1
|
Liu S, Hou H, Yang M, Zhang H, Sun C, Wei L, Xu S, Guo W. Hypoglycemic effect of orally administered resistant dextrins prepared with different acids on type 2 diabetes mice induced by high-fat diet and streptozotocin. Int J Biol Macromol 2024; 277:134085. [PMID: 39126981 DOI: 10.1016/j.ijbiomac.2024.134085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/17/2024] [Accepted: 07/20/2024] [Indexed: 08/12/2024]
Abstract
A comparative study was performed to investigate the physicochemical properties and protective effects of hydrochloric acid-resistant dextrin (H-RD), citric acid-resistant dextrin (C-RD) and tartaric acid-resistant dextrin (T-RD) on the metabolic disorders and intestinal microbiota for type 2 diabetes mellitus (T2DM) mice. T-RD had the minimum molecular weight, with the highest short chain (DP 6-12) proportion and resistant starch content. After 4-week intervention with the three resistant dextrins, the body weight and fasting blood glucose of T2DM mice were improved significantly, accompanied by the reduction of serum indexes (TG, TC, LDL-C, ALT, AST, CRE, BUN, FINS, and GSP), but the serum HDL-C and liver glycogen levels increased. Among the three RDs intervention groups, T-RD showed the most significant improvement, followed by C-RD and finally H-RD. The 16 s rDNA results indicated that oral administration of resistant dextrins favored the proliferation of specific gut microbiota, including Faecalibaculum, Parabacteroides and Dubosiella, and reduced the ratio of Firmicutes/Bacteroidota, which is beneficial for reducing insulin resistance. Herein, the findings supported that the resistant dextrins exhibited a remission effect on T2DM, providing a basis for the development of functional food adjuvants for T2DM treatment.
Collapse
Affiliation(s)
- Shuang Liu
- Department of Food Science and Nutrition, Culinary Institute, University of Jinan, Jinan, Shandong 250022, China; College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Hanxue Hou
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Meng Yang
- Zhucheng Xingmao corn development Co., LTD, Zhucheng, Shandong 262218, China
| | - Hui Zhang
- Department of Food Science and Nutrition, Culinary Institute, University of Jinan, Jinan, Shandong 250022, China; College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China.
| | - Chunrui Sun
- Zhucheng Xingmao corn development Co., LTD, Zhucheng, Shandong 262218, China
| | - Lili Wei
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Song Xu
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Weili Guo
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China
| |
Collapse
|
2
|
Śliżewska K, Włodarczyk M, Barczyńska R, Kapuśniak J, Socha P, Wierzbicka-Rucińska A, Kotowska A. Impact of a Fruit-Vegetable Preparation Fortified with Potato Starch Resistant Dextrin on Selected Health Indicators in Overweight Children. Nutrients 2024; 16:2321. [PMID: 39064763 PMCID: PMC11279421 DOI: 10.3390/nu16142321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/25/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Developing modified dietary fibers that maintain prebiotic benefits without significantly affecting meal taste is of high importance in the midst of the obesity pandemic. These benefits include regulating the composition of gut microbiota, increasing feelings of fullness, and improving human metabolic parameters. This study investigated the use of a resistant dextrin (RD) derived from potato starch, which possesses prebiotic properties, as a potential additive in vegetable-fruit preparations that aid weight loss and improve health markers in overweight children. HPLC was employed to examine metabolites like lactic acid, short-chain fatty acids (SCFAs; formic, acetic, propionic, butyric, and valeric acids), and branched-chain fatty acids (BCFAs; isobutyric and isovaleric acids). The activities of α-glucosidase, β-glucosidase, α-galactosidase, β-galactosidase, and β-glucuronidase enzymes in fecal samples were measured using spectrophotometric analysis at a wavelength of 400 nm. Incorporating the RD into vegetable-fruit preparations yielded favorable outcomes in terms of increased concentrations of the tested metabolites (SCFAs and BCFAs) and enhanced fecal enzyme activities after 6 months of consuming the preparations. Furthermore, these effects were found to last for an extended period of 3 months even after discontinuing the treatment. The study has shown that including RD into vegetable-fruit preparations enhances the metabolic parameters of obese and overweight children, hence providing a strong rationale for the widespread usage of these preparations in the industry.
