1
|
Jiang D, Kwon HK, Kwon OW, Choi Y. A Comparative Molecular Dynamics Study of Food-Derived Compounds as PD-L1 Inhibitors: Insights Across Six Flavonoid Subgroups. Molecules 2025; 30:907. [PMID: 40005217 PMCID: PMC11858612 DOI: 10.3390/molecules30040907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/25/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025] Open
Abstract
In this study, we investigated the inhibitory potential of 60 flavonoids from six distinct subgroups on the programmed cell death ligand 1 (PD-L1) dimer through molecular docking and dynamics simulations. Using AutoDock Vina for docking, the binding poses and affinities were evaluated, revealing an average binding affinity of -8.5 kcal/mol for the flavonoids. Among them, ginkgetin exhibited the highest binding free energy of -46.73 kcal/mol, indicating a strong interaction with PD-L1, while diosmin followed closely, with -44.96 kcal/mol. Molecular dynamics simulations were used to further elucidate the dynamic interactions and stability of the flavonoid-PD-L1 complexes, with the analyses showing minimal root mean square deviation (RMSD) and favorable root mean square fluctuation (RMSF) profiles for several compounds, particularly formononetin, idaein, and neohesperidin. Additionally, contact number and hydrogen bond analyses were performed, which highlighted ginkgetin and diosmin as key flavonoids with significant binding interactions, evidenced by their stable conformations and robust molecular interactions throughout the simulations. Ultimately, a cell-based assay confirmed their ability to inhibit the proliferation of cancer cells. These results, validated through cell-based assays, indicate that the strategy of identifying natural compounds with anticancer activity using computational modeling is highly effective.
Collapse
Affiliation(s)
- Dejun Jiang
- Department of Environmental Engineering, Hoseo University, Asan 31499, Republic of Korea; (D.J.); (H.-K.K.)
| | - Hyuk-Ku Kwon
- Department of Environmental Engineering, Hoseo University, Asan 31499, Republic of Korea; (D.J.); (H.-K.K.)
| | - Oh Wook Kwon
- Pet-Loss Center, Hoseo University, Asan 31499, Republic of Korea;
| | - Youngjin Choi
- Department of Food Science & Technology, Hoseo University, Asan 31499, Republic of Korea
| |
Collapse
|
2
|
Shen J, Gong X, Ren H, Tang X, Yu H, Tang Y, Chen S, Ji M. Identification and validation of CDK1 as a promising therapeutic target for Eriocitrin in colorectal cancer: a combined bioinformatics and experimental approach. BMC Cancer 2025; 25:76. [PMID: 39806333 PMCID: PMC11731355 DOI: 10.1186/s12885-025-13448-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 01/03/2025] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is a prevalent malignancy worldwide, associated with significant morbidity and mortality. Cyclin-dependent kinase 1 (CDK1) plays a crucial role in cell cycle regulation and has been implicated in various cancers. This study aimed to evaluate the prognostic value of CDK1 in CRC and to identify traditional Chinese medicines (TCM) that can target CDK1 as potential treatments for CRC. METHODS The expression and prognostic value of CDK1 were analyzed through TCGA, GEO, GEPIA, UALCAN and HPA databases. An ESTIMATE analysis was applied to estimate the proportions of stromal and immune cells in tumor samples. GO and KEGG enrichment analyses were performed to clarify the functional roles of CDK1-related genes. CCK-8, colony formation, cell migration, cell invasion, and wound healing assays were employed to explore tumor-promoting role of CDK1. Molecular docking, cellular thermal shift, and isothermal dose-response assays were employed to identify potential inhibitors of CDK1. RESULTS CDK1 was highly expressed in CRC and associated with a poorer prognosis. The expression of CDK1 was also correlated with the levels of immune cells infiltration. CDK1-related genes were primarily involved in the cell cycle and the P53 signaling pathway. Knockdown of CDK1 inhibited the proliferation, migration, and invasion of CRC cells in vitro. Furthermore, Eriocitrin emerged as a potential inhibitor, exerting its anti-tumor effects by targeting and inhibiting CDK1 activity. CONCLUSION CDK1 plays a critical role in CRC prognosis. Eriocitrin, a potential CDK1 inhibitor derived from TCM, highlights a promising new therapeutic strategy for CRC treatment.
