1
|
Vijaya AK, Kuras S, Šimoliūnas E, Mingaila J, Makovskytė K, Buišas R, Daliri EBM, Meškys R, Baltriukienė D, Burokas A. Prebiotics Mitigate the Detrimental Effects of High-Fat Diet on memory, anxiety and microglia functionality in Ageing Mice. Brain Behav Immun 2024; 122:167-184. [PMID: 39142421 DOI: 10.1016/j.bbi.2024.08.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/07/2024] [Accepted: 08/10/2024] [Indexed: 08/16/2024] Open
Abstract
Ageing is characterised by a progressive increase in systemic inflammation and especially neuroinflammation. Neuroinflammation is associated with altered brain states that affect behaviour, such as an increased level of anxiety with a concomitant decline in cognitive abilities. Although multiple factors play a role in the development of neuroinflammation, microglia have emerged as a crucial target. Microglia are the only macrophage population in the CNS parenchyma that plays a crucial role in maintaining homeostasis and in the immune response, which depends on the activation and subsequent deactivation of microglia. Therefore, microglial dysfunction has a major impact on neuroinflammation. The gut microbiota has been shown to significantly influence microglia from birth to adulthood in terms of development, proliferation, and function. Diet is a key modulating factor that influences the composition of the gut microbiota, along with prebiotics that support the growth of beneficial gut bacteria. Although the role of diet in neuroinflammation and behaviour has been well established, its relationship with microglia functionality is less explored. This article establishes a link between diet, animal behaviour and the functionality of microglia. The results of this research stem from experiments on mouse behaviour, i.e., memory, anxiety, and studies on microglia functionality, i.e., cytochemistry (phagocytosis, cellular senescence, and ROS assays), gene expression and protein quantification. In addition, shotgun sequencing was performed to identify specific bacterial families that may play a crucial role in the brain function. The results showed negative effects of long-term consumption of a high fat diet on ageing mice, epitomised by increased body weight, glucose intolerance, anxiety, cognitive impairment and microglia dysfunction compared to ageing mice on a control diet. These effects were a consequence of the changes in gut microbiota modulated by the diet. However, by adding the prebiotics fructo- and galacto-oligosaccharides, we were able to mitigate the deleterious effects of a long-term high-fat diet.
Collapse
Affiliation(s)
- Akshay Kumar Vijaya
- Department of Biological Models, Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio Ave. 7, LT-10257 Vilnius, Lithuania
| | - Simonas Kuras
- Department of Biological Models, Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio Ave. 7, LT-10257 Vilnius, Lithuania
| | - Egidijus Šimoliūnas
- Department of Biological Models, Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio Ave. 7, LT-10257 Vilnius, Lithuania
| | - Jonas Mingaila
- Department of Biological Models, Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio Ave. 7, LT-10257 Vilnius, Lithuania
| | - Karolina Makovskytė
- Department of Biological Models, Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio Ave. 7, LT-10257 Vilnius, Lithuania
| | - Rokas Buišas
- Department of Neurobiology and Biophysics, Institute of Bioscience, Life Sciences Center, Vilnius University, Sauletekio Ave. 7, LT-10257 Vilnius, Lithuania
| | - Eric Banan-Mwine Daliri
- Department of Biological Models, Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio Ave. 7, LT-10257 Vilnius, Lithuania
| | - Rolandas Meškys
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio Ave. 7, LT-10257 Vilnius, Lithuania
| | - Daiva Baltriukienė
- Department of Biological Models, Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio Ave. 7, LT-10257 Vilnius, Lithuania.
| | - Aurelijus Burokas
- Department of Biological Models, Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio Ave. 7, LT-10257 Vilnius, Lithuania.
