1
|
Indriani S, Srisakultiew N, Boonchuen P, Kingwascharapong P, Sai-Ut S, Benjakul S, Pongsetkul J. Investigating the relationship between microbial community dynamics and flavor profiles in Korat chicken breast fillets under varied packaging conditions. Int J Food Microbiol 2025; 435:111157. [PMID: 40120394 DOI: 10.1016/j.ijfoodmicro.2025.111157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 03/11/2025] [Accepted: 03/16/2025] [Indexed: 03/25/2025]
Abstract
The dynamics of microbial community changes in Korat chicken (KC) breast meat, an indigenous Thai crossbred, packed under traditional air-overwrapping (Con), vacuum packaging (VP), and modified atmosphere packaging (MAP) at 30 % CO2/70 % N2 were investigated, as well as their correlation with flavor attributes and acceptability during 12 days of chilled storage. Beta diversity and hierarchical clustering revealed that the microbial communities in VP and MAP were more similar than those in Con. The result suggested that packaging had a greater impact on microbial changes than storage time (p < 0.05). Alpha diversity demonstrated that both oxygen-depleting methods had lower microbial diversity and richness than Con. Two dominant phyla (Proteobacteria and Firmicutes) and nine dominant genera (e.g., Bacillus, Enterococcus) influenced meat flavor quality throughout storage time across packaging methods. The samples showed various rates of changes in flavor-related compounds, including pH, total volatile base nitrogen (TVB-N), thiobarbituric acid reactive substances (TBARS), inosine 5'-monophosphate (IMP), hypoxanthine (Hx), and volatile profiles. IMP and acids significantly enhanced flavor, showing a positive correlation with sensory scores (p < 0.05). In contrast, pH, TVB-N, TBARS, Hx, and aldehydes indicated meat deterioration-related undesirable traits. Proteobacteria, Bacillus, and Lactobacillus had positive correlations with desirable flavor compounds and sensory scores (p < 0.05). On the other hand, Firmicutes, Acinetobacter, and Brochothrix showed the opposite trend. Therefore, this study found that VP and MAP conditions regulated the microbial community, retaining meat flavor and acceptability throughout chilled storage for KC breast meat packaging. Moreover, it could reassure the packaging selection for the global poultry industry.
Collapse
Affiliation(s)
- Sylvia Indriani
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Nattanan Srisakultiew
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Pakpoom Boonchuen
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | | | - Samart Sai-Ut
- Department of Food Science, Faculty of Science, Burapha University, Chonburi 20131, Thailand
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai 90110, Thailand
| | - Jaksuma Pongsetkul
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand.
| |
Collapse
|
2
|
Zhang Y, Yu S, Liu C, Jiang S, Wang H, Cheng Y, Guo Y, Qian H. Optimizing Enzymatic Processes for Enhanced Nutritional and Organoleptic Properties of Chicken Bones. Foods 2025; 14:1217. [PMID: 40238421 DOI: 10.3390/foods14071217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 03/25/2025] [Accepted: 03/29/2025] [Indexed: 04/18/2025] Open
Abstract
The increasing demand for poultry products has led to significant by-products, with chicken bones being a rich source of proteins and minerals. The protease hydrolysis of chicken bones has emerged as a key method for extracting chicken bone protein. The objective of this study was to optimize enzyme combinations and hydrolysis reaction conditions to enhance both the nutritional value and quality of the product. Through univariate experiments and response surface methodology, the optimal enzymatic hydrolysis conditions were determined as follows: 55 °C, 1.5 h, and composite enzymes comprising papain (2.53%), bromelain (4%), and flavorzyme (4%) (w/w). The peptide content of the hydrolysis product obtained with the composite enzyme reached 336.78 mg/g, with small molecular peptides (<500 Da) accounting for 95% of the composite enzyme hydrolysis product. These small molecular peptides are more readily absorbed by the human body. Additionally, the free amino acids significantly increased, particularly those more easily absorbed by the human body such as glutamic, glycine, and aspartic. Moreover, there was a notable increase in the volatile flavor compounds including aldehydes and alcohols, which enhanced the flavor profile by producing fatty or mushroom-like aromas. This method enhances protein recovery and sample quality, converting chicken bone waste into valuable ingredients, contributing to sustainable food practices and innovative consumables for both pet and human consumption.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Shengjiang Yu