Collapse
Affiliation(s)
- Jiemiao Shen
- Department of Fundamental and Community Nursing, School of Nursing, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, P. R. China
| | - Xing Gong
- Department of Environment Health, Nanjing Medical University Affiliated Nanjing Municipal Center for Disease Control and Prevention, 2 Zizhulin, Nanjing, 210003, P. R. China
| | - Haili Ren
- Department of Fundamental and Community Nursing, School of Nursing, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, P. R. China
| | - Xia Tang
- Department of Fundamental and Community Nursing, School of Nursing, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, P. R. China
| | - Hairong Yu
- Department of Fundamental and Community Nursing, School of Nursing, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, P. R. China
| | - Yilu Tang
- Department of Fundamental and Community Nursing, School of Nursing, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, P. R. China
| | - Shen Chen
- Department of Fundamental and Community Nursing, School of Nursing, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, P. R. China.
| | - Minghui Ji
- Department of Fundamental and Community Nursing, School of Nursing, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, P. R. China.
| |
Collapse
|
3
|
Zhang Y, Chen X, Chen R, Li L, Ju Q, Qiu D, Wang Y, Jing P, Chang N, Wang M, Zhang J, Chen Z, Wang K. Lower respiratory tract microbiome dysbiosis impairs clinical responses to immune checkpoint blockade in advanced non-small-cell lung cancer. Clin Transl Med 2025; 15:e70170. [PMID: 39794303 PMCID: PMC11726686 DOI: 10.1002/ctm2.70170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 12/09/2024] [Accepted: 12/22/2024] [Indexed: 01/13/2025] Open
Abstract
BACKGROUND Gut microbiome on predicting clinical responses to immune checkpoint inhibitors (ICIs) has been discussed in detail for decades, while microecological features of the lower respiratory tract within advanced non-small-cell lung cancer (NSCLC) are still relatively vague. METHODS During this study, 26 bronchoalveolar lavage fluids (BALF) from advanced NSCLC participants who received immune checkpoint inhibitor monotherapy were performed 16S rRNA sequencing and untargeted metabolome sequencing to identify differentially abundant microbes and metabolic characteristics. Additionally, inflammatory cytokines and chemokines were also launched in paired BALF and serum samples by immunoassays to uncover their underlying correlations. The omics data were separately analyzed and integrated by using multiple correlation coefficients. Multiplex immunohistochemical staining was then used to assess the immune cell infiltration after immune checkpoint blockade therapy. RESULTS Lower respiratory tract microbiome diversity favoured preferred responses to ICIs. Microbial markers demonstrated microbial diversity overweight a single strain in favoured response to ICI therapy, where Bacillus matters. Sphingomonas and Sediminibacterium were liable to remodulate lipid and essential amino acid degradations to embrace progression after immunotherapies. Microbiome-derived metabolites reshaped the immune microenvironment in the lower respiratory tract by releasing inflammatory cytokines and chemokines, which was partially achieved by metabolite-mediated tumoral inflammatory products and reduction of CD8+ effective T cells and M1 phenotypes macrophages in malignant lesions. CONCLUSIONS This study provided a microecological landscape of the lower respiratory tract with advanced NSCLC to ICI interventions and presented a multidimensional perspective with favoured outcomes that may improve the predictive capacity of the localized microbiome in clinical practices. HIGHLIGHTS Alterations of the lower respiratory tract microbiome indicate different clinical responses to ICB within advanced NSCLC. Reduced microbial diversity of lower respiratory tracts impairs anti-tumoral performances. Microbe-derived metabolites perform as a dominant regulator to remodify the microecological environment in lower respiratory tracts. Multi-omics sequencings of the lower respiratory tract possess the potential to predict the long-term clinical responses to ICB among advanced NSCLC.
