats. Eur J Pharmacol 2024; 974:176373. [PMID: 38341079 DOI: 10.1016/j.ejphar.2024.176373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 01/20/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024]
Abstract
BACKGROUND Oxidative stress and inflammatory cytokines in the hypothalamus paraventricular nucleus (PVN) have been implicated in sympathetic nerve activity and the development of hypertension, but the specific mechanisms underlying their production in the PVN remains to be elucidated. Previous studies have demonstrated that activation of nuclear transcription related factor-2 (Nrf2) in the PVN reduced the production of reactive oxygen species (ROS) and inflammatory mediators. Moreover, AMP-activated protein kinase (AMPK), has been observed to decrease ROS and inflammatory cytokine production when activated in the periphery. 5-amino-1-β-D-ribofuranosyl-imidazole-4-carboxamide (AICAR) is an AMPK agonist. However, little research has been conducted on the role of AMPK in the PVN during hypertension. Therefore, we hypothesized that AICAR in the PVN is involved in regulating AMPK/Nrf2 pathway, affecting ROS and inflammatory cytokine expression, influencing sympathetic nerve activity. METHODS Adult male Sprague-Dawley rats were utilized to induce two-kidney, one-clip (2K1C) hypertension via constriction of the right renal artery. Bilateral PVN was microinjected with either artificial cerebrospinal fluid or AICAR once a day for 4 weeks. RESULTS Compared to the SHAM group, the PVN of 2K1C hypertensive rats decreased p-AMPK and p-Nrf2 expression, increased Fra-Like, NAD(P)H oxidase (NOX)2, NOX4, tumor necrosis factor-α and interleukin (IL)-1β expression, elevated ROS levels, decreased superoxide dismutase 1 and IL-10 expression, and elevated plasma norepinephrine levels. Bilateral PVN microinjection of AICAR significantly ameliorated these changes. CONCLUSION These findings suggest that repeated injection of AICAR in the PVN suppresses ROS and inflammatory cytokine production through the AMPK/Nrf2 pathway, reducing sympathetic nerve activity and improving hypertension.
Collapse
Affiliation(s)
- Li-Yan Fu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Institute of Cardiovascular Sciences, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, Shaanxi, 710061, China
| | - Yu Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Institute of Cardiovascular Sciences, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, Shaanxi, 710061, China
| | - Hua Tian
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Institute of Cardiovascular Sciences, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, Shaanxi, 710061, China; Department of Diagnosis, Shaanxi University of Chinese Medicine Xi'an, 712046, China
| | - Xiu-Yue Jia
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Institute of Cardiovascular Sciences, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, Shaanxi, 710061, China; Department of Physiology, Basic Medical College, Jiamusi University, Jiamusi, Heilongjiang, 154007, China
| | - Kai-Li Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Institute of Cardiovascular Sciences, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, Shaanxi, 710061, China
| | - Hong-Li Gao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Institute of Cardiovascular Sciences, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, Shaanxi, 710061, China
| | - Ying Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Institute of Cardiovascular Sciences, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, Shaanxi, 710061, China
| | - Jie Qi
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Institute of Cardiovascular Sciences, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, Shaanxi, 710061, China
| | - Xiao-Jing Yu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Institute of Cardiovascular Sciences, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, Shaanxi, 710061, China.
| | - Yu-Ming Kang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Institute of Cardiovascular Sciences, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, Shaanxi, 710061, China.
