1
|
Puspitasari RN, I'tishom R, Kurnijasanti R, Mustafa MR, Sudjarwo SA. Exploring the anti-inflammatory and antiapoptotic properties of phloroglucinol on pancreatic cells in diabetic models: In silico and in vivo study. NARRA J 2024; 4:e1211. [PMID: 39816095 PMCID: PMC11731660 DOI: 10.52225/narra.v4i3.1211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 11/13/2024] [Indexed: 01/18/2025]
Abstract
Pancreatic cell damage in diabetes mellitus is closely linked to inflammation and apoptosis. This study aimed to investigate the protective effects of phloroglucinol on pancreatic cells in a streptozotocin-induced diabetic model by assessing its anti- inflammatory and anti-apoptotic mechanisms. Phloroglucinol ligand and the structures of Bax, Bcl-2, and caspase-3 proteins were sourced from the PubChem database. Molecular docking was performed using Autodock Tools and docking results were analyzed with PyRx software. In addition, during the in vivo study, the BALB/c mice were grouped into four categories: healthy control, untreated streptozotocin-induced diabetic, and streptozotocin-induced diabetic treated with two doses of oral phloroglucinol at 100 mg/kg and 200 mg/kg body weight. After 28 days, pancreatic tissues were collected for flow cytometric analysis of NF-κB, IL-6, TNF-α, and apoptotic markers (Bax, Bcl-2, and caspase-3). The docking simulations revealed specific binding interactions: phloroglucinol interacted with Bcl-2 via amino acid residues of ALA90 and TYR139, with Bax via ALA42, LEU45, ALA46, LEU47, PRO130, and ILE133, and with caspase-3 through ARG64, SER120, GLN161, CYS163, and ARG207. The binding affinities for Bax, Bcl-2, and caspase-3 were -5.0, -4.7, and -4.9 kcal/mol, respectively. In vivo, results showed that streptozotocin significantly elevated inflammatory cytokines NF-κB, TNF-α, and IL-6, along with apoptotic markers in pancreatic cells (p<0.05) compared to healthy controls. Phloroglucinol administration at 200 mg/kg significantly reduced TNF-α, NF-κB and IL- 6 levels. Phloroglucinol also prevented streptozotocin-induced pancreatic cell damage through anti-apoptotic effects by downregulating Bax and caspase-3 and upregulating Bcl-2. These findings suggest that phloroglucinol may offer protective benefits in diabetic conditions by modulating apoptotic and inflammatory pathways.
Collapse
Affiliation(s)
- Renny N. Puspitasari
- Doctoral Program in Medical Science, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
- Department of Pharmacology, Faculty of Medicine, Universitas Nahdlatul Ulama Surabaya, Surabaya, Indonesia
| | - Reny I'tishom
- Department of Medical Biology, Faculty of Medicine, Surabaya, Indonesia
| | - Rochmah Kurnijasanti
- Department of Pharmacology, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Mohammad R. Mustafa
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Sri A. Sudjarwo
- Department of Pharmacology, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|
2
|
Yang Q, Li M, Gu C, Lu A, Dong L, Zhang X, Hu X, Liu Y, Lu J. Effect of Fucoidan on Structure and Bioactivity of Chinese Steamed Bread. Foods 2024; 13:1057. [PMID: 38611362 PMCID: PMC11011307 DOI: 10.3390/foods13071057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/23/2024] [Accepted: 03/24/2024] [Indexed: 04/14/2024] Open
Abstract
Fucoidan refers to a group of sulphated polysaccharides obtained from brown seaweed, with numerous biological activities. In this study, fucoidan was fortified into Chinese steamed bread (CSB) at different concentrations (0, 1%, 3% and 5%) and the effect of fucoidan on the dough properties, structure properties and bioactivity were investigated. The results showed that fucoidan could change the viscosity of unfermented dough, and a high concentration of fucoidan could remove the free radicals produced by the SH-SS exchange reaction (GS-) in the dough, which significantly reduced the content of disulfide bond and reduced the expanded volume of fermented dough (p < 0.05). In addition, fucoidan forms a physical barrier on the surface of starch particles and hinders the reaction between protein-to-protein; therefore, fucoidan increased the hardness, gumminess and chewiness in CSB, and reduced the specific volume in CSB. Furthermore, the fucoidan-fortified CSB samples were found to have both the ability to significantly reduce the predicted glycemic index (pGI) (p < 0.05) and improve antioxidant activity (p < 0.05). Collectively, these findings could provide a theoretical basis for the applications of fucoidan as a functional component in fermented foods.