- Jichong Animal Nutrition Joint Research Center, Jiangnan University, Yichuang Industrial Park Building 5, Shaoxing 312000, China
| | - Chang Liu
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Shuai Jiang
- Jichong Animal Nutrition Joint Research Center, Jiangnan University, Yichuang Industrial Park Building 5, Shaoxing 312000, China
| | - Haili Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- School of Food and Bioengineering, Fujian Polytechnic Normal University, No. 1 Campus New Village, Longjiang Street, Fuqing, Fuzhou 350300, China
| | - Yuliang Cheng
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Yahui Guo
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - He Qian
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| |
Collapse
|
7
|
Li C, Bishop TRP, Imamura F, Sharp SJ, Pearce M, Brage S, Ong KK, Ahsan H, Bes-Rastrollo M, Beulens JWJ, den Braver N, Byberg L, Canhada S, Chen Z, Chung HF, Cortés-Valencia A, Djousse L, Drouin-Chartier JP, Du H, Du S, Duncan BB, Gaziano JM, Gordon-Larsen P, Goto A, Haghighatdoost F, Härkänen T, Hashemian M, Hu FB, Ittermann T, Järvinen R, Kakkoura MG, Neelakantan N, Knekt P, Lajous M, Li Y, Magliano DJ, Malekzadeh R, Le Marchand L, Marques-Vidal P, Martinez-Gonzalez MA, Maskarinec G, Mishra GD, Mohammadifard N, O'Donoghue G, O'Gorman D, Popkin B, Poustchi H, Sarrafzadegan N, Sawada N, Schmidt MI, Shaw JE, Soedamah-Muthu S, Stern D, Tong L, van Dam RM, Völzke H, Willett WC, Wolk A, Yu C, Forouhi NG, Wareham NJ. Meat consumption and incident type 2 diabetes: an individual-participant federated meta-analysis of 1·97 million adults with 100 000 incident cases from 31 cohorts in 20 countries. Lancet Diabetes Endocrinol 2024; 12:619-630. [PMID: 39174161 DOI: 10.1016/s2213-8587(24)00179-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/04/2024] [Accepted: 06/10/2024] [Indexed: 08/24/2024]
Abstract
BACKGROUND Meat consumption could increase the risk of type 2 diabetes. However, evidence is largely based on studies of European and North American populations, with heterogeneous analysis strategies and a greater focus on red meat than on poultry. We aimed to investigate the associations of unprocessed red meat, processed meat, and poultry consumption with type 2 diabetes using data from worldwide cohorts and harmonised analytical approaches. METHODS This individual-participant federated meta-analysis involved data from 31 cohorts participating in the InterConnect project. Cohorts were from the region of the Americas (n=12) and the Eastern Mediterranean (n=2), European (n=9), South-East Asia (n=1), and Western Pacific (n=7) regions. Access to individual-participant data was provided by each cohort; participants were eligible for inclusion if they were aged 18 years or older and had available data on dietary consumption and incident type 2 diabetes and were excluded if they had a diagnosis of any type of diabetes at baseline or missing data. Cohort-specific hazard ratios (HRs) and 95% CIs were estimated for each meat type, adjusted for potential confounders (including BMI), and pooled using a random-effects meta-analysis, with meta-regression to investigate potential sources of heterogeneity. FINDINGS Among 1 966 444 adults eligible for participation, 107 271 incident cases of type 2 diabetes were identified during a median follow-up of 10 (IQR 7-15) years. Median meat consumption across cohorts was 0-110 g/day for unprocessed red meat, 0-49 g/day for processed meat, and 0-72 g/day for poultry. Greater consumption of each of the three types of meat was associated with increased incidence of type 2 diabetes, with HRs of 1·10 (95% CI 1·06-1·15) per 100 g/day of unprocessed red meat (I2=61%), 1·15 (1·11-1·20) per 50 g/day of processed meat (I2=59%), and 1·08 (1·02-1·14) per 100 g/day of poultry (I2=68%). Positive associations between meat consumption and type 2 diabetes were observed in North America and in the European and Western Pacific regions; the CIs were wide in other regions. We found no evidence that the heterogeneity was explained by age, sex, or BMI. The findings for poultry consumption were weaker under alternative modelling assumptions. Replacing processed meat with unprocessed red meat or poultry was associated with a lower incidence of type 2 diabetes. INTERPRETATION The consumption of meat, particularly processed meat and unprocessed red meat, is a risk factor for developing type 2 diabetes across populations. These findings highlight the importance of reducing meat consumption for public health and should inform dietary guidelines. FUNDING The EU, the Medical Research Council, and the National Institute of Health Research Cambridge Biomedical Research Centre.
