1
|
Hu J, Chen J, Nie Y, Zhou C, Hou Q, Yan X. Characterizing the gut phageome and phage-borne antimicrobial resistance genes in pigs. MICROBIOME 2024; 12:102. [PMID: 38840247 DOI: 10.1186/s40168-024-01818-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 04/18/2024] [Indexed: 06/07/2024]
Abstract
BACKGROUND Mammalian intestine harbors a mass of phages that play important roles in maintaining gut microbial ecosystem and host health. Pig has become a common model for biomedical research and provides a large amount of meat for human consumption. However, the knowledge of gut phages in pigs is still limited. RESULTS Here, we investigated the gut phageome in 112 pigs from seven pig breeds using PhaBOX strategy based on the metagenomic data. A total of 174,897 non-redundant gut phage genomes were assembled from 112 metagenomes. A total of 33,487 gut phage genomes were classified and these phages mainly belonged to phage families such as Ackermannviridae, Straboviridae, Peduoviridae, Zierdtviridae, Drexlerviridae, and Herelleviridae. The gut phages in seven pig breeds exhibited distinct communities and the gut phage communities changed with the age of pig. These gut phages were predicted to infect a broad range of 212 genera of prokaryotes, such as Candidatus Hamiltonella, Mycoplasma, Colwellia, and Lactobacillus. The data indicated that broad KEGG and CAZy functions were also enriched in gut phages of pigs. The gut phages also carried the antimicrobial resistance genes (ARGs) and the most abundant antimicrobial resistance genotype was diaminopyrimidine resistance. CONCLUSIONS Our research delineates a landscape for gut phages in seven pig breeds and reveals that gut phages serve as a key reservoir of ARGs in pigs. Video Abstract.
Collapse
Affiliation(s)
- Jun Hu
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China
- Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, Hubei, 430070, China
| | - Jianwei Chen
- BGI Research, Qingdao, Shandong, 266555, China
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen, 2100, Denmark
| | - Yangfan Nie
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | | | - Qiliang Hou
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China
- Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, Hubei, 430070, China
| | - Xianghua Yan
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China.
- Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, Hubei, 430070, China.
| |
Collapse
|
2
|
Luo R, Guan A, Ma B, Gao Y, Peng Y, He Y, Xu Q, Li K, Zhong Y, Luo R, Cao R, Jin H, Lin Y, Shang P. Developmental Dynamics of the Gut Virome in Tibetan Pigs at High Altitude: A Metagenomic Perspective across Age Groups. Viruses 2024; 16:606. [PMID: 38675947 PMCID: PMC11054254 DOI: 10.3390/v16040606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Tibetan pig is a geographically isolated pig breed that inhabits high-altitude areas of the Qinghai-Tibetan plateau. At present, there is limited research on viral diseases in Tibetan pigs. This study provides a novel metagenomic exploration of the gut virome in Tibetan pigs (altitude ≈ 3000 m) across three critical developmental stages, including lactation, nursery, and fattening. The composition of viral communities in the Tibetan pig intestine, with a dominant presence of Microviridae phages observed across all stages of development, in combination with the previous literature, suggest that it may be associated with geographical locations with high altitude. Functional annotation of viral operational taxonomic units (vOTUs) highlights that, among the constantly increasing vOTUs groups, the adaptability of viruses to environmental stressors such as salt and heat indicates an evolutionary response to high-altitude conditions. It shows that the lactation group has more abundant viral auxiliary metabolic genes (vAMGs) than the nursery and fattening groups. During the nursery and fattening stages, this leaves only DNMT1 at a high level. which may be a contributing factor in promoting gut health. The study found that viruses preferentially adopt lytic lifestyles at all three developmental stages. These findings not only elucidate the dynamic interplay between the gut virome and host development, offering novel insights into the virome ecology of Tibetan pigs and their adaptation to high-altitude environments, but also provide a theoretical basis for further studies on pig production and epidemic prevention under extreme environmental conditions.
Collapse
Affiliation(s)
- Runbo Luo
- College of Animal Science, Tibet Agricultural and Animal Husbandry University, Linzhi 860000, China; (R.L.); (K.L.); (Y.Z.)
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China;
| | - Aohan Guan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430000, China; (A.G.); (B.M.); (Y.G.); (Y.P.); (Y.H.); (Q.X.); (R.L.); (H.J.)