Collapse
Affiliation(s)
- Qingyu Yang
- College of Grain Science and Technology, Shenyang Normal University, Shenyang 110034, China; (Q.Y.)
- State Key Laboratory of Food Nutrition and Safety, Shenyang Normal University, Shenyang 110034, China
| | - Man Li
- College of Grain Science and Technology, Shenyang Normal University, Shenyang 110034, China; (Q.Y.)
- State Key Laboratory of Food Nutrition and Safety, Shenyang Normal University, Shenyang 110034, China
| | - Chenqi Gu
- College of Grain Science and Technology, Shenyang Normal University, Shenyang 110034, China; (Q.Y.)
- State Key Laboratory of Food Nutrition and Safety, Shenyang Normal University, Shenyang 110034, China
| | - Anni Lu
- Pinehurst School, Albany, Auckland 302-308, New Zealand
| | - Lijun Dong
- Beijing Imperial Food Garden Food Co., Ltd., Beijing 101407, China
| | - Xiling Zhang
- College of Grain Science and Technology, Shenyang Normal University, Shenyang 110034, China; (Q.Y.)
- State Key Laboratory of Food Nutrition and Safety, Shenyang Normal University, Shenyang 110034, China
| | - Xiufa Hu
- College of Grain Science and Technology, Shenyang Normal University, Shenyang 110034, China; (Q.Y.)
- State Key Laboratory of Food Nutrition and Safety, Shenyang Normal University, Shenyang 110034, China
| | - Yao Liu
- College of Grain Science and Technology, Shenyang Normal University, Shenyang 110034, China; (Q.Y.)
- State Key Laboratory of Food Nutrition and Safety, Shenyang Normal University, Shenyang 110034, China
| | - Jun Lu
- Auckland Bioengineering Institute, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
- Department of Food and Agriculture Technology, Yangtze Delta Region Institute of Tsinghua University, Jiaxing 314006, China
| |
Collapse
|
3
|
Hwang YY, Sudirman S, Wei EY, Kong ZL, Hwang DF. Fucoidan from Cladosiphon okamuranus enhances antioxidant activity and prevents reproductive dysfunction in polystyrene microplastic-induced male rats. Biomed Pharmacother 2024; 170:115912. [PMID: 38056235 DOI: 10.1016/j.biopha.2023.115912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/12/2023] [Accepted: 11/20/2023] [Indexed: 12/08/2023] Open
Abstract
Plastic pollution, including microplastic, has emerged as a severe environmental and public health problem. The health risks, especially in the case of reproductive damage caused by polystyrene microplastic (PS-MP) exposure, are emerging problems that need to be solved. This study aimed to investigate the effects of fucoidan extracted from Cladosiphon okamuranus on the polystyrene microplastic-induced oxidative stress of the Leydig (LC540) cells and reproductive damage in male rats. The oxidative stress of the LC540 cells and reproductive damage in the rats were induced by PS-MP. The fucoidan treatment reduces nitric oxide (NO) and reactive oxygen species generation in the LC540 cells. In the animal study, fucoidan treatment enhanced enzymatic antioxidant activities (glutathione peroxidase, superoxide dismutase, glucose-6-phosphate dehydrogenase, and glutathione reductase) and reduced malondialdehyde and nitric oxide production. Fucoidan supplementation also downregulates tumor necrosis factor-alpha, interleukin-6, and caspase-3 expression. Additionally, fucoidan upregulates testosterone levels, prevents the reduction of epithelium thickness, and reduces the area of the seminiferous tubule lumen. According to these conditions, fucoidan from Cladosiphon okamuranus prevents reproductive damage by downregulating oxidative stress and pro-inflammatory cytokines. Therefore, fucoidan can be used as a source of food supplements or functional food ingredients for reproductive or testicular damage management.