Collapse
Affiliation(s)
- Yong Zhang
- Department of Cell BiologyNational Translational Science Center for Molecular MedicineFourth Military Medical UniversityXi'anChina
- State Key Laboratory of New Targets Discovery and Drug Development for Major DiseasesXi'anChina
- Department of Pulmonary and Critical Care of MedicineThe First Affiliated Hospital of Fourth Military Medical UniversityXi'anChina
| | - Xiang‐Xiang Chen
- Department of Cell BiologyNational Translational Science Center for Molecular MedicineFourth Military Medical UniversityXi'anChina
- State Key Laboratory of New Targets Discovery and Drug Development for Major DiseasesXi'anChina
- Department of Pulmonary and Critical Care of MedicineThe First Affiliated Hospital of Fourth Military Medical UniversityXi'anChina
| | - Ruo Chen
- Department of Cell BiologyNational Translational Science Center for Molecular MedicineFourth Military Medical UniversityXi'anChina
- State Key Laboratory of New Targets Discovery and Drug Development for Major DiseasesXi'anChina
| | - Ling Li
- Department of Cell BiologyNational Translational Science Center for Molecular MedicineFourth Military Medical UniversityXi'anChina
- State Key Laboratory of New Targets Discovery and Drug Development for Major DiseasesXi'anChina
| | - Qing Ju
- Department of Pulmonary and Critical Care of MedicineThe First Affiliated Hospital of Fourth Military Medical UniversityXi'anChina
| | - Dan Qiu
- Department of Pulmonary and Critical Care of MedicineThe First Affiliated Hospital of Fourth Military Medical UniversityXi'anChina
| | - Yuan Wang
- Department of MicrobiologySchool of Basic MedicineFourth Military Medical UniversityXi'anChina
| | - Peng‐Yu Jing
- Department of Thoracic SurgeryThe Second Affiliated Hospital of Fourth Military Medical UniversityXi'anChina
| | - Ning Chang
- Department of Pulmonary and Critical Care of MedicineThe First Affiliated Hospital of Fourth Military Medical UniversityXi'anChina
| | - Min Wang
- Department of Pulmonary and Critical Care of MedicineThe First Affiliated Hospital of Fourth Military Medical UniversityXi'anChina
| | - Jian Zhang
- Department of Pulmonary and Critical Care of MedicineThe First Affiliated Hospital of Fourth Military Medical UniversityXi'anChina
| | - Zhi‐Nan Chen
- Department of Cell BiologyNational Translational Science Center for Molecular MedicineFourth Military Medical UniversityXi'anChina
- State Key Laboratory of New Targets Discovery and Drug Development for Major DiseasesXi'anChina
| | - Ke Wang
- Department of Cell BiologyNational Translational Science Center for Molecular MedicineFourth Military Medical UniversityXi'anChina
- State Key Laboratory of New Targets Discovery and Drug Development for Major DiseasesXi'anChina
| |
Collapse
|
4
|
Marino M, Mignozzi S, Michels KB, Cintolo M, Penagini R, Gargari G, Ciafardini C, Ferraroni M, Patel L, Del Bo' C, Leone P, Airoldi A, Vecchi M, Bonzi R, Oreggia B, Carnevali P, Vangeli M, Mutignani M, Guglielmetti S, Riso P, La Vecchia C, Rossi M. Serum zonulin and colorectal cancer risk. Sci Rep 2024; 14:28171. [PMID: 39548152 PMCID: PMC11568146 DOI: 10.1038/s41598-024-76697-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 10/16/2024] [Indexed: 11/17/2024] Open
Abstract
Intestinal permeability has been related to colorectal cancer (CRC) development. Zonulin, a protein able to regulate tight junction function and intestinal permeability, emerges as a promising marker to elucidate the contribution of bacterial translocation in CRC. An Italian case-control study included 77 CRC cases, 72 intestinal adenoma and 76 healthy controls (for a total of 148 tumor-free subjects), aged 20-85. Serum zonulin levels were quantified by ELISA kit and blood 16S rRNA gene copies by DNA extraction and polymerase chain reaction. We applied logistic regression models adjusted for center, sex, age and education. There was a positive association between zonulin and CRC risk. The odds ratio (OR) of CRC for the highest versus lowest tertile of zonulin as compared to tumor-free subjects was 2.36 (95% confidence interval, 1.14-4.86). The ORs were similar in colon and rectal cancers. The OR of colon cancer for the highest versus lowest levels of both zonulin and 16S rRNA gene copies was 4.55.Circulating levels of zonulin were higher in CRC patients compared to tumor-free controls supporting the hypothesis of an interplay of gut barrier dysfunction and bacterial translocation in colorectal carcinogenesis. Zonulin may interact with 16S rRNA gene copies and serve as a further biomarker in the evaluation of CRC diagnosis.