Collapse
Affiliation(s)
- Katarzyna Śliżewska
- Institute of Fermentation Technology and Microbiology, Department of Biotechnology and Food Sciences, Technical University of Lodz, Wolczanska 171/173, 90-924 Lodz, Poland;
| | - Michał Włodarczyk
- Institute of Fermentation Technology and Microbiology, Department of Biotechnology and Food Sciences, Technical University of Lodz, Wolczanska 171/173, 90-924 Lodz, Poland;
| | - Renata Barczyńska
- Department of Dietetics and Food Studies, Faculty of Science and Technology, Jan Dlugosz University, Armi Krajowej 13/15, 42-200 Czestochowa, Poland; (R.B.); (J.K.)
| | - Janusz Kapuśniak
- Department of Dietetics and Food Studies, Faculty of Science and Technology, Jan Dlugosz University, Armi Krajowej 13/15, 42-200 Czestochowa, Poland; (R.B.); (J.K.)
| | - Piotr Socha
- The Children’s Memorial Health Institute, Aleja Dzieci Polskich 20, 04-736 Warsaw, Poland; (P.S.); (A.W.-R.); (A.K.)
| | - Aldona Wierzbicka-Rucińska
- The Children’s Memorial Health Institute, Aleja Dzieci Polskich 20, 04-736 Warsaw, Poland; (P.S.); (A.W.-R.); (A.K.)
| | - Aneta Kotowska
- The Children’s Memorial Health Institute, Aleja Dzieci Polskich 20, 04-736 Warsaw, Poland; (P.S.); (A.W.-R.); (A.K.)
| |
Collapse
|
3
|
Chen X, Hou Y, Liao A, Pan L, Yang S, Liu Y, Wang J, Xue Y, Zhang M, Zhu Z, Huang J. Integrated Analysis of Gut Microbiome and Adipose Transcriptome Reveals Beneficial Effects of Resistant Dextrin from Wheat Starch on Insulin Resistance in Kunming Mice. Biomolecules 2024; 14:186. [PMID: 38397423 PMCID: PMC10886926 DOI: 10.3390/biom14020186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/14/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
Systemic chronic inflammation is recognized as a significant contributor to the development of obesity-related insulin resistance. Previous studies have revealed the physiological benefits of resistant dextrin (RD), including obesity reduction, lower fasting glucose levels, and anti-inflammation. The present study investigated the effects of RD intervention on insulin resistance (IR) in Kunming mice, expounding the mechanisms through the gut microbiome and transcriptome of white adipose. In this eight-week study, we investigated changes in tissue weight, glucose-lipid metabolism levels, serum inflammation levels, and lesions of epididymal white adipose tissue (eWAT) evaluated via Hematoxylin and Eosin (H&E) staining. Moreover, we analyzed the gut microbiota composition and transcriptome of eWAT to assess the potential protective effects of RD intervention. Compared with a high-fat, high-sugar diet (HFHSD) group, the RD intervention significantly enhanced glucose homeostasis (e.g., AUC-OGTT, HOMA-IR, p < 0.001), and reduced lipid metabolism (e.g., TG, LDL-C, p < 0.001) and serum inflammation levels (e.g., IL-1β, IL-6, p < 0.001). The RD intervention also led to changes in the gut microbiota composition, with an increase in the abundance of probiotics (e.g., Parabacteroides, Faecalibaculum, and Muribaculum, p < 0.05) and a decrease in harmful bacteria (Colidextribacter, p < 0.05). Moreover, the RD intervention had a noticeable effect on the gene transcription profile of eWAT, and KEGG enrichment analysis revealed that differential genes were enriched in PI3K/AKT, AMPK, in glucose-lipid metabolism, and in the regulation of lipolysis in adipocytes signaling pathways. The findings demonstrated that RD not only ameliorated IR, but also remodeled the gut microbiota and modified the transcriptome profile of eWAT.
Collapse
Affiliation(s)
- Xinyang Chen
- Food Laboratory of Zhongyuan, Luohe 462300, China; (X.C.); (Y.H.); (A.L.); (L.P.); (Y.L.); (J.W.); (Y.X.); (M.Z.); (Z.Z.)
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Yinchen Hou
- Food Laboratory of Zhongyuan, Luohe 462300, China; (X.C.); (Y.H.); (A.L.); (L.P.); (Y.L.); (J.W.); (Y.X.); (M.Z.); (Z.Z.)
- College of Food and Biological Engineering, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China;
| | - Aimei Liao
- Food Laboratory of Zhongyuan, Luohe 462300, China; (X.C.); (Y.H.); (A.L.); (L.P.); (Y.L.); (J.W.); (Y.X.); (M.Z.); (Z.Z.)
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Long Pan
- Food Laboratory of Zhongyuan, Luohe 462300, China; (X.C.); (Y.H.); (A.L.); (L.P.); (Y.L.); (J.W.); (Y.X.); (M.Z.); (Z.Z.)