Collapse
Affiliation(s)
- Yi-Yuh Hwang
- Department of Food Science, National Taiwan Ocean University, Keelung City 20224, Taiwan
| | - Sabri Sudirman
- Fisheries Product Technology, Faculty of Agriculture, Universitas Sriwijaya, Indralaya 30862, Indonesia
| | - En-Yu Wei
- Department of Food Science, National Taiwan Ocean University, Keelung City 20224, Taiwan
| | - Zwe-Ling Kong
- Department of Food Science, National Taiwan Ocean University, Keelung City 20224, Taiwan.
| | - Deng-Fwu Hwang
- Department of Food Science, National Taiwan Ocean University, Keelung City 20224, Taiwan.
| |
Collapse
|
4
|
Kurnijasanti R, Wardani G, Mustafa MR, Sudjarwo SA. Protecting mechanism of Swietenia macrophylla ethanol extract nanoparticle on streptozotocin induced renal damage in rat. Open Vet J 2023; 13:1623-1630. [PMID: 38292712 PMCID: PMC10824090 DOI: 10.5455/ovj.2023.v13.i12.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/18/2023] [Indexed: 02/01/2024] Open
Abstract
Background Hyperglycemia increases reactive oxygen species (ROS), which contributes to diabetic complications such as kidney cell damage. Antioxidant administration could inhibit ROS and kidney cell damage commonly seen in hyperglycemia. Aim We want to demonstrate that the antioxidant properties of Swietenia macrophylla ethanol extract nanoparticles can prevent kidney cell damage brought on by streptozotocin (STZ) in the current investigation. Methods This study employs high-energy ball milling to produce nanoparticles from S. macrophylla extract. Additionally, dynamic light scattering (DLS) is utilized to characterize the nanoparticle sizes of the S. macrophylla ethanol extract. Five groups, each consisting of 8 rats, were formed from 40 rats. Control rats received distilled water, the diabetic rats were administered STZ injections, while S. macrophylla rats were given S. macrophylla extract nanoparticles orally and STZ injection. After the trial, blood from a rat was drawn intracardially to check the levels of blood urea nitrogen (BUN) and creatinine. The levels of superoxide dismutase (SOD), glutathione peroxidase (GPx), and malondialdehyde (MDA) were then assessed in kidney tissue samples. Histological alterations were evaluated in kidney section samples. Results A DLS analysis estimated the size of the S. macrophylla ethanol extract nanoparticles to be about 91.50 ± 23.06 nm. BUN and creatinine levels were significantly raised after STZ treatment. STZ significantly decreased SOD and GPx levels in kidney tissue while raising MDA levels (p < 0.05). Swietenia macrophylla ethanol extract nanoparticle caused the decreased levels of BUN and creatinine in blood to normal levels (p < 0.05), indicating that S. macrophylla ethanol extract prevented the STZ-induced kidney cell damage. Additionally, S. macrophylla nanoparticles significantly raise GPx and SOD levels in kidney tissue while lowering MDA levels (p < 0.05). These actions are thought to have prevented kidney histological alterations (degeneration and necrosis) in diabetic rats. Conclusion According to these results, the anti-oxidative stress properties of S. macrophylla nanoparticles make them potentially effective nephroprotective therapies for STZ-induced kidney cell damage.
