1
|
Yuzbashian E, Berg E, de Campos Zani SC, Chan CB. Cow's Milk Bioactive Molecules in the Regulation of Glucose Homeostasis in Human and Animal Studies. Foods 2024; 13:2837. [PMID: 39272602 PMCID: PMC11395457 DOI: 10.3390/foods13172837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/26/2024] [Accepted: 08/31/2024] [Indexed: 09/15/2024] Open
Abstract
Obesity disrupts glucose metabolism, leading to insulin resistance (IR) and cardiometabolic diseases. Consumption of cow's milk and other dairy products may influence glucose metabolism. Within the complex matrix of cow's milk, various carbohydrates, lipids, and peptides act as bioactive molecules to alter human metabolism. Here, we summarize data from human studies and rodent experiments illustrating how these bioactive molecules regulate insulin and glucose homeostasis, supplemented with in vitro studies of the mechanisms behind their effects. Bioactive carbohydrates, including lactose, galactose, and oligosaccharides, generally reduce hyperglycemia, possibly by preventing gut microbiota dysbiosis. Milk-derived lipids of the milk fat globular membrane improve activation of insulin signaling pathways in animal trials but seem to have little impact on glycemia in human studies. However, other lipids produced by ruminants, including polar lipids, odd-chain, trans-, and branched-chain fatty acids, produce neutral or contradictory effects on glucose metabolism. Bioactive peptides derived from whey and casein may exert their effects both directly through their insulinotropic effects or renin-angiotensin-aldosterone system inhibition and indirectly by the regulation of incretin hormones. Overall, the results bolster many observational studies in humans and suggest that cow's milk intake reduces the risk of, and can perhaps be used in treating, metabolic disorders. However, the mechanisms of action for most bioactive compounds in milk are still largely undiscovered.
Collapse
Affiliation(s)
- Emad Yuzbashian
- Department of Agriculture, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Emily Berg
- Department of Physiology, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | | | - Catherine B Chan
- Department of Agriculture, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
- Department of Physiology, University of Alberta, Edmonton, AB T6G 2H7, Canada
| |
Collapse
|
2
|
Zhou S, Cheng F, He J, Xu T, Zhang X, Wan S, Qi J, He J, Chen F, Luo J, Luo Y, An P. Effects of high-quality protein supplementation on cardiovascular risk factors in individuals with metabolic diseases: A systematic review and meta-analysis of randomized controlled trials. Clin Nutr 2024; 43:1740-1750. [PMID: 38924998 DOI: 10.1016/j.clnu.2024.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 05/10/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND Uncertainties still existed about the effect of high-quality protein supplementation on cardiovascular disease (CVD) risk factors, although high-quality proteins such as soy and milk proteins have proposed to be beneficial for cardiometabolic health. METHODS A systematic search in PubMed, Web of Science, Cochrane Library, Scopus, and Embase was conducted to quantify the impact of high-quality protein on CVD risk factors. RESULTS 63 RCTs on 4 types of high-quality protein including soy protein, milk protein, whey, and casein were evaluated. Soy protein supplementation decreased systolic blood pressure (SBP, -1.42 [-2.68, -0.17] mmHg), total cholesterol (TC, -0.18 [-0.30, -0.07] mmol/L), and low-density lipoprotein cholesterol (LDL-C, -0.16 [-0.27, -0.05] mmol/L). Milk protein supplementation decreased SBP (-2.30 [-3.45, -1.15] mmHg) and total cholesterol (-0.27 [-0.51, -0.03] mmol/L). Whey supplementation decreased SBP (-2.20 [-3.89, -0.51] mmHg), diastolic blood pressure (DBP, -1.07 [-1.98, -0.16] mmHg), triglycerides (-0.10 [-0.17, -0.03] mmol/L), TC (-0.18 [-0.35, -0.01] mmol/L), LDL-C (-0.09 [-0.16, -0.01] mmol/L) and fasting blood insulin (FBI, -2.02 [-3.75, -0.29] pmol/L). Casein supplementation decreased SBP (-4.10 [-8.05, -0.14] mmHg). In the pooled analysis of four high-quality proteins, differential effects were seen in individuals with different health status. In hypertensive individuals, high-quality proteins decreased both SBP (-2.69 [-3.50, -1.87] mmHg) and DBP (-1.34 [-2.09, -0.60] mmHg). In overweight/obese individuals, high-quality proteins improved SBP (-1.40 [-2.22, -0.59] mmHg), DBP (-2.59 [-3.20, -1.98] mmHg), triglycerides (-0.09 [-0.15, -0.02] mmol/L), TC (-0.14 [-0.22, -0.05] mmol/L), LDL-C (-0.12 [-0.16, -0.07] mmol/L), and HDL-C levels (0.02 [0.01, 0.04] mmol/L). According to the benefits on CVD risks factors, whey ranked top for improving cardiometabolic health in hypertensive or overweight/obese individuals. CONCLUSION Our study supports a beneficial role of high-quality protein supplementation to reduce CVD risk factors. Further studies are still warranted to investigate the effects of different high-quality proteins on CVD risks in individuals with cardiometabolic disorders.
