1
|
Nanashima N, Horie K, Oey I. Blackcurrant extract promotes differentiation of MC3T3‑E1 pre‑osteoblasts. Biomed Rep 2024; 21:121. [PMID: 38978537 PMCID: PMC11229392 DOI: 10.3892/br.2024.1810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/23/2024] [Indexed: 07/10/2024] Open
Abstract
Osteoporosis risk increases in menopausal individuals owing to the decrease in estrogen secretion. Blackcurrant extract (BCE) ameliorates osteoporosis; however, the underlying mechanisms are unclear. Furthermore, although BCE has phytoestrogenic activity, its effects on osteoblasts are unknown. In the present study, we investigated BCE-mediated attenuation of osteoporosis using mouse MC3T3-E1 pre-osteoblasts, with a focus on osteogenesis. After treating MC3T3-E1 cells with BCE for 48 h, cell proliferation was assessed using Cell Counting Kit-8. Levels of osteoblast differentiation markers, namely alkaline phosphatase activity and total collagen content in the cells, were evaluated after 3 and 14 days of BCE treatment, respectively. The expression of genes encoding osteoblast differentiation markers, including collagen type I (Col-I), alkaline phosphatase (Alp), bone γ-carboxyglutamate protein (Bglap), and runt-related transcription factor 2 (Runx2), was evaluated using reverse transcription-quantitative polymerase chain reaction. Mineralization of the cells was evaluated using Alizarin Red staining. Femoral tissues of ovariectomized (OVX) rats with or without 3% BCE were stained using ALP to evaluate osteogenic differentiation in femoral tissue. After treating MC3T3-E1 cells with BCE, cell proliferation had increased. BCE treatment increased Alp activity and total collagen content. Moreover, the expression of Col-I, Alp, Bglap, and Runx2 increased in BCE-treated cells. Furthermore, when MC3T3-E1 cells were treated with BCE for 21 days, the levels of calcified nodules increased. Alp staining intensity was stronger in the epiphyses on femoral tissue of OVX rats treated with 3% BCE than in those of untreated OVX rats. The results suggest that BCE may promote osteogenesis by inducing osteoblast differentiation.
Collapse
Affiliation(s)
- Naoki Nanashima
- Department of Nutrition, Faculty of Health Science, Aomori University of Health and Welfare, Aomori 030-8505, Japan
- Department of Bioscience and Laboratory Medicine, Hirosaki University Graduate School of Health Sciences, Aomori 036-8564, Japan
| | - Kayo Horie
- Department of Bioscience and Laboratory Medicine, Hirosaki University Graduate School of Health Sciences, Aomori 036-8564, Japan
| | - Indrawati Oey
- Department of Food Science, University of Otago, Dunedin 9054, New Zealand
- Riddet Institute, Palmerston North 4442, New Zealand
| |
Collapse
|
2
|
Ma B, Zhang F, Raza SHA, Wu Z, Su Q, Zhang Y, Wang Z, ALMatrafi TA, Aloufi BH, Ghamry HI, Shukry M, Hou S, Gui L. Palm kernel meal regulates the expression of genes involved in the amino acid metabolism in the liver of Tibetan sheep. BMC Vet Res 2024; 20:333. [PMID: 39044234 PMCID: PMC11264444 DOI: 10.1186/s12917-024-04193-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 07/15/2024] [Indexed: 07/25/2024] Open
Abstract
BACKGROUND Palm kernel meal (PKM) is a by-product of oil palm kernel after oil extraction, which is widely used in animal feeds due to its high energy content. This study aimed to investigate the impact of supplementing Tibetan sheep with PKM on their hepatic phenotype, oxidative stress and immune response. A total of 120 Tibetan lambs (Initial weight = 12.37 ± 0.92 kg) were randomly assigned into four groups: control group (C group, 0% PKM diet), low group (L group, 15% PKM diet), middle group (M group, 18% PKM diet), and high group (H group, 21% PKM diet) on a dry matter basis. The feeding experiment was performed for 130 d, including a 10 d adaption period. RESULTS Results showed that the level of GSH-Px were higher in the H and M groups than in the C and L groups (P < 0.05). The levels of IgM and TNF-α were higher in the M group when compared to those on the C group (P < 0.05). The level of IgA was significantly higher in the M group than in the H group (P < 0.05). Additionally, compared with the others groups, the hepatocytes in the M group displayed a radial arrangement, forming hepatic plates that were centered around the central vein. The transcriptome results revealed that proteasome 26 S subunit, ATPase 3 (PSMC3), proteasome 26 S subunit, ATPase 5 (PSMC5), proteasome 26 S subunit ubiquitin receptor, non-ATPase 4 (PSMD4), proteasome activator subunit 1 (PSME1), acyl-CoA dehydrogenase short/branched chain (ACADSB), enoyl-CoA hydratase, short chain 1 (ECHS1), serine dehydratase (SDS), ornithine transcarbamylase (OTC), and phenylalanine hydroxylase (PAH) were the hub genes regulating the amino acid metabolism in the liver. CONCLUSIONS In summary, dietary 18% PMK supplementation contributed to improve the hepatic phenotype, oxidative stress and immune response through regulating the expression of related genes.
Collapse
Affiliation(s)
- Boyan Ma
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, 810016, Qinghai Province, People's Republic of China
| | - Fengshuo Zhang
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, 810016, Qinghai Province, People's Republic of China
| | - Sayed Haidar Abbas Raza
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan, 512005, China
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zhenling Wu
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, 810016, Qinghai Province, People's Republic of China
| | - Quyangangmao Su
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, 810016, Qinghai Province, People's Republic of China
| | - Yu Zhang
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, 810016, Qinghai Province, People's Republic of China
| | - Zhiyou Wang
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, 810016, Qinghai Province, People's Republic of China
| | | | - Bandar Hamad Aloufi
- Biology Department, Faculty of Science, University of Ha'il, Ha'il, Saudi Arabia
| | - Heba I Ghamry
- Nutrition and Food Science, Department of Biology, College of Science, King Khalid University, P.O. Box 960, Abha, 61421, Saudi Arabia
| | - Mustafa Shukry
- Department of Physiology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| | - Shengzhen Hou
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, 810016, Qinghai Province, People's Republic of China
| | - Linsheng Gui
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, 810016, Qinghai Province, People's Republic of China.
| |
Collapse
|
3
|
Walsh L, Hill C, Ross RP. Impact of glyphosate (Roundup TM) on the composition and functionality of the gut microbiome. Gut Microbes 2023; 15:2263935. [PMID: 38099711 PMCID: PMC10561581 DOI: 10.1080/19490976.2023.2263935] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 09/24/2023] [Indexed: 12/18/2023] Open
Abstract
Glyphosate, the active ingredient in the broad-spectrum herbicide RoundupTM, has been a topic of discussion for decades due to contradictory reports of the effect of glyphosate on human health. Glyphosate inhibits the enzyme 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) of the shikimic pathway producing aromatic amino acids in plants, a mechanism that suggests that the herbicide would not affect humans as this pathway is not found in mammals. However, numerous studies have implicated glyphosate exposure in the manifestation of a variety of disorders in the human body. This review specifically outlines the potential effect of glyphosate exposure on the composition and functionality of the gut microbiome. Evidence has been building behind the hypothesis that the composition of each individual gut microbiota significantly impacts health. For this reason, the potential of glyphosate to inhibit the growth of beneficial microbes in the gut or alter their functionality is an important topic that warrants further consideration.
Collapse
Affiliation(s)
- Lauren Walsh
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Colin Hill
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - R. Paul Ross
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| |
Collapse
|