Collapse
Affiliation(s)
- Chunxiao Li
- Medical Research Council Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Tom R P Bishop
- Medical Research Council Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Fumiaki Imamura
- Medical Research Council Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Stephen J Sharp
- Medical Research Council Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Matthew Pearce
- Medical Research Council Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Soren Brage
- Medical Research Council Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Ken K Ong
- Medical Research Council Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Habibul Ahsan
- Department of Public Health Sciences, The University of Chicago, Chicago, IL, USA
| | - Maira Bes-Rastrollo
- University of Navarra, Idisna, Department of Preventive Medicine and Public Health, CIBEROBN-Instituto de Salud Carlos III, Pamplona, Spain
| | - Joline W J Beulens
- Department of Epidemiology and Data Science, Amsterdam UMC, location Vrije Universiteit, Amsterdam, The Netherlands; Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - Nicole den Braver
- Department of Epidemiology and Data Science, Amsterdam UMC, location Vrije Universiteit, Amsterdam, The Netherlands; Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - Liisa Byberg
- Medical Epidemiology, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Scheine Canhada
- Postgraduate Program in Epidemiology, Faculty of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Zhengming Chen
- Clinical Trial Service Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK; Medical Research Council Health Research Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Hsin-Fang Chung
- Australian Women and Girls' Health Research Centre, School of Public Health, University of Queensland, Brisbane, QLD, Australia
| | - Adrian Cortés-Valencia
- Center for Research on Population Health, National Institute of Public Health, Cuernavaca, Mexico
| | - Luc Djousse
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), VA Boston Healthcare System, Jamaica Plain, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA; Department of Nutrition, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Jean-Philippe Drouin-Chartier
- Centre Nutrition, Santé et Société (NUTRISS), Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Faculté de Pharmacie, Université Laval, Quebec City, QC, Canada
| | - Huaidong Du
- Clinical Trial Service Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK; Medical Research Council Health Research Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Shufa Du
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Bruce B Duncan
- Postgraduate Program in Epidemiology, Faculty of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - J Michael Gaziano
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), VA Boston Healthcare System, Jamaica Plain, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Penny Gordon-Larsen
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Atsushi Goto
- Division of Cohort Research, National Cancer Center Institute for Cancer Control, Tokyo, Japan; Department of Public Health, School of Medicine, Yokohama City University, Yokohama, Japan
| | - Fahimeh Haghighatdoost
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Tommi Härkänen
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Maryam Hashemian
- Heart Disease Phenomics Laboratory, Epidemiology and Community Health Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Frank B Hu
- Department of Nutrition, Harvard TH Chan School of Public Health, Boston, MA, USA; Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Till Ittermann
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Ritva Järvinen
- Institute of Public Health and Clinical Nutrition, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Maria G Kakkoura
- Clinical Trial Service Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK; Medical Research Council Health Research Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Nithya Neelakantan
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore
| | - Paul Knekt
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Martin Lajous
- Center for Research on Population Health, National Institute of Public Health, Cuernavaca, Mexico; Department of Global Health and Population, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Yanping Li
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), VA Boston Healthcare System, Jamaica Plain, MA, USA
| | | | - Reza Malekzadeh
- Digestive Oncology Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Pedro Marques-Vidal
- Department of Medicine, Internal Medicine, Lausanne University Hospital, Lausanne, Switzerland; Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Miguel A Martinez-Gonzalez
- University of Navarra, Idisna, Department of Preventive Medicine and Public Health, CIBEROBN-Instituto de Salud Carlos III, Pamplona, Spain
| | | | - Gita D Mishra
- Australian Women and Girls' Health Research Centre, School of Public Health, University of Queensland, Brisbane, QLD, Australia
| | - Noushin Mohammadifard
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Gráinne O'Donoghue
- School of Public Health, Physiotherapy and Sports Science, University College Dublin, Dublin, Ireland
| | - Donal O'Gorman
- School of Health and Human Performance, Dublin City University, Dublin, Ireland
| | - Barry Popkin
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Hossein Poustchi
- Digestive Oncology Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Nizal Sarrafzadegan
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran; Faculty of Medicine, School of Population and Public Health, The University of British Columbia, Vancouver, BC, Canada
| | - Norie Sawada
- Division of Cohort Research, National Cancer Center Institute for Cancer Control, Tokyo, Japan
| | - Maria Inês Schmidt
- Postgraduate Program in Epidemiology, Faculty of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Jonathan E Shaw
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Sabita Soedamah-Muthu
- Centre of Research on Psychological Disorders and Somatic Diseases (CORPS), Department of Medical and Clinical Psychology, Tilburg University, Tilburg, Netherlands; Institute for Food, Nutrition and Health, University of Reading, Reading, UK
| | - Dalia Stern
- CONAHCyT - Center for Research on Population Health, National Institute of Public Health, Cuernavaca, Mexico
| | - Lin Tong
- Department of Public Health Sciences, The University of Chicago, Chicago, IL, USA
| | - Rob M van Dam
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore; Department of Exercise and Nutrition Sciences, Milken Institute School of Public Health, George Washington University, Washington, DC, USA
| | - Henry Völzke
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Walter C Willett
- Department of Nutrition, Harvard TH Chan School of Public Health, Boston, MA, USA; Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Alicja Wolk
- Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| | - Canqing Yu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China; Peking University Center for Public Health and Epidemic Preparedness and Response, Beijing, China; Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing, China
| | - Nita G Forouhi
- Medical Research Council Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge, UK.
| | - Nicholas J Wareham
- Medical Research Council Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge, UK.
| |
Collapse
|