Collapse
Affiliation(s)
- Mirko Marino
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| | - Silvia Mignozzi
- Branch of Medical Statistics, Biometry and Epidemiology "G.A. Maccacaro", Department of Clinical Sciences and Community Health, Department of Excellence 2023-2027, University of Milan, Milan, Italy
| | - Karin B Michels
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, USA
| | - Marcello Cintolo
- Digestive and Interventional Endoscopy Unit, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Roberto Penagini
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Giorgio Gargari
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| | | | - Monica Ferraroni
- Branch of Medical Statistics, Biometry and Epidemiology "G.A. Maccacaro", Department of Clinical Sciences and Community Health, Department of Excellence 2023-2027, University of Milan, Milan, Italy
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milano, Milan, Italy
| | - Linia Patel
- Branch of Medical Statistics, Biometry and Epidemiology "G.A. Maccacaro", Department of Clinical Sciences and Community Health, Department of Excellence 2023-2027, University of Milan, Milan, Italy
| | - Cristian Del Bo'
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| | - Pierfrancesco Leone
- General Surgery Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Aldo Airoldi
- Hepatology and Gastroenterology Unit, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Maurizio Vecchi
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Rossella Bonzi
- Branch of Medical Statistics, Biometry and Epidemiology "G.A. Maccacaro", Department of Clinical Sciences and Community Health, Department of Excellence 2023-2027, University of Milan, Milan, Italy
| | - Barbara Oreggia
- General Surgery Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Pietro Carnevali
- Division of Minimally-invasive Surgical Oncology, Niguarda Cancer Center, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Marcello Vangeli
- Hepatology and Gastroenterology Unit, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Massimiliano Mutignani
- Digestive and Interventional Endoscopy Unit, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Simone Guglielmetti
- Department of Biotechnology and Biosciences (BtBs), University of Milan Biococca, Milan, Italy
| | - Patrizia Riso
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy.
| | - Carlo La Vecchia
- Branch of Medical Statistics, Biometry and Epidemiology "G.A. Maccacaro", Department of Clinical Sciences and Community Health, Department of Excellence 2023-2027, University of Milan, Milan, Italy
| | - Marta Rossi
- Branch of Medical Statistics, Biometry and Epidemiology "G.A. Maccacaro", Department of Clinical Sciences and Community Health, Department of Excellence 2023-2027, University of Milan, Milan, Italy.
| |
Collapse
|
5
|
Zhu J, Cao J, Zhao S. Association between dietary anthocyanin intake and chronic obstructive pulmonary disease in US adults: A public database survey. Heart Lung 2024; 67:108-113. [PMID: 38749346 DOI: 10.1016/j.hrtlng.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 07/02/2024]
Abstract
BACKGROUND Anthocyanins have anti-inflammatory and antioxidant properties. Several studies have demonstrated that anthocyanins are associated with many chronic diseases, but few studies have focused on the relationship between anthocyanins and chronic obstructive pulmonary disease (COPD). OBJECTIVES This survey aimed to explore the relationship between dietary anthocyanin intake and COPD in US adults over the age of 40. METHODS A cross-sectional study from the National Health and Nutrition Examination Survey (NHANES) 2017-2018 was conducted. We used univariate and multivariate logistic regression and restricted cubic spline (RCS) to analyze the relationship between dietary anthocyanins and COPD. Subgroup and interaction analyses were adopted to assess whether there were differences in the relationship between dietary anthocyanin intake and COPD in different groups. RESULTS A total of 2862 participants aged ≥ 40 years were analyzed, of whom 213 were diagnosed with COPD. The highest tertile of dietary anthocyanin intake was negatively correlated with COPD compared to the lowest after adjusting potential confounders (Model 1, OR = 0.414; 95% CI: (0.245, 0.699), P-trend = 0.002; Model 2, OR = 0.363; 95% CI: (0.210, 0.627), P-trend = 0.002; Model 3, OR = 0.614; 95% CI: (0.383, 0.985), P-trend = 0.040). The RCS curve showed a significant inverse linear relationship between dietary anthocyanin intake and COPD (P non-linear = 0.734). In subgroup analyses, the negative correlation between dietary anthocyanin intake and COPD existed across different subgroups. CONCLUSION Our study indicated that higher dietary anthocyanins are a protective factor against the presence of COPD in the US aged over 40.