| |
Collapse
|
10
|
Sun X, Hu T, Bai Y, Cao T, Wang S, Hu W, Yang H, Luo X, Cui M. Renin imprinted Poly(methyldopa) for biomarker detection and disease therapy. Biosens Bioelectron 2024; 254:116225. [PMID: 38502997 DOI: 10.1016/j.bios.2024.116225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/01/2024] [Accepted: 03/13/2024] [Indexed: 03/21/2024]
Abstract
Conventional molecularly imprinted polymers (MIPs) perform their functions principally depended on their three dimensional (3D) imprinted cavities (recognition sites) of templates. Here, retaining the function of recognition sites resulted from the imprinting of template molecules, the role of functional monomers is explored and expanded. Briefly, a class of dual-functional renin imprinted poly(methyldopa) (RMIP) is prepared, consisting of a drug-type function monomer (methyldopa, clinical high blood pressure drug) and a corresponding disease biomarker (renin, biomarker for high blood pressure disease). To boost target-to-receptor binding ratio and sensitivity, the microstructure of recognition sites is beforehand calculated and designed by Density Functional Theory calculations, and the whole interfacial structure, property and thickness of RMIP film is regulated by adjusting the polymerization techniques. The dual-functional applications of RMIP for biomarker detection and disease therapy in vivo is explored. Such RMIP-based biosensors achieves highly sensitive biomarker detection, where the LODs reaches down to 1.31 × 10-6 and 1.26 × 10-6 ng mL-1 for electrochemical and chemical polymers, respectively, and the application for disease therapy in vivo has been verified where displays the obviously decreased blood pressure values of mice. No acute and long-term toxicity is found from the pathological slices, declaring the promising clinical application potential of such engineered RMIP nanostructure.
Collapse
Affiliation(s)
- Xiaofeng Sun
- Qilu University of Technology (Shandong Academy of Sciences), School of Chemistry and Chemical Engineering, Jinan, 250353, PR China
| | - Tianqing Hu
- Qilu University of Technology (Shandong Academy of Sciences), School of Chemistry and Chemical Engineering, Jinan, 250353, PR China
| | - Yuexia Bai
- Department of Pathology, Children's Hospital Affiliated to Shandong University, Jinan, 250022, PR China
| | - Tianyu Cao
- Qilu University of Technology (Shandong Academy of Sciences), School of Chemistry and Chemical Engineering, Jinan, 250353, PR China
| | - Shuai Wang
- Qilu University of Technology (Shandong Academy of Sciences), School of Chemistry and Chemical Engineering, Jinan, 250353, PR China; Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071, PR China.
| | - Wei Hu
- Qilu University of Technology (Shandong Academy of Sciences), School of Chemistry and Chemical Engineering, Jinan, 250353, PR China
| | - Huan Yang
- Qilu University of Technology (Shandong Academy of Sciences), School of Chemistry and Chemical Engineering, Jinan, 250353, PR China.
| | - Xiliang Luo
- Qingdao University of Science & Technology, Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao, 266042, PR China
| | - Min Cui
- Qilu University of Technology (Shandong Academy of Sciences), School of Chemistry and Chemical Engineering, Jinan, 250353, PR China.
| |
Collapse
|
11
|
Jia XY, Yang Y, Jia XT, Jiang DL, Fu LY, Tian H, Yang XY, Zhao XY, Liu KL, Kang YM, Yu XJ. Capsaicin pretreatment attenuates salt-sensitive hypertension by alleviating AMPK/Akt/Nrf2 pathway in hypothalamic paraventricular nucleus. Front Neurosci 2024; 18:1416522. [PMID: 38872941 PMCID: PMC11169651 DOI: 10.3389/fnins.2024.1416522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 05/15/2024] [Indexed: 06/15/2024] Open
Abstract
Background Long term hypertension seriously promotes target organ damage in the brain and heart, and has increasingly become serious public health problem worldwide. The anti-hypertensive effects of capsaicin has been reported, however, the role and mechanism of capsaicin within the brain on salt-induced hypertension have yet to be elucidated. This study aimed to verify the hypothesis that capsaicin attenuates salt-induced hypertension via the AMPK/Akt/Nrf2 pathway in hypothalamic paraventricular nucleus (PVN). Methods Dahl salt-sensitive (Dahl S) rats were used as animal model for the present study. Rats were randomly divided into four groups based on their dietary regimen (0.3% normal salt diet and 8% high salt diet) and treatment methods (infusion of vehicle or capsaicin in the PVN). Capsaicin was chronically administered in the PVN throughout the animal experiment phase of the study that lasted 6 weeks. Results Our results demonstrated that PVN pretreatment with capsaicin can slow down raise of the blood pressure elevation and heart rate (HR) of Dahl S hypertensive rats given high salt diet. Interestingly, the cardiac hypertrophy was significantly improved. Furthermore, PVN pretreatment with capsaicin induced decrease in the expression of mRNA expression of NADPH oxidase-2 (NOX2), inducible nitric oxide synthase (iNOS), NOX4, p-IKKβ and proinflammatory cytokines and increase in number of positive cell level for Nrf2 and HO-1 in the PVN of Dahl S hypertensive rats. Additionally, the protein expressions of phosphatidylinositol 3-kinase (p-PI3K) and phosphorylated protein kinase-B (p-AKT) were decreased, phosphorylated adenosine monophosphate-activated protein kinase (p-AMPK) were increased after the PVN pretreatment with capsaicin. Conclusion Capsaicin pretreatment attenuates salt-sensitive hypertension by alleviating AMPK/Akt/iNOS pathway in the PVN.