| |
Collapse
|
2
|
Mo X, Cheng R, Shen L, Liu N, Sun Y, Lin S, Jiang G, Li X, Peng X, Zhang Y, Liao Y, Yan H, Liu L. Yeast β-glucan alleviates high-fat diet-induced Alzheimer's disease-like pathologies in rats via the gut-brain axis. Int J Biol Macromol 2024; 278:134939. [PMID: 39179066 DOI: 10.1016/j.ijbiomac.2024.134939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/15/2024] [Accepted: 08/20/2024] [Indexed: 08/26/2024]
Abstract
Targeting the gut microbiota may be an emerging strategy for the prevention and treatment of Alzheimer's disease (AD). Macro-molecular yeast β-glucan (BG), derived from the yeast of Saccharomyces cerevisiae, regulates the gut microbiota. This study aimed to investigate the effect and mechanism of long-term BG in high-fat diet (HFD)-induced AD-like pathologies from the perspective of the gut microbiota. Here, we found that 80 weeks of BG treatment ameliorated HFD-induced cognitive dysfunction in rats. In the hippocampus, BG alleviated HFD-induced the activation of astrocytes, microglia, NOD-like receptor thermal protein domain associated protein 3 (NLRP3) inflammasome pathway, and AD-like pathologies. BG modulated gut dysbiosis through increasing the levels of beneficial bacteria and short-chain fatty acids (SCFAs). BG also attenuated HFD-induced gut barrier impairment. Correlation analysis revealed a close relationship among microbiota, SCFAs, and AD-like pathologies. Furthermore, the fecal microbiota of BG-treated rats and SCFAs treatment mitigated AD-like pathologies via the NLRP3 inflammasome pathway in HFD-fed aged rats. These results suggested that long-term BG promotes the production of SCFAs derived from gut microbiota, which further inhibits NLRP3 inflammasome-mediated neuroinflammation, thereby alleviating HFD-induced AD-like pathologies in rats. BG may become a new strategy for targeting neurodegenerative diseases.
Collapse
Affiliation(s)
- Xiaoxing Mo
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China.
| | - Ruijie Cheng
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China.
| | - Lihui Shen
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China.
| | - Nian Liu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China
| | - Yunhong Sun
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China.
| | - Shan Lin
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China.
| | - Guanhua Jiang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China.
| | - Xiaoqin Li
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China.
| | - Xiaobo Peng
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China.
| | - Yan Zhang
- The Hubei Provincial Key Laboratory of Yeast Function, Yichang 443003, China.
| | - Yuxiao Liao
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China.
| | - Hong Yan
- Department of Health Toxicology, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China.
| | - Liegang Liu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China.
| |
Collapse
|
3
|
Yao X, Yang C, Jia X, Yu Z, Wang C, Zhao J, Chen Y, Xie B, Zhuang H, Sun C, Li Q, Kang X, Xiao Y, Liu L. High-fat diet consumption promotes adolescent neurobehavioral abnormalities and hippocampal structural alterations via microglial overactivation accompanied by an elevated serum free fatty acid concentration. Brain Behav Immun 2024; 119:236-250. [PMID: 38604269 DOI: 10.1016/j.bbi.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 04/03/2024] [Accepted: 04/08/2024] [Indexed: 04/13/2024] Open
Abstract
Mounting evidence suggests that high-fat diet (HFD) consumption increases the risk for depression, but the neurophysiological mechanisms involved remain to be elucidated. Here, we demonstrated that HFD feeding of C57BL/6J mice during the adolescent period (from 4 to 8 weeks of age) resulted in increased depression- and anxiety-like behaviors concurrent with changes in neuronal and myelin structure in the hippocampus. Additionally, we showed that hippocampal microglia in HFD-fed mice assumed a hyperactive state concomitant with increased PSD95-positive and myelin basic protein (MBP)-positive inclusions, implicating microglia in hippocampal structural alterations induced by HFD consumption. Along with increased levels of serum free fatty acids (FFAs), abnormal deposition of lipid droplets and increased levels of HIF-1α protein (a transcription factor that has been reported to facilitate cellular lipid accumulation) within hippocampal microglia were observed in HFD-fed mice. The use of minocycline, a pharmacological suppressor of microglial overactivation, effectively attenuated neurobehavioral abnormalities and hippocampal structural alterations but barely altered lipid droplet accumulation in the hippocampal microglia of HFD-fed mice. Coadministration of triacsin C abolished the increases in lipid droplet formation, phagocytic activity, and ROS levels in primary microglia treated with serum from HFD-fed mice. In conclusion, our studies demonstrate that the adverse influence of early-life HFD consumption on behavior and hippocampal structure is attributed at least in part to microglial overactivation that is accompanied by an elevated serum FFA concentration and microglial aberrations represent a potential preventive and therapeutic target for HFD-related emotional disorders.
