1
|
Wang L, Meng Q, Su CH. From Food Supplements to Functional Foods: Emerging Perspectives on Post-Exercise Recovery Nutrition. Nutrients 2024; 16:4081. [PMID: 39683475 DOI: 10.3390/nu16234081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/19/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Effective post-exercise recovery is vital for optimizing athletic performance, focusing on muscle repair, glycogen replenishment, rehydration, and inflammation management. This review explores the evolving trend from traditional supplements, such as protein, carbohydrates, creatine, and branched-chain amino acids (BCAAs), toward functional foods rich in bioactive compounds. Evidence highlights the benefits of functional foods like tart cherry juice (anthocyanins), turmeric-seasoned foods, and sources of omega-3 fatty acids, including fish, flaxseeds, chia seeds, and walnuts, for mitigating oxidative stress and inflammation. Additionally, probiotics and prebiotics support gut health and immune function, which are integral to effective recovery. Personalized nutrition, informed by genetic and metabolic profiling, is examined as a promising approach to tailor recovery strategies. A systematic search across PubMed, Web of Science, and Google Scholar (2000-2024) identified studies with high empirical rigor and relevance to recovery outcomes. Findings underscore the need for further research into nutrient interactions, dosage optimization, and long-term effects on athletic performance. Integrating functional foods with personalized nutrition presents a comprehensive framework for enhanced recovery, greater resilience to physical stress, and sustained performance in athletes.
Collapse
Affiliation(s)
- Lifeng Wang
- Public Sports Department, Xuhai College, China University of Mining and Technology, Xuzhou 221008, China
| | - Qing Meng
- School of Physical Education, Huaqiao University, Xiamen 361021, China
- Sport and Health Research Center, Huaqiao University, Xiamen 361021, China
| | - Chun-Hsien Su
- Department of Exercise and Health Promotion, College of Kinesiology and Health, Chinese Culture University, Taipei 111396, Taiwan
| |
Collapse
|
2
|
Zhang H, Kang R, Song T, Ren F, Liu J, Wang J. Advances in relieving exercise fatigue for curcumin: Molecular targets, bioavailability, and potential mechanism. J Food Sci 2024; 89:4604-4619. [PMID: 39031649 DOI: 10.1111/1750-3841.17162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/05/2024] [Accepted: 05/23/2024] [Indexed: 07/22/2024]
Abstract
Intense and prolonged physical activity can lead to a decrease in muscle capacity, making it difficult to maintain the desired exercise intensity and resulting in exercise fatigue. The long-term effects of exercise fatigue can be very damaging to the body, so it is an urgent problem to be addressed. The intervention of foodborne active substances will be an effective measure. There is growing evidence that the molecular structure and function of curcumin have a positive effect on relieving fatigue. In this review, we summarize curcumin's molecular structure, which enables it to bind to a wealth of molecular targets, regulate signaling pathways, and thus alleviate exercise fatigue through a variety of mechanisms, including reducing oxidative stress, inhibiting inflammation, reducing metabolite accumulation, and regulating energy metabolism. The effects of curcumin on fatigue-related markers were analyzed from the perspective of animal models and human models and based on the bidirectional interaction between curcumin and intestinal microbiota: Intestinal microbiota can transform curcumin, and curcumin regulates gut microbiota through metabolic pathways, providing a new perspective for alleviating fatigue. This review contributes to a more comprehensive understanding of the possible molecular mechanisms of curcumin in anti-fatigue and provides a new possibility for the development of functional foods in the future.