Collapse
Affiliation(s)
- Xiu-Yue Jia
- Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China
- Department of Physiology, Basic Medical College, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Yu Yang
- Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China
- Department of Pharmacology, Basic Medical College, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Xiao-Tao Jia
- Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China
- Department of Neurology, The Affiliated Xi'an Central Hospital of Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi, China
| | - Da-Li Jiang
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Li-Yan Fu
- Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China
| | - Hua Tian
- Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China
| | - Xin-Yan Yang
- Department of Physiology, Basic Medical College, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Xin-Yue Zhao
- Department of Physiology, Basic Medical College, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Kai-Li Liu
- Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China
| | - Yu-Ming Kang
- Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China
| | - Xiao-Jing Yu
- Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
12
|
Cui X, Zhang T, Xie T, Guo FX, Zhang YY, Deng YJ, Wang Q, Guo YX, Dong MH, Luo XT. Research Progress on the Correlation Between Hypertension and Gut Microbiota. J Multidiscip Healthc 2024; 17:2371-2387. [PMID: 38770171 PMCID: PMC11104380 DOI: 10.2147/jmdh.s463880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/23/2024] [Indexed: 05/22/2024] Open
Abstract
Among cardiovascular diseases, hypertension is the most important risk factor for morbidity and mortality worldwide, and its pathogenesis is complex, involving genetic, dietary and environmental factors. The characteristics of the gut microbiota can vary in response to increased blood pressure (BP) and influence the development and progression of hypertension. This paper describes five aspects of the relationship between hypertension and the gut microbiota, namely, the different types of gut microbiota, metabolites of the gut microbiota, sympathetic activation, gut-brain interactions, the effects of exercise and dietary patterns and the treatment of the gut microbiota through probiotics, faecal microbiota transplantation (FMT) and herbal remedies, providing new clues for the future prevention of hypertension. Diet, exercise and traditional Chinese medicine may contribute to long-term improvements in hypertension, although the effects of probiotics and FMT still need to be validated in large populations.