- College of Animal Medicine, Huazhong Agricultural University, Wuhan 430000, China
| | - Bin Ma
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430000, China; (A.G.); (B.M.); (Y.G.); (Y.P.); (Y.H.); (Q.X.); (R.L.); (H.J.)
- College of Animal Medicine, Huazhong Agricultural University, Wuhan 430000, China
| | - Yuan Gao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430000, China; (A.G.); (B.M.); (Y.G.); (Y.P.); (Y.H.); (Q.X.); (R.L.); (H.J.)
- College of Animal Medicine, Huazhong Agricultural University, Wuhan 430000, China
| | - Yuna Peng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430000, China; (A.G.); (B.M.); (Y.G.); (Y.P.); (Y.H.); (Q.X.); (R.L.); (H.J.)
- College of Animal Medicine, Huazhong Agricultural University, Wuhan 430000, China
| | - Yanling He
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430000, China; (A.G.); (B.M.); (Y.G.); (Y.P.); (Y.H.); (Q.X.); (R.L.); (H.J.)
- College of Animal Medicine, Huazhong Agricultural University, Wuhan 430000, China
| | - Qianshuai Xu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430000, China; (A.G.); (B.M.); (Y.G.); (Y.P.); (Y.H.); (Q.X.); (R.L.); (H.J.)
- College of Animal Medicine, Huazhong Agricultural University, Wuhan 430000, China
| | - Kexin Li
- College of Animal Science, Tibet Agricultural and Animal Husbandry University, Linzhi 860000, China; (R.L.); (K.L.); (Y.Z.)
| | - Yanan Zhong
- College of Animal Science, Tibet Agricultural and Animal Husbandry University, Linzhi 860000, China; (R.L.); (K.L.); (Y.Z.)
| | - Rui Luo
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430000, China; (A.G.); (B.M.); (Y.G.); (Y.P.); (Y.H.); (Q.X.); (R.L.); (H.J.)
- College of Animal Medicine, Huazhong Agricultural University, Wuhan 430000, China
| | - Ruibing Cao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China;
| | - Hui Jin
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430000, China; (A.G.); (B.M.); (Y.G.); (Y.P.); (Y.H.); (Q.X.); (R.L.); (H.J.)
- College of Animal Medicine, Huazhong Agricultural University, Wuhan 430000, China
| | - Yan Lin
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Peng Shang
- College of Animal Science, Tibet Agricultural and Animal Husbandry University, Linzhi 860000, China; (R.L.); (K.L.); (Y.Z.)
| |
Collapse
|
3
|
Larsen C, Offersen SM, Brunse A, Pirolo M, Kar SK, Guadabassi L, Thymann T. Effects of early postnatal gastric and colonic microbiota transplantation on piglet gut health. J Anim Sci Biotechnol 2023; 14:158. [PMID: 38143275 PMCID: PMC10749501 DOI: 10.1186/s40104-023-00954-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 10/22/2023] [Indexed: 12/26/2023] Open
Abstract
BACKGROUND Diarrhea is a major cause of reduced growth and mortality in piglets during the suckling and weaning periods and poses a major threat to the global pig industry. Diarrhea and gut dysbiosis may in part be prevented via improved early postnatal microbial colonization of the gut. To secure better postnatal gut colonization, we hypothesized that transplantation of colonic or gastric content from healthy donors to newborn recipients would prevent diarrhea in the recipients in the post-weaning period. Our objective was to examine the impact of transplanting colonic or gastric content on health and growth parameters and paraclinical parameters in recipient single-housed piglets exposed to a weaning transition and challenged with enterotoxigenic Escherichia coli (ETEC). METHODS Seventy-two 1-day-old piglets were randomized to four groups: colonic microbiota transplantation (CMT, n = 18), colonic content filtrate transplantation (CcFT, n = 18), gastric microbiota transplantation (GMT, n = 18), or saline (CON, n = 18). Inoculations were given on d 2 and 3 of life, and all piglets were milk-fed until weaning (d 20) and shortly after challenged with ETEC (d 24). We assessed growth, diarrhea prevalence, ETEC concentration, organ weight, blood parameters, small intestinal morphology and histology, gut mucosal function, and microbiota composition and diversity. RESULTS Episodes of diarrhea were seen in all groups during both the milk- and the solid-feeding phase, possibly due to stress associated with single housing. However, CcFT showed lower diarrhea prevalence on d 27, 28, and 29 compared to CON (all P < 0.05). CcFT also showed a lower ETEC prevalence on d 27 (P < 0.05). CMT showed a higher alpha diversity and a difference in beta diversity compared to CON (P < 0.05). Growth and other paraclinical endpoints were similar across groups. CONCLUSION In conclusion, only CcFT reduced ETEC-related post-weaning diarrhea. However, the protective effect was marginal, suggesting that higher doses, more effective modalities of administration, longer treatment periods, and better donor quality should be explored by future research to optimize the protective effects of transplantation.