Collapse
Affiliation(s)
- Huijuan Zhang
- School of Food and Health, Beijing Technology & Business University (BTBU), Beijing, China
- National Center of Technology Innovation for Grain Industry (Comprehensive Utilization of Edible By-Products), Beijing Technology and Business University, Beijing, China
- Key Laboratory of Special Food Supervision Technology for State Market Regulation, Beijing, China
| | - Rui Kang
- School of Food and Health, Beijing Technology & Business University (BTBU), Beijing, China
- National Center of Technology Innovation for Grain Industry (Comprehensive Utilization of Edible By-Products), Beijing Technology and Business University, Beijing, China
- Key Laboratory of Special Food Supervision Technology for State Market Regulation, Beijing, China
| | - Tiancong Song
- School of Food and Health, Beijing Technology & Business University (BTBU), Beijing, China
- National Center of Technology Innovation for Grain Industry (Comprehensive Utilization of Edible By-Products), Beijing Technology and Business University, Beijing, China
- Key Laboratory of Special Food Supervision Technology for State Market Regulation, Beijing, China
| | - Feiyue Ren
- School of Food and Health, Beijing Technology & Business University (BTBU), Beijing, China
- National Center of Technology Innovation for Grain Industry (Comprehensive Utilization of Edible By-Products), Beijing Technology and Business University, Beijing, China
- Key Laboratory of Special Food Supervision Technology for State Market Regulation, Beijing, China
| | - Jie Liu
- School of Food and Health, Beijing Technology & Business University (BTBU), Beijing, China
- National Center of Technology Innovation for Grain Industry (Comprehensive Utilization of Edible By-Products), Beijing Technology and Business University, Beijing, China
- Key Laboratory of Special Food Supervision Technology for State Market Regulation, Beijing, China
| | - Jing Wang
- School of Food and Health, Beijing Technology & Business University (BTBU), Beijing, China
- National Center of Technology Innovation for Grain Industry (Comprehensive Utilization of Edible By-Products), Beijing Technology and Business University, Beijing, China
- Key Laboratory of Special Food Supervision Technology for State Market Regulation, Beijing, China
| |
Collapse
|
3
|
Liu Q, Wang C, Guo X, Du Q, Keshavarzi M. Curcumin and its nano-formulations combined with exercise: From molecular mechanisms to clinic. Cell Biochem Funct 2024; 42:e4061. [PMID: 38812287 DOI: 10.1002/cbf.4061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/15/2024] [Accepted: 05/12/2024] [Indexed: 05/31/2024]
Abstract
Curcumin is a strong substance derived from turmeric, a popular spice, renowned for its antioxidant and anti-inflammatory abilities. The study delved deeply into a thorough examination of various sources to evaluate the impact of both regular curcumin and nano-formulated curcumin on elements that impact physical performance, including muscular strain, discomfort, swelling, and oxidative tension. While engaging in exercise, the body experiences a rise in reactive oxygen species and inflammation. As a result, it is important to ensure a proper balance between internal and external sources of antioxidants to maintain stability in the skeletal muscle. Without this balance, there is a risk of muscle soreness, damage, and ultimately, a decline in exercise performance. Curcumin possesses the ability to enhance physical performance and reduce the symptoms of muscle fatigue and injury by virtue of its antioxidative and anti-inflammatory properties. Including curcumin supplements appears to have advantageous effects on various aspects of exercise, such as enhancing performance, assisting with recovery, lessening muscle damage and discomfort, and lowering levels of inflammation and oxidative stress. However, a thorough assessment is necessary to precisely gauge the healing advantages of curcumin in enhancing exercise ability and reducing recovery time.