Collapse
Affiliation(s)
- Xiaomei Cui
- Key Laboratory of Cardio Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, People’s Republic of China
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, People’s Republic of China
| | - Ting Zhang
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, People’s Republic of China
| | - Tao Xie
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, People’s Republic of China
| | - Fang-xi Guo
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, People’s Republic of China
| | - Yu-ying Zhang
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, People’s Republic of China
| | - Yuan-jia Deng
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, People’s Republic of China
| | - Qi Wang
- Key Laboratory of Cardio Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, People’s Republic of China
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, People’s Republic of China
| | - Yi-xing Guo
- Key Laboratory of Cardio Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, People’s Republic of China
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, People’s Republic of China
| | - Ming-hua Dong
- Key Laboratory of Cardio Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, People’s Republic of China
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, People’s Republic of China
| | - Xiao-ting Luo
- Key Laboratory of Cardio Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, People’s Republic of China
- School of General Medicine, Gannan Medical University, Ganzhou, People’s Republic of China
| |
Collapse
|
13
|
Chen Z, Wang X, Du S, Liu Q, Xu Z, Guo Y, Lin X. A review on traditional Chinese medicine natural products and acupuncture intervention for Alzheimer's disease based on the neuroinflammatory. Chin Med 2024; 19:35. [PMID: 38419106 PMCID: PMC10900670 DOI: 10.1186/s13020-024-00900-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 02/05/2024] [Indexed: 03/02/2024] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease with insidious onset and progressive development. It is clinically characterized by cognitive impairment, memory impairment and behavioral change. Chinese herbal medicine and acupuncture are important components of traditional Chinese medicine (TCM), and are commonly used in clinical treatment of AD. This paper systematically summarizes the research progress of traditional Chinese medicine natural products and acupuncture treatment of AD, which combined with existing clinical and preclinical evidence, based on a comprehensive review of neuroinflammation, and discusses the efficacy and potential mechanisms of traditional Chinese medicine natural products and acupuncture treatment of AD. Resveratrol, curcumin, kaempferol and other Chinese herbal medicine components can significantly inhibit the neuroinflammation of AD in vivo and in vitro, and are candidates for the treatment of AD. Acupuncture can alleviate the memory and cognitive impairment of AD by improving neuroinflammation, synaptic plasticity, nerve cell apoptosis and reducing the production and aggregation of amyloid β protein (Aβ) in the brain. It has the characteristics of early, safe, effective and benign bidirectional adjustment. The purpose of this paper is to provide a basis for improving the clinical strategies of TCM for the treatment of AD.
Collapse
Affiliation(s)
- Zhihan Chen
- School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Xinrui Wang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Simin Du
- School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Qi Liu
- School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Zhifang Xu
- School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
- Tianjin Key Laboratory of Modern Chinese Medicine Theory of Innovation and Application, Tianjin, 301617, People's Republic of China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, People's Republic of China
| | - Yi Guo
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China.
- Tianjin Key Laboratory of Modern Chinese Medicine Theory of Innovation and Application, Tianjin, 301617, People's Republic of China.
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, People's Republic of China.
| | - Xiaowei Lin
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China.
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China.
- Tianjin Key Laboratory of Modern Chinese Medicine Theory of Innovation and Application, Tianjin, 301617, People's Republic of China.
| |
Collapse
|
14
|
Tang S, Botchway BOA, Zhang Y, Wang X, Huang M, Liu X. Resveratrol can improve spinal cord injury by activating Nrf2/HO-1 signaling pathway. Ann Anat 2024; 251:152180. [PMID: 37879499 DOI: 10.1016/j.aanat.2023.152180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/17/2023] [Indexed: 10/27/2023]
Abstract
Spinal cord injury (SCI) often induces severe sensory and motor dysfunction. Oxidative stress is an important pathophysiological process of secondary SCI, and its inhibition could facilitate the alleviation of the injury. Resveratrol is a natural plant polyphenol compound that has significant antioxidant and anti-inflammatory effects. It can inhibit oxidative stress by activating the Nrf2/HO-1 signal pathway. In this report, we analyze the antioxidant effect of resveratrol in SCI, clarify the specific mechanism of action and provide a theoretical basis for the clinical employment of resveratrol for SCI.
Collapse
Affiliation(s)
- Shi Tang
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Zhejiang, China
| | | | - Yong Zhang
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Zhejiang, China
| | - Xichen Wang
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Zhejiang, China
| | - Min Huang
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Zhejiang, China
| | - Xuehong Liu
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Zhejiang, China.