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Shengru Yang
- College of Food and Biological Engineering, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China;
| | - Yingying Liu
- Food Laboratory of Zhongyuan, Luohe 462300, China; (X.C.); (Y.H.); (A.L.); (L.P.); (Y.L.); (J.W.); (Y.X.); (M.Z.); (Z.Z.)
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Jingjing Wang
- Food Laboratory of Zhongyuan, Luohe 462300, China; (X.C.); (Y.H.); (A.L.); (L.P.); (Y.L.); (J.W.); (Y.X.); (M.Z.); (Z.Z.)
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Yingchun Xue
- Food Laboratory of Zhongyuan, Luohe 462300, China; (X.C.); (Y.H.); (A.L.); (L.P.); (Y.L.); (J.W.); (Y.X.); (M.Z.); (Z.Z.)
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Mingyi Zhang
- Food Laboratory of Zhongyuan, Luohe 462300, China; (X.C.); (Y.H.); (A.L.); (L.P.); (Y.L.); (J.W.); (Y.X.); (M.Z.); (Z.Z.)
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Zhitong Zhu
- Food Laboratory of Zhongyuan, Luohe 462300, China; (X.C.); (Y.H.); (A.L.); (L.P.); (Y.L.); (J.W.); (Y.X.); (M.Z.); (Z.Z.)
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Jihong Huang
- Food Laboratory of Zhongyuan, Luohe 462300, China; (X.C.); (Y.H.); (A.L.); (L.P.); (Y.L.); (J.W.); (Y.X.); (M.Z.); (Z.Z.)
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, Henan University, Kaifeng 475004, China
- School of Food and Pharmacy, Xuchang University, Xuchang 461000, China
| |
Collapse
|
4
|
Zünd JN, Plüss S, Mujezinovic D, Menzi C, von Bieberstein PR, de Wouters T, Lacroix C, Leventhal GE, Pugin B. A flexible high-throughput cultivation protocol to assess the response of individuals' gut microbiota to diet-, drug-, and host-related factors. ISME COMMUNICATIONS 2024; 4:ycae035. [PMID: 38562261 PMCID: PMC10982853 DOI: 10.1093/ismeco/ycae035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/13/2023] [Accepted: 03/08/2024] [Indexed: 04/04/2024]
Abstract
The anaerobic cultivation of fecal microbiota is a promising approach to investigating how gut microbial communities respond to specific intestinal conditions and perturbations. Here, we describe a flexible protocol using 96-deepwell plates to cultivate stool-derived gut microbiota. Our protocol aims to address gaps in high-throughput culturing in an anaerobic chamber. We characterized the influence of the gas phase on the medium chemistry and microbial physiology and introduced a modular medium preparation process to enable the testing of several conditions simultaneously. Furthermore, we identified a medium formulation that maximized the compositional similarity of ex vivo cultures and donor microbiota while limiting the bloom of Enterobacteriaceae. Lastly, we validated the protocol by demonstrating that cultivated fecal microbiota responded similarly to dietary fibers (resistant dextrin, soluble starch) and drugs (ciprofloxacin, 5-fluorouracil) as reported in vivo. This high-throughput cultivation protocol has the potential to facilitate culture-dependent studies, accelerate the discovery of gut microbiota-diet-drug-host interactions, and pave the way to personalized microbiota-centered interventions.