Collapse
Affiliation(s)
- Christina Larsen
- Department of Veterinary and Animal Science, University of Copenhagen, Dyrlægevej 68, 1870, Frederiksberg C, Denmark
| | - Simone Margaard Offersen
- Department of Veterinary and Animal Science, University of Copenhagen, Dyrlægevej 68, 1870, Frederiksberg C, Denmark
| | - Anders Brunse
- Department of Veterinary and Animal Science, University of Copenhagen, Dyrlægevej 68, 1870, Frederiksberg C, Denmark
| | - Mattia Pirolo
- Department of Veterinary and Animal Science, University of Copenhagen, Dyrlægevej 68, 1870, Frederiksberg C, Denmark
| | - Soumya Kanti Kar
- Animal Nutrition, Wageningen Livestock Research, Wageningen University & Research, 1 De Elst, 6708, Wageningen, The Netherlands
| | - Luca Guadabassi
- Department of Veterinary and Animal Science, University of Copenhagen, Dyrlægevej 68, 1870, Frederiksberg C, Denmark
| | - Thomas Thymann
- Department of Veterinary and Animal Science, University of Copenhagen, Dyrlægevej 68, 1870, Frederiksberg C, Denmark.
| |
Collapse
|
4
|
Gryaznova M, Smirnova Y, Burakova I, Morozova P, Nesterova E, Gladkikh M, Mikhaylov E, Syromyatnikov M. Characteristics of the Fecal Microbiome of Piglets with Diarrhea Identified Using Shotgun Metagenomics Sequencing. Animals (Basel) 2023; 13:2303. [PMID: 37508080 PMCID: PMC10376196 DOI: 10.3390/ani13142303] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/05/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Diarrhea in piglets is one of the most common diseases leading to high mortality and, as a result, to economic losses. Shotgun metagenomic sequencing was performed on the DNBSEQ-G50, MGI system to study the role of the fecal microbiome in the development of diarrhea in newborn piglets. Analysis of the study data showed that the composition of the fecal microbiome at the level of bacteria and fungi did not differ in piglets with diarrhea from the healthy group. Bacteria belonging to the phyla Firmicutes, Bacteroidetes, Proteobacteria, Actinobacteria, and Fusobacteria were the most abundant. However, a higher level of bacterial alpha diversity was observed in the group of piglets with diarrhea, which may be due to dysbacteriosis and inflammation. The study of the virome showed the difference between the two types of phages: Bacteroides B40-8 prevailed in diseased piglets, while Escherichia virus BP4 was found in greater numbers in healthy piglets. The results of our study suggest that the association between the fecal microbiome and susceptibility to diarrhea in suckling piglets may have been previously overestimated.
Collapse
Affiliation(s)
- Mariya Gryaznova
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036 Voronezh, Russia
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia
| | - Yuliya Smirnova
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036 Voronezh, Russia
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia
| | - Inna Burakova
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036 Voronezh, Russia
| | - Polina Morozova
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036 Voronezh, Russia
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia
| | - Ekaterina Nesterova
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036 Voronezh, Russia
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia
| | - Mariya Gladkikh
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036 Voronezh, Russia
| | - Evgeny Mikhaylov
- FSBSI All-Russian Veterinary Research Institute of Pathology, Pharmacology and Therapy, 394061 Voronezh, Russia
| | - Mikhail Syromyatnikov
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036 Voronezh, Russia
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia
- FSBSI All-Russian Veterinary Research Institute of Pathology, Pharmacology and Therapy, 394061 Voronezh, Russia
| |
Collapse
|