Collapse
Affiliation(s)
- Rochmah Kurnijasanti
- Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Airlangga University, Surabaya, Indonesia
| | - Giftania Wardani
- Program Study of Pharmacy, Faculty of Medicine, Hang Tuah University, Surabaya, Indonesia
| | - Muhammad Rais Mustafa
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Sri Agus Sudjarwo
- Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Airlangga University, Surabaya, Indonesia
| |
Collapse
|
5
|
Li Y, Tian X, He W, Jin C, Yang C, Pan Z, Xu Y, Yang H, Liu H, Liu T, He F. Fucoidan-functionalized gelatin methacryloyl microspheres ameliorate intervertebral disc degeneration by restoring redox and matrix homeostasis of nucleus pulposus. Int J Biol Macromol 2023; 250:126166. [PMID: 37553034 DOI: 10.1016/j.ijbiomac.2023.126166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 07/19/2023] [Accepted: 08/04/2023] [Indexed: 08/10/2023]
Abstract
Loss of extracellular matrix (ECM) and dehydration of the nucleus pulposus (NP) are major pathological characteristics of intervertebral disc degeneration (IVDD), the leading cause of low back pain. Excessive reactive oxygen species (ROS) induced by proinflammatory cytokines substantially contribute to IVDD pathogenesis. This study aimed to examine the potential of fucoidan in protecting the matrix metabolism of NP cells and its therapeutic efficacy in the prevention of IVDD. In an inflammatory environment induced by interleukin (IL)-1β, fucoidan treatments demonstrated a dose-dependent enhancement of ECM production in NP cells, while concurrently reducing the expression of matrix degradation enzymes. The protective effect of fucoidan was mediated through the activation of nuclear factor erythroid 2-related factor 2 (NRF2) and subsequent induction of antioxidant enzymes, whereas silencing Nrf2 abrogated the protection of fucoidan on NP cells against IL-1β-induced oxidative stress. Moreover, a novel fucoidan-functionalized gelatin methacryloyl microsphere (Fu@GelMA-MS) was synthesized. The in vivo application of Fu@GelMA-MS via in situ injection in a rat caudal IVD model effectively conserved the ECM components and maintained the hydration of the NP tissue, thereby preventing IVDD caused by puncture. Collectively, fucoidan-functionalized hydrogel microspheres represent a promising strategy for the regeneration of NP and the treatment of IVDD.
Collapse
Affiliation(s)
- Yangfeng Li
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Orthopaedic Institute, Suzhou Medical College, Soochow University, Suzhou 215000, China
| | - Xin Tian
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Orthopaedic Institute, Suzhou Medical College, Soochow University, Suzhou 215000, China
| | - Wei He
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Orthopaedic Institute, Suzhou Medical College, Soochow University, Suzhou 215000, China
| | - Chenyang Jin
- Orthopaedic Institute, Suzhou Medical College, Soochow University, Suzhou 215000, China; Suzhou Medical College of Soochow University, Suzhou 215123, China
| | - Chunju Yang
- Orthopaedic Institute, Suzhou Medical College, Soochow University, Suzhou 215000, China; Suzhou Medical College of Soochow University, Suzhou 215123, China
| | - Zejun Pan
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Orthopaedic Institute, Suzhou Medical College, Soochow University, Suzhou 215000, China
| | - Yong Xu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Orthopaedic Institute, Suzhou Medical College, Soochow University, Suzhou 215000, China
| | - Huilin Yang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Orthopaedic Institute, Suzhou Medical College, Soochow University, Suzhou 215000, China
| | - Hao Liu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Orthopaedic Institute, Suzhou Medical College, Soochow University, Suzhou 215000, China.
| | - Tao Liu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China.
| | - Fan He
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Orthopaedic Institute, Suzhou Medical College, Soochow University, Suzhou 215000, China.
| |
Collapse
|
6
|
An Y, Xu BT, Wan SR, Ma XM, Long Y, Xu Y, Jiang ZZ. The role of oxidative stress in diabetes mellitus-induced vascular endothelial dysfunction. Cardiovasc Diabetol 2023; 22:237. [PMID: 37660030 PMCID: PMC10475205 DOI: 10.1186/s12933-023-01965-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 08/14/2023] [Indexed: 09/04/2023] Open
Abstract
Diabetes mellitus is a metabolic disease characterized by long-term hyperglycaemia, which leads to microangiopathy and macroangiopathy and ultimately increases the mortality of diabetic patients. Endothelial dysfunction, which has been recognized as a key factor in the pathogenesis of diabetic microangiopathy and macroangiopathy, is characterized by a reduction in NO bioavailability. Oxidative stress, which is the main pathogenic factor in diabetes, is one of the major triggers of endothelial dysfunction through the reduction in NO. In this review, we summarize the four sources of ROS in the diabetic vasculature and the underlying molecular mechanisms by which the pathogenic factors hyperglycaemia, hyperlipidaemia, adipokines and insulin resistance induce oxidative stress in endothelial cells in the context of diabetes. In addition, we discuss oxidative stress-targeted interventions, including hypoglycaemic drugs, antioxidants and lifestyle interventions, and their effects on diabetes-induced endothelial dysfunction. In summary, our review provides comprehensive insight into the roles of oxidative stress in diabetes-induced endothelial dysfunction.