Collapse
Affiliation(s)
- Xiuting Yao
- Medical College, Southeast University, Nanjing 210009, China
| | - Chenxi Yang
- Medical College, Southeast University, Nanjing 210009, China
| | - Xirui Jia
- School of Life Science and Technology, Southeast University, Nanjing 210009, China
| | - Zhehao Yu
- Medical College, Southeast University, Nanjing 210009, China
| | - Conghui Wang
- Medical College, Southeast University, Nanjing 210009, China
| | - Jingyi Zhao
- School of Life Science and Technology, Southeast University, Nanjing 210009, China
| | - Yuxi Chen
- Medical College, Southeast University, Nanjing 210009, China
| | - Bingjie Xie
- Medical College, Southeast University, Nanjing 210009, China
| | - Hong Zhuang
- Medical College, Southeast University, Nanjing 210009, China
| | - Congli Sun
- Medical College, Southeast University, Nanjing 210009, China
| | - Qian Li
- Medical College, Southeast University, Nanjing 210009, China
| | - Xiaomin Kang
- School of Life Science and Technology, Southeast University, Nanjing 210009, China
| | - Yu Xiao
- Medical College, Southeast University, Nanjing 210009, China
| | - Lijie Liu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Physiology, School of Medicine, Southeast University, Nanjing 210009, China.
| |
Collapse
|
4
|
Lu P, Gao CX, Luo FJ, Huang YT, Gao MM, Long YS. Hippocampal proteomic changes in high-fat diet-induced obese mice associated with memory decline. J Nutr Biochem 2024; 125:109554. [PMID: 38142716 DOI: 10.1016/j.jnutbio.2023.109554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/24/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023]
Abstract
Substantial evidence suggest that chronic consumption of high-fat diets (HFDs) can lead to obesity, abnormal metabolism, as well as cognitive impairment. Molecular and cellular changes regarding hippocampal dysfunctions have been identified in multiple HFD animal models. Therefore, in-depth identification of expression changes of hippocampal proteins is critical for understanding the mechanism of HFD-induced cognitive deficits. In this study, we fed 3-week-old male mice with HFD for 3 months to generate obese mice who exhibit systemic metabolic abnormality and learning and memory decline. Using an iTRAQ-labeled proteomic analysis, we identified a total of 82 differentially expressed proteins (DEPs) in the hippocampus upon HFD with 35 up-regulated proteins and 47 down-regulated proteins. Functional enrichment indicated that these DEPs were predominantly enriched in regulation of catabolic process, dendritic shaft, neuron projection morphogenesis and GTPase regulator activity. Protein-protein interaction enrichment showed that the DEPs are mostly enriched in postsynaptic functions; and of them, six proteins (i.e., DLG3, SYNGAP1, DCLK1, GRIA4, GRIP1, and ARHGAP32) were involved in several functional assemblies of the postsynaptic density including G-protein signaling, scaffolding and adaptor, kinase and AMPA signaling, respectively. Collectively, our findings suggest that these DEPs upon HFD might contribute to memory decline by disturbing neuronal and postsynaptic functions in the hippocampus.
Collapse
Affiliation(s)
- Ping Lu
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Cun-Xiu Gao
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Fei-Jian Luo
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Yu-Ting Huang
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Mei-Mei Gao
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Yue-Sheng Long
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China.