Collapse
Affiliation(s)
- Janina N Zünd
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, Department of Health Sciences and Technology, ETH Zürich, 8092 Zürich, Switzerland
| | - Serafina Plüss
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, Department of Health Sciences and Technology, ETH Zürich, 8092 Zürich, Switzerland
| | - Denisa Mujezinovic
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, Department of Health Sciences and Technology, ETH Zürich, 8092 Zürich, Switzerland
| | - Carmen Menzi
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, Department of Health Sciences and Technology, ETH Zürich, 8092 Zürich, Switzerland
- PharmaBiome AG, 8952 Schlieren, Switzerland
| | - Philipp R von Bieberstein
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, Department of Health Sciences and Technology, ETH Zürich, 8092 Zürich, Switzerland
- PharmaBiome AG, 8952 Schlieren, Switzerland
| | | | - Christophe Lacroix
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, Department of Health Sciences and Technology, ETH Zürich, 8092 Zürich, Switzerland
| | | | - Benoit Pugin
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, Department of Health Sciences and Technology, ETH Zürich, 8092 Zürich, Switzerland
| |
Collapse
|
5
|
Sasaki H, Hayashi K, Imamura M, Hirota Y, Hosoki H, Nitta L, Furutani A, Shibata S. Combined resistant dextrin and low-dose Mg oxide administration increases short-chain fatty acid and lactic acid production by gut microbiota. J Nutr Biochem 2023; 120:109420. [PMID: 37516314 DOI: 10.1016/j.jnutbio.2023.109420] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 06/23/2023] [Accepted: 07/22/2023] [Indexed: 07/31/2023]
Abstract
The consumption of resistant dextrin improves constipation, while its fermentation and degradation by the intestinal microbiota produce short-chain fatty acids (SCFA) and lactic acid, which have beneficial effects on host metabolism and immunity. Mg oxide (MgO) is an important mineral that is used to treat constipation. Therefore, resistant dextrin and MgO are often administered together to improve constipation. However, limited information is available regarding the effect of this combination on SCFA and lactic acid production. Crl:CD1(ICR) mice were fed a Mg-free diet with 5% resistant dextrin, followed by oral administration of MgO. We collected the cecum contents and measured SCFA and lactic acid levels. Additionally, the human subjects received resistant dextrin and Mg supplements as part of their habitual diet. The results of this study demonstrate that intestinal microbiota cannot promote SCFA and lactic acid production in the absence of Mg. In a mouse model, low doses of MgO promoted the production of SCFA and lactic acid, whereas high doses decreased their production. In humans, the combined consumption of resistant dextrin and Mg supplements increased the production of SCFA and lactic acid. The production of SCFA and lactic acid from dietary fiber may be augmented by the presence of MgO.
Collapse
Affiliation(s)
- Hiroyuki Sasaki
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, Japan
| | - Katsuki Hayashi
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, Japan
| | - Momoko Imamura
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, Japan
| | - Yuro Hirota
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, Japan
| | - Haruka Hosoki
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, Japan
| | - Lyie Nitta
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, Japan
| | - Akiko Furutani
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, Japan; Faculty of Home Economics, Aikoku Gakuen Junior College, Edogawa-ku, Tokyo, Japan
| | - Shigenobu Shibata
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, Japan.
| |
Collapse
|
6
|
Barber C, Sabater C, Guarner F, Margolles A, Azpiroz F. Metabolic response of intestinal microbiota to guar gum consumption. Front Nutr 2023; 10:1160694. [PMID: 37457982 PMCID: PMC10349393 DOI: 10.3389/fnut.2023.1160694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 06/05/2023] [Indexed: 07/18/2023] Open
Abstract
Background Guar gum is used extensively as a thickening agent in food, but it remains uncertain whether and to what extent it is fermented by colonic microbiota and whether it has microbiota modulatory properties. Aim To determine the metabolic response of intestinal microbiota to guar gum consumption, specifically, the extent of initial fermentation and subsequent adaptation. Methods Single-center, single arm, open label, proof-of-concept study testing the effect of guar gum on microbiota metabolism and adaptation. Healthy male subjects (n = 12) were administered gum guar (8 g/day) for 18 days. Outcomes were measured before, at initial and late administration: (a) anal gas evacuations (number/day); (b) digestive sensations (daily scales); and (c) fecal gut microbiota taxonomy and metabolic functions by shotgun sequencing. Results At initial consumption, guar gum induced a transient increase in anal gas evacuations and digestive sensations; gas evacuation completely reverted upon continuous administration, whereas sensations reverted only in part. Guar gum induced moderate changes in human microbiota composition at both taxonomic and functional levels. Positive associations between effects on microbiota (proliferation of Agathobaculum butyriciproducens and Lachnospira pectinoschiza) and hedonic sensations were detected. Conclusion Guar gum is metabolized by intestinal microbiota, and, upon continuous consumption, induces a selective adaptation of microbial taxonomy and function. These data highlight the potential interest of guar gum for novel prebiotic ingredient formulation.
Collapse
Affiliation(s)
- Claudia Barber
- Digestive System Research Unit, University Hospital Vall d’Hebron, Barcelona, Spain
- Departament de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Madrid, Spain
| | - Carlos Sabater
- Department of Microbiology and Biochemistry, IPLA-CSIC, Asturias, Spain
- Health Research Institute of Asturias, ISPA, Asturias, Spain
| | - Francisco Guarner
- Digestive System Research Unit, University Hospital Vall d’Hebron, Barcelona, Spain
| | - Abelardo Margolles
- Department of Microbiology and Biochemistry, IPLA-CSIC, Asturias, Spain
- Health Research Institute of Asturias, ISPA, Asturias, Spain
| | - Fernando Azpiroz
- Digestive System Research Unit, University Hospital Vall d’Hebron, Barcelona, Spain
- Departament de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Madrid, Spain
| |
Collapse
|