Collapse
Affiliation(s)
- Qian Liu
- School of Physical Education, Hubei Normal University, Huangshi, 435002, China
| | - Chengyu Wang
- School of Physical Education, Hubei Normal University, Huangshi, 435002, China
| | - Xinyan Guo
- School of Physical Education, Hubei Normal University, Huangshi, 435002, China
| | - Qiankun Du
- School of Physical Education, Hubei Normal University, Huangshi, 435002, China
| | - Maryam Keshavarzi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Ye H, Long Y, Yang JM, Wu YL, Dong LY, Zhong YB, Luo Y, Wang MY. Curcumin regulates autophagy through SIRT3-SOD2-ROS signaling pathway to improve quadriceps femoris muscle atrophy in KOA rat model. Sci Rep 2024; 14:8176. [PMID: 38589505 PMCID: PMC11001965 DOI: 10.1038/s41598-024-58375-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 03/28/2024] [Indexed: 04/10/2024] Open
Abstract
Knee osteoarthritis (KOA) usually leads to quadriceps femoris atrophy, which in turn can further aggravate the progression of KOA. Curcumin (CUR) has anti-inflammatory and antioxidant effects and has been shown to be a protective agent for skeletal muscle. CUR has been shown to have a protective effect on skeletal muscle. However, there are no studies related to whether CUR improves KOA-induced quadriceps femoris muscle atrophy. We established a model of KOA in rats. Rats in the experimental group were fed CUR for 5 weeks. Changes in autophagy levels, reactive oxygen species (ROS) levels, and changes in the expression of the Sirutin3 (SIRT3)-superoxide dismutase 2 (SOD2) pathway were detected in the quadriceps femoris muscle of rats. KOA led to quadriceps femoris muscle atrophy, in which autophagy was induced and ROS levels were increased. CUR increased SIRT3 expression, decreased SOD2 acetylation and ROS levels, inhibited the over-activation of autophagy, thereby alleviating quadriceps femoris muscle atrophy and improving KOA. CUR has a protective effect against quadriceps femoris muscle atrophy, and KOA is alleviated after improvement of quadriceps femoris muscle atrophy, with the possible mechanism being the reduction of ROS-induced autophagy via the SIRT3-SOD2 pathway.
Collapse
Affiliation(s)
- Hua Ye
- Department of Rehabilitation Medicine, First Affiliated Hospital of Gannan Medical University, 128 Jinling Road, Zhanggong District, Ganzhou, 341000, Jiangxi, China
| | - Yi Long
- Department of Rehabilitation Medicine, First Affiliated Hospital of Gannan Medical University, 128 Jinling Road, Zhanggong District, Ganzhou, 341000, Jiangxi, China
| | - Jia-Ming Yang
- Department of Rehabilitation Medicine, First Affiliated Hospital of Gannan Medical University, 128 Jinling Road, Zhanggong District, Ganzhou, 341000, Jiangxi, China
| | - Yan-Lin Wu
- Department of Rehabilitation Medicine, First Affiliated Hospital of Gannan Medical University, 128 Jinling Road, Zhanggong District, Ganzhou, 341000, Jiangxi, China
| | - Ling-Yan Dong
- Department of Rehabilitation Medicine, First Affiliated Hospital of Gannan Medical University, 128 Jinling Road, Zhanggong District, Ganzhou, 341000, Jiangxi, China
| | - Yan-Biao Zhong
- Department of Rehabilitation Medicine, First Affiliated Hospital of Gannan Medical University, 128 Jinling Road, Zhanggong District, Ganzhou, 341000, Jiangxi, China
- Ganzhou Intelligent Rehabilitation Technology Innovation Center, Ganzhou, Jiangxi, China
| | - Yun Luo
- Department of Rehabilitation Medicine, First Affiliated Hospital of Gannan Medical University, 128 Jinling Road, Zhanggong District, Ganzhou, 341000, Jiangxi, China.
| | - Mao-Yuan Wang
- Department of Rehabilitation Medicine, First Affiliated Hospital of Gannan Medical University, 128 Jinling Road, Zhanggong District, Ganzhou, 341000, Jiangxi, China.