| |
Collapse
|
5
|
Zhan M, Liu X, Xia X, Yang Y, Xie Y, Zhang L, Lin C, Zhu J, Ding W, Xu S. Promotion of neuroinflammation by the glymphatic system: a new insight into ethanol extracts from Alisma orientale in alleviating obesity-associated cognitive impairment. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 122:155147. [PMID: 37864890 DOI: 10.1016/j.phymed.2023.155147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 09/20/2023] [Accepted: 10/12/2023] [Indexed: 10/23/2023]
Abstract
BACKGROUND Obesity is one of the critical risk factors for cognitive dysfunction. The glymphatic system (GS) plays a key role in the pathogenesis of cognitive deficits. Alisma orientale has been shown to have anti-inflammatory and antihyperlipidemic effects, whereas its effects and underlying mechanisms on obesity-associated cognitive impairment (OACI) are unclear. PURPOSE This work aims to decipher the mechanism of ethanol extracts from Alisma orientale (EEAO) in restoring cognitive impairment in HFD-induced obese mice through a GS approach. METHODS The restoration of abnormal glucose/lipid metabolism and excess adipose deposition by EEAO were assayed by biochemical analysis and visually displayed by a micro-CT scanner and Oil Red O staining. Biochemical assays and Western blotting (WB) were used to measure cerebral blood flow (CBF), free fatty acid (FFAs) levels and the structural integrity of the blood-brain barrier (BBB). Microglial activation and neuroinflammation were assessed with immunohistochemistry staining, ELISA and WB. Moreover, GS function was determined by immunofluorescence staining, fluorescence tracer imaging and WB. Finally, the neuropathological features and cognitive functions were detested with immunohistochemistry staining, immunofluorescence and Morris Water Maze. RESULTS EEAO not only alleviated body weight, cerebral lipid accumulation and serum FFAs in HFD-induced obese mice, but also increased CBF and BBB integrity. EEAO suppressed microglial activation and lipid deposition in the hippocampus and reduced the level of inflammatory cytokines including IL-6, IL-1β and TNF-α in brain tissue. Interestingly, long-term HFD-induced GS dysfunction was significantly restored after EEAO intervention, and neuropathological lesions and cognitive deficits were also markedly rescued. CONCLUSION EEAO rescued the cognitive deficits of OACI by inhibiting neuroinflammation and restoring GS dysfunction, indicating a potential remedy for OACI.
Collapse
Affiliation(s)
- Meng Zhan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xiao Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xiuwen Xia
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Youjun Yang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ya Xie
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Lu Zhang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Chunqiao Lin
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jiushuang Zhu
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Weijun Ding
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Shijun Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
6
|
Moreno F, Méndez L, Raner A, Miralles-Pérez B, Romeu M, Ramos-Romero S, Torres JL, Medina I. Fish oil supplementation counteracts the effect of high-fat and high-sucrose diets on the carbonylated proteome in the rat cerebral cortex. Biomed Pharmacother 2023; 168:115708. [PMID: 37857255 DOI: 10.1016/j.biopha.2023.115708] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/03/2023] [Accepted: 10/11/2023] [Indexed: 10/21/2023] Open
Abstract
High daily intake of saturated fats and refined carbohydrates, which often leads to obesity and overweight, has been associated with cognitive impairment, premature brain aging and the aggravation of neurodegenerative diseases. Although the molecular pathology of obesity-related brain damage is not fully understood, the increased levels of oxidative stress induced by the diet seem to be definitively involved. Being protein carbonylation determinant for protein activity and function and a main consequence of oxidative stress, this study aims to investigate the effect of the long-term high-fat and sucrose diet intake on carbonylated proteome of the cerebral cortex of Sprague-Dawley rats. To achieve this goal, the study identified and quantified the carbonylated proteins and lipid peroxidation products in the cortex, and correlated them with biometrical, biochemical and other redox status parameters. Results demonstrated that the obesogenic diet selectively increased oxidative damage of specific proteins that participate in fundamental pathways for brain function, i.e. energy production, glucose metabolism and neurotransmission. This study also evaluated the antioxidant properties of fish oil to counteract diet-induced brain oxidative damage. Fish oil supplementation demonstrated a stronger capacity to modulate carbonylated proteome in the brain cortex. Data indicated that fish oils did not just decrease carbonylation of proteins affected by the obesogenic diet, but also decreased the oxidative damage of other proteins participating in the same metabolic functions, reinforcing the beneficial effect of the supplement on those pathways. The results could help contribute to the development of successful nutritional-based interventions to prevent cognitive decline and promote brain health.