Collapse
Affiliation(s)
- Jinqi Zhu
- Department of Respiratory and Critical Care Medicine, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, PR China
| | - Jing Cao
- Medical Department, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, PR China
| | - Sue Zhao
- Department of Respiratory and Critical Care Medicine, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, PR China.
| |
Collapse
|
6
|
Giacconi R, Donghia R, Arborea G, Savino MT, Provinciali M, Lattanzio F, Caponio GR, Coletta S, Bianco A, Notarnicola M, Bonfiglio C, Passarino G, D’Aquila P, Bellizzi D, Pesole PL. Plasma Bacterial DNA Load as a Potential Biomarker for the Early Detection of Colorectal Cancer: A Case-Control Study. Microorganisms 2023; 11:2360. [PMID: 37764204 PMCID: PMC10537376 DOI: 10.3390/microorganisms11092360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/14/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023] Open
Abstract
The gut microbiota has gained increasing attention in recent years due to its significant impact on colorectal cancer (CRC) development and progression. The recent detection of bacterial DNA load in plasma holds promise as a potential non-invasive approach for early cancer detection. The aim of this study was to examine the quantity of bacterial DNA present in the plasma of 50 patients who have CRC in comparison to 40 neoplastic disease-free patients, as well as to determine if there is a correlation between the amount of plasma bacterial DNA and various clinical parameters. Plasma bacterial DNA levels were found to be elevated in the CRC group compared to the control group. As it emerged from the logistic analysis (adjusted for age and gender), these levels were strongly associated with the risk of CRC (OR = 1.02, p < 0.001, 95% C.I.: 1.01-1.03). Moreover, an association was identified between a reduction in tumor mass and the highest tertile of plasma bacterial DNA. Our findings indicate that individuals with CRC displayed a higher plasma bacterial DNA load compared to healthy controls. This observation lends support to the theory of heightened bacterial migration from the gastrointestinal tract to the bloodstream in CRC. Furthermore, our results establish a link between this phenomenon and the size of the tumor mass.
Collapse
Affiliation(s)
- Robertina Giacconi
- Advanced Technology Center for Aging Research, IRCCS INRCA, Via Birarelli 8, 60121 Ancona, Italy; (M.P.); (F.L.)
| | - Rossella Donghia
- National Institute of Gastroenterology—IRCCS “Saverio de Bellis”, 70013 Castellana Grotte, Italy; (R.D.); (G.A.); (M.T.S.); (S.C.); (A.B.); (M.N.); (C.B.)
| | - Graziana Arborea
- National Institute of Gastroenterology—IRCCS “Saverio de Bellis”, 70013 Castellana Grotte, Italy; (R.D.); (G.A.); (M.T.S.); (S.C.); (A.B.); (M.N.); (C.B.)
| | - Maria Teresa Savino
- National Institute of Gastroenterology—IRCCS “Saverio de Bellis”, 70013 Castellana Grotte, Italy; (R.D.); (G.A.); (M.T.S.); (S.C.); (A.B.); (M.N.); (C.B.)
| | - Mauro Provinciali
- Advanced Technology Center for Aging Research, IRCCS INRCA, Via Birarelli 8, 60121 Ancona, Italy; (M.P.); (F.L.)
| | - Fabrizia Lattanzio
- Advanced Technology Center for Aging Research, IRCCS INRCA, Via Birarelli 8, 60121 Ancona, Italy; (M.P.); (F.L.)
| | - Giusy Rita Caponio
- Department of Bioscience, Biotechnology and Environment, University of Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy;
| | - Sergio Coletta
- National Institute of Gastroenterology—IRCCS “Saverio de Bellis”, 70013 Castellana Grotte, Italy; (R.D.); (G.A.); (M.T.S.); (S.C.); (A.B.); (M.N.); (C.B.)