- Ganzhou Key Laboratory of Rehabilitation Medicine, Ganzhou, Jiangxi, China.
| |
Collapse
|
5
|
Dalaka E, Stefos GC, Politis I, Theodorou G. Effect of Milk Origin and Seasonality of Yogurt Acid Whey on Antioxidant Activity before and after In Vitro Gastrointestinal Digestion. Antioxidants (Basel) 2023; 12:2130. [PMID: 38136249 PMCID: PMC10740864 DOI: 10.3390/antiox12122130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023] Open
Abstract
Yogurt acid whey (YAW) is a by-product of Greek strained yogurt production. The disposal of YAW constitutes an environmental problem, and given the increasing demand of Greek yogurt worldwide, its handling is a challenge. However, whey-derived peptides, resulting from microbial fermentation as well as those resulting from further hydrolysis during the digestion process, have been linked to enhanced biological activities. In this study, the antioxidant capacity of 33 samples of YAW obtained from Greek dairy companies of bovine, ovine or caprine origin was investigated using both cell-free and cell-based assays. The YAW samples, their in vitro digestion products (YAW-Ds) and a fraction of the digests (less than 3 kDa; YAW-D-P3) were assessed using four biochemical assays, namely ORAC, ABTS, FRAP and P-FRAP. Our data revealed a higher antioxidant capacity for digested samples compared with undigested samples, with all four methods. ORAC values after in vitro digestion were higher for the ovine samples compared to their bovine (YAW-D and YAW-D-P3) and caprine (YAW-D-P3) counterparts. Furthermore, the YAW-D-P3 fraction derived from samples collected in the summer months exhibited higher ORAC values when compared to the respective fraction from the winter months' samples. The cellular antioxidant activity of ovine YAW-D-P3 was improved in H2O2-treated HT29 cells compared to the control H2O2-treated cells. However, YAW-D-P3 could not trigger either the pathways involving the transcription factors NF-κB or NFE2L2 or the gene expression of SOD1, CAT and HMOX1 in LPS-challenged THP-1-derived macrophages. These results suggest that YAW, and particularly YAW from ovine origin, could be used as a natural source for its antioxidant potential in human and animal nutrition.
Collapse
Affiliation(s)
| | | | | | - Georgios Theodorou
- Laboratory of Animal Breeding and Husbandry, Department of Animal Science, Agricultural University of Athens, 11855 Athens, Greece; (E.D.); (I.P.)
| |
Collapse
|
6
|
Dalaka E, Politis I, Theodorou G. Antioxidant Activity of Sweet Whey Derived from Bovine, Ovine and Caprine Milk Obtained from Various Small-Scale Cheese Plants in Greece before and after In Vitro Simulated Gastrointestinal Digestion. Antioxidants (Basel) 2023; 12:1676. [PMID: 37759979 PMCID: PMC10525972 DOI: 10.3390/antiox12091676] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Whey-derived peptides have been associated with different biological properties, but most peptides are usually further hydrolyzed during the digestive process. In the present study, the antioxidant capacity of 48 samples of sweet whey (SW) derived from cheeses obtained from small-scale cheese plants made with bovine, ovine, caprine or a mixture of ovine/caprine milk was assessed using both cell-free and cell-based assays. SW digestates (SW-Ds) and a fraction (<3 kDa; SW-D-P3) thereof were obtained after in vitro digestion and subsequent ultrafiltration. Antioxidant properties using four different assays were evaluated before and after digestion. Our data showed higher values (p < 0.05) for ORAC, ABTS, FRAP and P-FRAP after in vitro digestion (SW-Ds and SW-D-P3) when compared with the corresponding values before digestion. In the non-digested SW, ORAC values were higher (p < 0.05) for the bovine SW compared with all the other samples. In contrast, the ABTS assay indicated a higher antioxidant activity for the ovine SW both before digestion and for SW-D-P3 compared with the bovine SW. The fraction SW-D-P3 of the ovine SW, using HT29 cells and H2O2 as an oxidizing agent, increased (p < 0.05) the cellular antioxidant activity. Furthermore, the same fraction of the ovine/caprine mixed SW increased, through the NF-κB pathway, the expression of SOD1 and CAT, genes implicated in the oxidative response in macrophage-like THP-1 cells. These findings indicate that SW, and particularly bovine and ovine SW, could be a candidate source for physical antioxidants in human and animal nutrition.