Collapse
Affiliation(s)
- Francisco Moreno
- Instituto de Investigaciones Marinas - Consejo Superior de Investigaciones Científicas (IIM-CSIC), Eduardo Cabello 6, E-36208 Vigo, Galicia, Spain; Universidad de Vigo, Spain
| | - Lucía Méndez
- Instituto de Investigaciones Marinas - Consejo Superior de Investigaciones Científicas (IIM-CSIC), Eduardo Cabello 6, E-36208 Vigo, Galicia, Spain.
| | - Ana Raner
- Instituto de Investigaciones Marinas - Consejo Superior de Investigaciones Científicas (IIM-CSIC), Eduardo Cabello 6, E-36208 Vigo, Galicia, Spain
| | - Bernat Miralles-Pérez
- Unidad de Farmacología, Facultad de Medicina y Ciencias de la Salud, Universidad Rovira i Virgili, Sant Llorenç 21, E-43201 Reus, Spain
| | - Marta Romeu
- Unidad de Farmacología, Facultad de Medicina y Ciencias de la Salud, Universidad Rovira i Virgili, Sant Llorenç 21, E-43201 Reus, Spain
| | - Sara Ramos-Romero
- Faculty of Biology, University of Barcelona, Av Diagonal 643, E-08028 Barcelona, Spain; Department of Cell Biology, Physiology and Immunology, Av Diagonal 643, E-08028 Barcelona, Spain; Nutrition & Food Safety Research Institute (INSA-UB), Maria de Maeztu Unit of Excellence, E-08921 Santa Coloma De Gramenet, Spain; Instituto de Química Avanzada de Catalunya - Consejo Superior de Investigaciones Científicas (IQAC-CSIC), Jordi Girona 18-26, E-08034 Barcelona, Spain
| | - Josep Lluís Torres
- Nutrition & Food Safety Research Institute (INSA-UB), Maria de Maeztu Unit of Excellence, E-08921 Santa Coloma De Gramenet, Spain; Instituto de Química Avanzada de Catalunya - Consejo Superior de Investigaciones Científicas (IQAC-CSIC), Jordi Girona 18-26, E-08034 Barcelona, Spain
| | - Isabel Medina
- Instituto de Investigaciones Marinas - Consejo Superior de Investigaciones Científicas (IIM-CSIC), Eduardo Cabello 6, E-36208 Vigo, Galicia, Spain
| |
Collapse
|
7
|
Bar S, Wilson KA, Hilsabeck TA, Alderfer S, Dammer EB, Burton JB, Shah S, Holtz A, Carrera EM, Beck JN, Chen JH, Kauwe G, Tracy TE, Seyfried NT, Schilling B, Ellerby LM, Kapahi P. Neuronal Glycogen Breakdown Mitigates Tauopathy via Pentose Phosphate Pathway-Mediated Oxidative Stress Reduction. RESEARCH SQUARE 2023:rs.3.rs-3526342. [PMID: 37986935 PMCID: PMC10659530 DOI: 10.21203/rs.3.rs-3526342/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Tauopathies encompass a range of neurodegenerative disorders, such as Alzheimer's disease (AD) and frontotemporal dementia (FTD). Unfortunately, current treatment approaches for tauopathies have yielded limited success, underscoring the pressing need for novel therapeutic strategies. We observed distinct signatures of impaired glycogen metabolism in the Drosophila brain of the tauopathy model and the brain of AD patients, indicating a link between tauopathies and glycogen metabolism. We demonstrate that the breakdown of neuronal glycogen by activating glycogen phosphorylase (GlyP) ameliorates the tauopathy phenotypes in flies and induced pluripotent stem cell (iPSC) derived neurons from FTD patients. We observed that glycogen breakdown redirects the glucose flux to the pentose phosphate pathway to alleviate oxidative stress. Our findings uncover a critical role for increased GlyP activity in mediating the neuroprotection benefit of dietary restriction (DR) through the cAMP-mediated protein kinase A (PKA) activation. Our studies identify impaired glycogen metabolism as a key hallmark for tauopathies and offer a promising therapeutic target in tauopathy treatment.