| |
Collapse
|
15
|
Tian J, Huang T, Chen J, Wang J, Chang S, Xu H, Zhou X, Yang J, Xue Y, Zhang T, Fan W, Wang Y. SIRT1 slows the progression of lupus nephritis by regulating the NLRP3 inflammasome through ROS/TRPM2/Ca 2+ channel. Clin Exp Med 2023; 23:3465-3478. [PMID: 37261640 DOI: 10.1007/s10238-023-01093-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 05/12/2023] [Indexed: 06/02/2023]
Abstract
Systemic lupus erythematosus (SLE) is a chronic multisystem inflammatory disease associated with autoantibody formation. Lupus nephritis (LN) is one of the most severe organ manifestations of SLE. The inflammatory response is a key factor in kidney injury, and the NLRP3 inflammasome is frequently associated with the pathogenesis of LN. Sirtuin 1 (SIRT1), a nicotinamide adenine dinucleotide (NAD +)-dependent histone deacetylase, is a promising therapeutic target for preventing renal injury. However, the mechanism of SIRT1 in LN remains unclear. Here, we aimed to investigate the mechanism by which SIRT inhibits the NLRP3 inflammasome to slow the progression of LN. We detected the expression of SIRT1 and the infiltration of macrophages in MRL/lpr mice; the results showed that the expression of SIRT1 was decreased, and the symptoms of lupus nephritis were relieved after the use of resveratrol, which upregulated SIRT1. In vitro studies showed that after lipopolysaccharide (LPS) stimulation, SIRT1 expression decreased, and the NLRP3 inflammasome was activated. Upregulation of SIRT1 inhibits NLRP3 inflammasome activation and assembly by interfering with two signalling pathways. First, SIRT1 affects NF-κB expression, transcription, and inflammatory cytokine expression. Second, SIRT1 modulates calcium influx induced by transient receptor potential channel M2 (TRPM2), which could be partly due to the inhibition of reactive oxygen species (ROS) production. Our findings suggest that upregulated SIRT1 inhibits the NLRP3 inflammasome to slow the progression of lupus nephritis by regulating NF-κB and ROS/TRPM2/Ca2+ channels. This study reveals a new anti-inflammatory mechanism of SIRT1, suggesting that SIRT1 may be a potential therapeutic target for the prevention of LN.
Collapse
Affiliation(s)
- Jihua Tian
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, 030001, Shanxi, China.
| | - Taiping Huang
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Jingshu Chen
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Jing Wang
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Sijia Chang
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Huanyu Xu
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Xiaoshuang Zhou
- Department of Nephrology, The Affiliated People's Hospital of Shanxi Medical University, Shanxi Provincial People's Hospital, Shanxi Kidney Disease Institute, Taiyuan, 030012, Shanxi, China
| | - Jia Yang
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Yuan Xue
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Tingting Zhang
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Weiping Fan
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, 030001, Shanxi, China.
| | - Yanhong Wang
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, 030001, Shanxi, China.
| |
Collapse
|
16
|
Jia XY, Jiang DL, Jia XT, Fu LY, Tian H, Liu KL, Qi J, Kang YM, Yu XJ. Capsaicin improves hypertension and cardiac hypertrophy via SIRT1/NF-κB/MAPKs pathway in the hypothalamic paraventricular nucleus. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 118:154951. [PMID: 37453193 DOI: 10.1016/j.phymed.2023.154951] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/09/2023] [Accepted: 07/04/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND Hypertension has seriously affected a large part of the adult and elderly population. The complications caused by hypertension are important risk factors for cardiovascular disease accidents. Capsaicin, a pungent component of chili pepper has been revealed to improve hypertension. However, its potential mechanism in improving hypertension remains to be explored. PURPOSE In the present study, we aimed to investigate whether capsaicin could attenuate the SIRT1/NF-κB/MAPKs pathway in the paraventricular nucleus of hypothalamus (PVN). METHODS We used spontaneous hypertensive rats (SHRs) as animal model rats. Micro osmotic pump was used to give capsaicin through PVN for 28 days, starting from age12-week-old. RESULTS The results showed that capsaicin significantly reduced blood pressure from the 16th day of infusion onward. At the end of the experimental period, we measured cardiac hypertrophy index and the heart rate (HR), and the results showed that the cardiac hypertrophy and heart rate of rats was significantly improved upon capsaicin chronic infusion. Norepinephrine (NE) and epinephrine (EPI) in plasma of SHRs treated with capsaicin were also decreased. Additionally, capsaicin increased the protein expression and number of positive cells of SIRT1 and the 67-kDa isoform of glutamate decarboxylase (GAD67), decreased the production of reactive oxygen species (ROS), number of positive cells of NOX2, those of Angiotensin Converting Enzyme (ACE) and p-IKKβ, tyrosine hydroxylase (TH), the gene expression levels of NOX4 and pro-inflammatory cytokines. Capsaicin also decreased the relative protein expressions of protein in MAPKs pathway. CONCLUSION Current data indicated that capsaicin within the PVN improves hypertension and cardiac hypertrophy via SIRT1/NF-κB/MAPKs pathway in the PVN of SHRs, supporting its potential as candidate drug for preventing and improving hypertension.