Collapse
Affiliation(s)
- Ying An
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, Sichuan, 646000, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, 646000, China
| | - Bu-Tuo Xu
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, Sichuan, 646000, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, 646000, China
| | - Sheng-Rong Wan
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, Sichuan, 646000, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, 646000, China
| | - Xiu-Mei Ma
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, Sichuan, 646000, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, 646000, China
- Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, China
| | - Yang Long
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, Sichuan, 646000, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, 646000, China
| | - Yong Xu
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China.
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, Sichuan, 646000, China.
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, 646000, China.
| | - Zong-Zhe Jiang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China.
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, Sichuan, 646000, China.
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, 646000, China.
| |
Collapse
|
7
|
Kurnijasanti R, Wardani G, Mustafa MR, Sudjarwo SA. Protective Mechanism Pathway of Swietenia macrophylla Extract Nanoparticles against Cardiac Cell Damage in Diabetic Rats. Pharmaceuticals (Basel) 2023; 16:973. [PMID: 37513885 PMCID: PMC10383692 DOI: 10.3390/ph16070973] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/14/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
Hyperglycemia causes cardiac cell damage through increasing ROS production during diabetic complications. The current study proves the antioxidant activity of Swietenia macrophylla (S. macrophylla) extract nanoparticles as a protector against streptozotocin (STZ)-induced cardiac cell damage. In this research, high-energy ball milling is used to create S. macrophylla extract nanoparticles. The active chemical compounds in the S. macrophylla extract nanoparticles were analyzed through phytochemical screening and GC-MS. Furthermore, we characterized the size of S. macrophylla extract nanoparticles with Dynamic Light Scattering (DLS). Forty male rats were divided randomly into five groups. In the control group, rats received aqua dest orally; in the diabetic group, rats were injected intraperitoneally with STZ; in the S. macrophylla group, rats were injected with STZ and orally given S. macrophylla extract nanoparticles. The results of phytochemical screening showed that S. macrophylla extract nanoparticles contain saponins, flavonoids, alkaloids, phenolics and tannins. Seven chemical compounds in S. macrophylla extract nanoparticles were identified using GC-MS, including phenol, piperidine, imidazole, hexadecene, heptadecanol, dihexylsulfide and heptanol. DLS showed that the S. macrophylla extract nanoparticles' size was 91.50 ± 23.06 nm. Injection with STZ significantly increased malondialdehyde (MDA) levels in cardiac tissue and creatine kinase-myocardial band (CK-MB) and lactate dehydrogenase (LDH) levels in serum. STZ also significantly reduced the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and the level of superoxide dismutase (SOD) and glutathione peroxidase (GPx) in cardiac tissue compared with the control group (p < 0.05). In contrast, the administration of S. macrophylla extract nanoparticles can prevent STZ-induced cardiac cell damage through decreasing the level of CK-MB and LDH in serum and the level of MDA in cardiac tissue. S. macrophylla extract nanoparticles also significantly increased Nrf2 expression as well as SOD and GPx levels in cardiac tissue. These effects are related to the prevention of cardiac histopathological alteration (degeneration and necrosis) in diabetic rats. These results suggest that S. macrophylla nanoparticles contain active compounds such as flavonoids, phenols, piperidine, imidazole and hexadecene and have strong antioxidant activity. These can act as a potential cardioprotective agent against STZ-induced cardiac cell damage due to its antioxidant properties.
Collapse
Affiliation(s)
- Rochmah Kurnijasanti
- Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Airlangga University, Surabaya 60115, Indonesia
| | - Giftania Wardani
- Program Study of Pharmacy, Faculty of Medicine, Hang Tuah University, Surabaya 60239, Indonesia
| | - Mohd Rais Mustafa
- Department of Pharmacology, Faculty of Medicine, Malaya University, Kuala Lumpur 50603, Malaysia
| | - Sri Agus Sudjarwo
- Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Airlangga University, Surabaya 60115, Indonesia
| |
Collapse
|