Collapse
Affiliation(s)
- Sudipta Bar
- Buck Institute for Research on Aging, Novato, CA 94947, USA
| | | | | | | | - Eric B. Dammer
- Emory Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA 30322, USA
- Emory University, School of Medicine Core Labs, Atlanta, GA 30322, USA
| | | | - Samah Shah
- Buck Institute for Research on Aging, Novato, CA 94947, USA
| | - Anja Holtz
- Buck Institute for Research on Aging, Novato, CA 94947, USA
| | | | | | - Jackson H Chen
- Buck Institute for Research on Aging, Novato, CA 94947, USA
| | - Grant Kauwe
- Buck Institute for Research on Aging, Novato, CA 94947, USA
| | - Tara E. Tracy
- Buck Institute for Research on Aging, Novato, CA 94947, USA
| | - Nicholas T. Seyfried
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
- Emory Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | - Pankaj Kapahi
- Buck Institute for Research on Aging, Novato, CA 94947, USA
| |
Collapse
|
8
|
Johnson C, Zhu L, Mangalindan R, Whitson J, Sweetwyne M, Valencia AP, Marcinek DJ, Rabinovitch P, Ladiges W. Older-aged C57BL/6 mice fed a diet high in saturated fat and sucrose for ten months show decreased resilience to aging. AGING PATHOBIOLOGY AND THERAPEUTICS 2023; 5:101-106. [PMID: 38706773 PMCID: PMC11067904 DOI: 10.31491/apt.2023.09.120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
The ability to respond to physical stress that disrupts normal physiological homeostasis at an older age embraces the concept of resilience to aging. A physical stressor could be used to induce physiological responses that are age-related, since resilience declines with increasing age. Increased fat and sugar intake is a nutritional stress with a high prevalence of obesity in older people. In order to determine the effect of this type of diet on resilience to aging, 18-month-old C57BL/6J male mice were fed a diet high in saturated fat (lard) and sucrose (HFS) for ten months. At the end of the 10-month study, mice fed the HFS diet showed increased cognitive impairment, decreased cardiac function, decreased strength and agility, and increased severity of renal pathology compared to mice fed a rodent chow diet low in saturated fat and sucrose (LFS). The degree of response aligned with decreased resilience to the long-term adverse effects of the diet with characteristics of accelerated aging. This observation suggests additional studies could be conducted to investigate the relationship between an accelerated decline in resilience to aging and enhanced resilience to aging under different dietary conditions.
Collapse
Affiliation(s)
- Chloe Johnson
- Department of Comparative Medicine, School of Medicine, University of Washington, Seattle, WA, USA
| | - Lida Zhu
- Department of Comparative Medicine, School of Medicine, University of Washington, Seattle, WA, USA
| | - Ruby Mangalindan
- Department of Comparative Medicine, School of Medicine, University of Washington, Seattle, WA, USA
| | - Jeremy Whitson
- Department of Biology, Davidson College, Davidson, NC, USA
| | - Maryia Sweetwyne
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Seattle, WA, USA
| | - Ana P. Valencia
- Department of Radiology, School of Medicine, University of Washington, Seattle, WA, USA
| | - David J. Marcinek
- Department of Radiology, School of Medicine, University of Washington, Seattle, WA, USA
| | - Peter Rabinovitch
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Seattle, WA, USA
| | - Warren Ladiges
- Department of Comparative Medicine, School of Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
9
|
Ávila-Villanueva M, Dolado AM, Fernández-Blázquez M. How to Prevent and/or Revert Alzheimer's Disease Continuum During Preclinical Phases. J Alzheimers Dis Rep 2023; 7:505-512. [PMID: 37313496 PMCID: PMC10259072 DOI: 10.3233/adr220100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 03/13/2023] [Indexed: 06/15/2023] Open
Abstract
The development of Alzheimer's disease (AD) follows three consecutive phases: namely preclinical, prodromal or mild cognitive impairment (MCI), and dementia. In addition, the preclinical phase can be divided into subphases related to the presence of biomarkers that appear at different points before the onset of MCI. Indeed, an early risk factor could promote the appearance of additional ones through a continuum. The presence of various risk factors may trigger specific biomarkers. In this review, we comment on how modifiable risk factors for AD may be reverted, thus correlating with a possible decrease in the specific biomarkers for the disease. Finally, we discuss the development of a suitable AD prevention strategy by targeting modifiable risk factors, thereby increasing the level of "precision medicine" in healthcare systems worldwide.
Collapse
Affiliation(s)
- Marina Ávila-Villanueva
- Research in Alzheimer’s Disease, Departamento de Psicología Experimental, Procesos Cognitivos y Logopedia Universidad Complutense de Madrid, Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Madrid, Spain
| | - Alberto Marcos Dolado
- Servicio de Neurología, Hospital Clínico San Carlos, Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Madrid, Spain
| | - Miguel Fernández-Blázquez
- Departamento de Psicología Biológica y de la Salud, Facultad de Psicología, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|