Collapse
Affiliation(s)
- Xiu-Yue Jia
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi'an 710061, China; Department of Physiology, Basic Medical College, Jiamusi University, Jiamusi, Heilongjiang 154007, China
| | - Da-Li Jiang
- Department of Urology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Xiao-Tao Jia
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi'an 710061, China
| | - Li-Yan Fu
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi'an 710061, China
| | - Hua Tian
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi'an 710061, China
| | - Kai-Li Liu
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi'an 710061, China
| | - Jie Qi
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi'an 710061, China
| | - Yu-Ming Kang
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi'an 710061, China
| | - Xiao-Jing Yu
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi'an 710061, China.
| |
Collapse
|
17
|
Yang M, Shen Y, Zhao S, Zhang R, Dong W, Lei X. Protective effect of resveratrol on mitochondrial biogenesis during hyperoxia-induced brain injury in neonatal pups. BMC Neurosci 2023; 24:27. [PMID: 37098490 PMCID: PMC10127954 DOI: 10.1186/s12868-023-00797-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 04/14/2023] [Indexed: 04/27/2023] Open
Abstract
BACKGROUND Neonatal hyperoxic brain injury is caused by exposure to hyperphysiological oxygen content during the period of incomplete development of the oxidative stress defence system, resulting in a large number of reactive oxygen species (ROS) and causing damage to brain tissue. Mitochondrial biogenesis refers to the synthesis of new mitochondria from existing mitochondria, mostly through the PGC-1α/Nrfs/TFAM signalling pathway. Resveratrol (Res), a silencing information regulator 2-related enzyme 1 (Sirt1) agonist, has been shown to upregulate the level of Sirt1 and the expression of peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α). We speculate that Res has a protective effect on hyperoxia-induced brain injury through mitochondrial biogenesis. METHODS Sprague-Dawley (SD) pups were randomly divided into the nonhyperoxia (NN) group, the nonhyperoxia with dimethyl sulfoxide (ND) group, the nonhyperoxia with Res (NR) group, the hyperoxia (HN) group, the hyperoxia with dimethyl sulfoxide (HD) group, and the hyperoxia with Res (HR) group within 12 h after birth. The HN, HD, and HR groups were placed in a high-oxygen environment (80‒85%), and the other three groups were placed in the standard atmosphere. The NR and HR groups were given 60 mg/kg Res every day, the ND and HD groups were given the same dose of dimethyl sulfoxide (DMSO) every day, and the NN and HN groups were given the same dose of normal saline every day. On postnatal day (PN) 1, PN7, and PN14, brain samples were acquired for HE staining to assess pathology, TUNEL to detect apoptosis, and real-time quantitative polymerase chain reaction and immunoblotting to detect the expression levels of Sirt1, PGC-1α, nuclear respiratory factor 1 (Nrf1), nuclear respiratory factor 2 (Nrf2) and mitochondrial transcription factor A (TFAM) in brain tissue. RESULTS Hyperoxia induced brain tissue injury; increased brain tissue apoptosis; inhibited Sirt1, PGC-1α, Nrf1, Nrf2, TFAM mRNA expression in mitochondria; diminished the ND1 copy number and ND4/ND1 ratio; and decreased Sirt1, PGC-1α, Nrf1, Nrf2, and TFAM protein levels in the brain. In contrast, Res reduced brain injury and attenuated brain tissue apoptosis in neonatal pups and increased the levels of the corresponding indices. CONCLUSION Res has a protective effect on hyperoxia-induced brain injury in neonatal SD pups by upregulating Sirt1 and stimulating the PGC-1α/Nrfs/TFAM signalling pathway for mitochondrial biogenesis.