| | - Antonia Bianco
- National Institute of Gastroenterology—IRCCS “Saverio de Bellis”, 70013 Castellana Grotte, Italy; (R.D.); (G.A.); (M.T.S.); (S.C.); (A.B.); (M.N.); (C.B.)
| | - Maria Notarnicola
- National Institute of Gastroenterology—IRCCS “Saverio de Bellis”, 70013 Castellana Grotte, Italy; (R.D.); (G.A.); (M.T.S.); (S.C.); (A.B.); (M.N.); (C.B.)
| | - Caterina Bonfiglio
- National Institute of Gastroenterology—IRCCS “Saverio de Bellis”, 70013 Castellana Grotte, Italy; (R.D.); (G.A.); (M.T.S.); (S.C.); (A.B.); (M.N.); (C.B.)
| | - Giuseppe Passarino
- Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, 87036 Rende, Italy; (G.P.); (P.D.); (D.B.)
| | - Patrizia D’Aquila
- Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, 87036 Rende, Italy; (G.P.); (P.D.); (D.B.)
| | - Dina Bellizzi
- Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, 87036 Rende, Italy; (G.P.); (P.D.); (D.B.)
| | - Pasqua Letizia Pesole
- National Institute of Gastroenterology—IRCCS “Saverio de Bellis”, 70013 Castellana Grotte, Italy; (R.D.); (G.A.); (M.T.S.); (S.C.); (A.B.); (M.N.); (C.B.)
| |
Collapse
|
7
|
Tao Z, Zhang R, Zuo W, Ji Z, Fan Z, Chen X, Huang R, Li X, Ma G. Association between dietary intake of anthocyanidins and heart failure among American adults: NHANES (2007–2010 and 2017–2018). Front Nutr 2023; 10:1107637. [PMID: 37090778 PMCID: PMC10113463 DOI: 10.3389/fnut.2023.1107637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 03/14/2023] [Indexed: 04/08/2023] Open
Abstract
BackgroundDespite anthocyanidins have anti-inflammatory and antioxidant properties, no studies have researched association between dietary intake of anthocyanidins and heart failure.MethodsWe enrolled 15,869 participants from the National Health and Nutrition Examination Survey (NHANES) (2007–2010 and 2017–2018) in this cross-sectional study. We examined baseline data and prevalence of heart failure in different quartile groups of anthocyanin intake (Q1-4). Three models were established through logistic regression to evaluate the protective effect of Q4 (highest anthocyanidins intake) on heart failure. The protective effect of high anthocyanidins intake on heart failure was further evaluated in different subgroups.ResultsParticipants with the highest anthocyanidins intake (Q4) had the lowest prevalence of heart failure (Q1:2.54%, Q2:2.33%, Q3:2.43%, Q4:1.57%, p = 0.02). After adjusting for possible confounding factors, compared with the Q1 group, the highest anthocyanidins intake (Q4) was independently related to lower presence of heart failure (Q4: OR 0.469, 95%CI [0.289, 0.732], p = 0.003). And this association was still stable in subgroups of female, ≥45 years, smoker, non-Hispanic White or without diabetes, stroke and renal failure.ConclusionDietary intake of anthocyanidins had negative association with the presence of heart failure.
Collapse
Affiliation(s)
- Zaixiao Tao
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
- School of Medicine, Southeast University, Nanjing, China
| | - Rui Zhang
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
- School of Medicine, Southeast University, Nanjing, China
| | - Wenjie Zuo
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
- School of Medicine, Southeast University, Nanjing, China
| | - Zhenjun Ji
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
- School of Medicine, Southeast University, Nanjing, China
| | - Zhongguo Fan
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
- School of Medicine, Southeast University, Nanjing, China
| | - Xi Chen
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
- School of Medicine, Southeast University, Nanjing, China
| | - Rong Huang
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
- School of Medicine, Southeast University, Nanjing, China
| | - Xinxin Li
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
- School of Medicine, Southeast University, Nanjing, China
| | - Genshan Ma
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
- School of Medicine, Southeast University, Nanjing, China
- *Correspondence: Genshan Ma,
| |
Collapse
|