Collapse
Affiliation(s)
| | | | - Georgios Theodorou
- Laboratory of Animal Breeding and Husbandry, Department of Animal Science, Agricultural University of Athens, 11855 Athens, Greece; (E.D.); (I.P.)
| |
Collapse
|
7
|
Tako E. Emerging Dietary Bioactives in Health and Disease. Nutrients 2023; 15:nu15081956. [PMID: 37111174 PMCID: PMC10141115 DOI: 10.3390/nu15081956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
This monograph, based on a Special Issue of Nutrients, contains 16 manuscripts-2 review manuscripts and 14 original research manuscripts-that reflect the wide spectrum of currently conducted research in the field of Emerging Dietary Bioactives in Health and Disease [...].
Collapse
Affiliation(s)
- Elad Tako
- Department of Food Science, Cornell University, Stocking Hall, Ithaca, NY 14853-7201, USA
| |
Collapse
|
8
|
Li T, Wang L, Wu L, Xie Y, Chang M, Wang D, Yi L, Zhu X, Mi M. Integrated Metabolomics and Network Pharmacology Investigation of Cardioprotective Effects of Myricetin after 1-Week High-Intensity Exercise. Nutrients 2023; 15:nu15061336. [PMID: 36986067 PMCID: PMC10054643 DOI: 10.3390/nu15061336] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/04/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023] Open
Abstract
Cardiovascular adverse effects caused by high-intensity exercise (HIE) have become a public health problem of widespread concern. The therapeutic effect and metabolic regulation mechanism of myricetin, a phytochemical with potential therapeutic effects, have rarely been studied. In this study, we established mice models of different doses of myricetin intervention with 1 week of HIE after intervention. Cardiac function tests, serology, and pathological examinations were used to evaluate the protective effect of myricetin on the myocardium. The possible therapeutic targets of myricetin were obtained using an integrated analysis of metabolomics and network pharmacology and verified using molecular docking and RT-qPCR experiments. Different concentrations of myricetin improved cardiac function, significantly reduced the levels of myocardial injury markers, alleviated myocardial ultrastructural damage, reduced the area of ischemia/hypoxia, and increased the content of CX43. We obtained the potential targets and regulated metabolic network of myricetin by combined network pharmacology and metabolomics analysis and validated them by molecular docking and RT-PCR. In conclusion, our findings suggest that myricetin exerts anti-cardiac injury effects of HIE through the downregulation of PTGS2 and MAOB and the upregulation of MAP2K1 and EGFR while regulating the complicated myocardial metabolic network.
Collapse
Affiliation(s)
- Tianyou Li
- Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Food Safety, Institute of Military Preventive Medicine, Army Medical University, Chongqing 400038, China
| | - Le Wang
- Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Food Safety, Institute of Military Preventive Medicine, Army Medical University, Chongqing 400038, China
| | - Luting Wu
- Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Food Safety, Institute of Military Preventive Medicine, Army Medical University, Chongqing 400038, China
| | - Yingquan Xie
- Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Food Safety, Institute of Military Preventive Medicine, Army Medical University, Chongqing 400038, China
| | - Mengyun Chang
- Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Food Safety, Institute of Military Preventive Medicine, Army Medical University, Chongqing 400038, China
| | - Dawei Wang
- Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Food Safety, Institute of Military Preventive Medicine, Army Medical University, Chongqing 400038, China
| | - Long Yi
- Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Food Safety, Institute of Military Preventive Medicine, Army Medical University, Chongqing 400038, China
| | - Xiaohui Zhu
- Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Food Safety, Institute of Military Preventive Medicine, Army Medical University, Chongqing 400038, China
- Chongqing Medical Nutrition Research Center, Chongqing 400038, China
- Correspondence: (X.Z.); (M.M.)
| | - Mantian Mi
- Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Food Safety, Institute of Military Preventive Medicine, Army Medical University, Chongqing 400038, China
- Correspondence: (X.Z.); (M.M.)
| |
Collapse
|