Collapse
Affiliation(s)
- Menghan Yang
- Division of Neonatology, Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, No. 8, Section 2, Kangcheng Road, Luzhou, Sichuan, 646000, China
- Department of Perinatology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Sichuan Clinical Research Center for Birth Defects, Luzhou, Sichuan, China
| | - Yunchuan Shen
- Division of Neonatology, Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, No. 8, Section 2, Kangcheng Road, Luzhou, Sichuan, 646000, China
- Department of Perinatology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Sichuan Clinical Research Center for Birth Defects, Luzhou, Sichuan, China
| | - Shuai Zhao
- Division of Neonatology, Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, No. 8, Section 2, Kangcheng Road, Luzhou, Sichuan, 646000, China
- Department of Perinatology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Sichuan Clinical Research Center for Birth Defects, Luzhou, Sichuan, China
| | - Rong Zhang
- Division of Neonatology, Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, No. 8, Section 2, Kangcheng Road, Luzhou, Sichuan, 646000, China
- Department of Perinatology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Sichuan Clinical Research Center for Birth Defects, Luzhou, Sichuan, China
| | - Wenbin Dong
- Division of Neonatology, Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, No. 8, Section 2, Kangcheng Road, Luzhou, Sichuan, 646000, China.
- Department of Perinatology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.
- Sichuan Clinical Research Center for Birth Defects, Luzhou, Sichuan, China.
| | - Xiaoping Lei
- Division of Neonatology, Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, No. 8, Section 2, Kangcheng Road, Luzhou, Sichuan, 646000, China.
- Department of Perinatology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.
- Sichuan Clinical Research Center for Birth Defects, Luzhou, Sichuan, China.
| |
Collapse
|
18
|
Luteolin Attenuates Hypertension via Inhibiting NF-κB-Mediated Inflammation and PI3K/Akt Signaling Pathway in the Hypothalamic Paraventricular Nucleus. Nutrients 2023; 15:nu15030502. [PMID: 36771206 PMCID: PMC9921115 DOI: 10.3390/nu15030502] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Luteolin is widely distributed among a number of vegetal species worldwide. The pharmacological effects of luteolin are diverse and amongst antioxidant, free radical scavenging, and anti-inflammatory activities. Preliminary study showed that luteolin can ameliorate hypertension. However, the precise mechanism needs further investigation. There is no evidence that luteolin affects the paraventricular nucleus of the hypothalamus (PVN), a brain nucleus associated with a critical neural regulator of blood pressure. Our main aim was to explore the effect of luteolin on the PI3K/Akt/NF-κB signaling pathway within the PVN of hypertensive rats. METHODS spontaneously hypertensive rats (SHRs) and corresponding normotensive control rats, the Wistar Kyoto (WKY) rats were divided into four groups and subsequently treated for 4 weeks with bilateral PVN injections of either luteolin (20 µg/0.11 µL, volume: 0.11 µL/h) or vehicle (artificial cerebrospinal fluid). RESULTS luteolin infusion to the PVN significantly decreased some hemodynamic parameters including the mean arterial pressure (MAP), heart rate (HR), circulating plasma norepinephrine (NE) and epinephrine (EPI). Additionally, there was a decrease in the expressions of the phosphatidylinositol 3-kinase (p-PI3K) and phosphorylated protein kinase-B (p-AKT), levels of reactive oxygen species (ROS), NAD(P)H oxidase subunit (NOX2, NOX4) in the PVN of SHRs. Meanwhile, the expression of inflammatory cytokines and the activity of nuclear factor κB (NF-κB) p65 in the PVN of SHRs were lowered. Furthermore, immunofluorescence results showed that injection of luteolin in the PVN reduced the expression of tyrosine hydroxylase (TH), and increased that of superoxide dismutase (SOD1) and the 67-kDa isoform of glutamate decarboxylase (GAD67) in the PVN of SHRs. CONCLUSION Our novel findings revealed that luteolin lowered hypertension via inhibiting NF-κB-mediated inflammation and PI3K/Akt signaling pathway in the PVN.
Collapse
|