Collapse
Affiliation(s)
- Shuaishuai Zhou
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Fangxiao Cheng
- Institute of Medical Technology, Peking University Health Science Center, Beijing 100191, China
| | - Jian He
- National Center of Technology Innovation for Dairy, Hohhot 010110, China
| | - Teng Xu
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Xu Zhang
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Sitong Wan
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Jingyi Qi
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Jingjing He
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Fangyan Chen
- Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing 100730, China
| | - Junjie Luo
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China.
| | - Yongting Luo
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China.
| | - Peng An
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
3
|
Boeing H, Amini AM, Haardt J, Schmidt A, Bischoff-Ferrari HA, Buyken AE, Egert S, Ellinger S, Kroke A, Lorkowski S, Louis S, Nimptsch K, Schulze MB, Schutkowski A, Schwingshackl L, Siener R, Zittermann A, Watzl B, Stangl GI. Dietary protein and blood pressure: an umbrella review of systematic reviews and evaluation of the evidence. Eur J Nutr 2024; 63:1041-1058. [PMID: 38376519 PMCID: PMC11139777 DOI: 10.1007/s00394-024-03336-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 01/22/2024] [Indexed: 02/21/2024]
Abstract
INTRODUCTION This umbrella review aimed to investigate the evidence of an effect of dietary intake of total protein, animal and plant protein on blood pressure (BP), and hypertension (PROSPERO: CRD42018082395). METHODS PubMed, Embase and Cochrane Database were systematically searched for systematic reviews (SRs) of prospective studies with or without meta-analysis published between 05/2007 and 10/2022. The methodological quality and outcome-specific certainty of evidence were assessed by the AMSTAR 2 and NutriGrade tools, followed by an assessment of the overall certainty of evidence. SRs investigating specific protein sources are described in this review, but not included in the assessment of the overall certainty of evidence. RESULTS Sixteen SRs were considered eligible for the umbrella review. Ten of the SRs investigated total protein intake, six animal protein, six plant protein and four animal vs. plant protein. The majority of the SRs reported no associations or effects of total, animal and plant protein on BP (all "possible" evidence), whereby the uncertainty regarding the effects on BP was particularly high for plant protein. Two SRs addressing milk-derived protein showed a reduction in BP; in contrast, SRs investigating soy protein found no effect on BP. The outcome-specific certainty of evidence of the SRs was mostly rated as low. DISCUSSION/CONCLUSION This umbrella review showed uncertainties whether there are any effects on BP from the intake of total protein, or animal or plant proteins, specifically. Based on data from two SRs with milk protein, it cannot be excluded that certain types of protein could favourably influence BP.
Collapse
Affiliation(s)
- Heiner Boeing
- Department of Epidemiology (closed), German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Anna M Amini
- German Nutrition Society, Godesberger Allee 136, 53175, Bonn, Germany.
| | - Julia Haardt
- German Nutrition Society, Godesberger Allee 136, 53175, Bonn, Germany
| | - Annemarie Schmidt
- German Nutrition Society, Godesberger Allee 136, 53175, Bonn, Germany
| | - Heike A Bischoff-Ferrari
- Department of Aging Medicine and Aging Research, University Hospital Zurich, University of Zurich, and City Hospital Zurich, Zurich, Switzerland
| | - Anette E Buyken
- Institute of Nutrition, Consumption and Health, Faculty of Natural Sciences, Paderborn University, Paderborn, Germany
| | - Sarah Egert
- Institute of Nutritional and Food Science, University of Bonn, Bonn, Germany
| | - Sabine Ellinger
- Institute of Nutritional and Food Science, University of Bonn, Bonn, Germany
| | - Anja Kroke
- Department of Nutritional, Food and Consumer Sciences, Fulda University of Applied Sciences, Fulda, Germany
| | - Stefan Lorkowski
- Institute of Nutritional Sciences, Friedrich Schiller University Jena, Jena, Germany
- Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD), Halle-Jena-Leipzig, Germany
| | - Sandrine Louis
- Department of Physiology and Biochemistry of Nutrition, Max Rubner-Institut, Karlsruhe, Germany
| | - Katharina Nimptsch
- Molecular Epidemiology Research Group, Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany
| | - Matthias B Schulze
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- Institute of Nutritional Science, University of Potsdam, Potsdam, Germany
| | - Alexandra Schutkowski
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Lukas Schwingshackl
- Institute for Evidence in Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Roswitha Siener
- Department of Urology, University Stone Center, University Hospital Bonn, Bonn, Germany
| | - Armin Zittermann
- Clinic for Thoracic and Cardiovascular Surgery, Herz- und Diabeteszentrum Nordrhein Westfalen, Ruhr University Bochum, Bad Oeynhausen, Germany
| | - Bernhard Watzl
- Department of Physiology and Biochemistry of Nutrition, Max Rubner-Institut, Karlsruhe, Germany
| | - Gabriele I Stangl
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
4
|
Kęska P, Stadnik J, Stasiak DM. Influence of sonication pretreatment on antiradical and anti-ACE activity of protein hydrolysates from fermented pork loins. Meat Sci 2024; 212:109472. [PMID: 38422590 DOI: 10.1016/j.meatsci.2024.109472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 12/15/2023] [Accepted: 02/26/2024] [Indexed: 03/02/2024]
Abstract
The aim of this study was to assess whether ultrasound treatment (sonification time: 5, 15, and 30 min; constants: ∼40 kHz, ∼2.5 W cm2) can be applied prior to hydrolysis to enhance the anti-radical and angiotensin converting enzyme inhibiting (anti-ACE) effect of the hydrolysates from fermented pork loins. Enzymatic hydrolysis was performed using pepsin, followed by pancreatin. The influence of meat matrix on the course of hydrolysis, shaped using a lactic acid bacteria (LAB)-based starter culture, was also analyzed. It was found that proteases caused a systematic increase in the content of peptides, while pancreatin limited the peptide content in the protein hydrolysate from the loins subjected to spontaneous fermentation. Moreover, for these tests, sonication time had a negligible effect on the peptides content of the hydrolysates. On the other hand, for the sample of LAB-fermented products, both sonication time and stage of hydrolysis promoted the biological activity of the hydrolysates. Samples from the LAB-fermented meat had more peptides at the stage of digestion with pepsin and pancreatin, exhibiting much faster antiradical and anti-ACE activity compared to the control sample. The obtained results suggest that the use of LAB promotes the release of antiradical peptides during the two-step enzymatic hydrolysis, the duration of which can be shortened to achieve satisfactory biofunctionalities. Additional application of sonication pretreatment allows controlling the course of the hydrolysis, as the pro-health, biological effect of some protein-derived sequences is associated with the content of peptides.
Collapse
Affiliation(s)
- Paulina Kęska
- Department of Animal Food Technology, Faculty of Food Science and Biotechnology, University of Life Sciences in Lublin, Skromna 8, Lublin 20-704, Poland.
| | - Joanna Stadnik
- Department of Animal Food Technology, Faculty of Food Science and Biotechnology, University of Life Sciences in Lublin, Skromna 8, Lublin 20-704, Poland.
| | - Dariusz M Stasiak
- Department of Animal Food Technology, Faculty of Food Science and Biotechnology, University of Life Sciences in Lublin, Skromna 8, Lublin 20-704, Poland.
| |
Collapse
|
5
|
Luo J, Luo Y. The Effects of Dietary Protein and Polysaccharide Fortification on Disease. Nutrients 2023; 15:4137. [PMID: 37836421 PMCID: PMC10574594 DOI: 10.3390/nu15194137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 09/18/2023] [Indexed: 10/15/2023] Open
Abstract
Proteins and polysaccharides are versatile natural macromolecules that are ubiquitous in nature, and a tailored diet that is fortified with them has been developed to ameliorate a wide array of diseases [...].
Collapse
Affiliation(s)
- Junjie Luo
- Department of Nutrition and Health, Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100193, China
| | - Yongting Luo
- Department of Nutrition and Health, Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100193, China
| |
Collapse
|