1
|
Deehan EC, Al Antwan S, Witwer RS, Guerra P, John T, Monheit L. Perspective: Revisiting the Concepts of Prebiotic and Prebiotic Effect in Light of Scientific and Regulatory Progress - A Consensus Paper from the Global Prebiotic Association (GPA). Adv Nutr 2024:100329. [PMID: 39481540 DOI: 10.1016/j.advnut.2024.100329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/18/2024] [Accepted: 10/25/2024] [Indexed: 11/02/2024] Open
Abstract
The term prebiotic has been used for almost three decades and has undergone numerous updates over the years. The scientific literature reveals that despite continuous efforts to establish a globally unified definition to guide jurisdictional regulations and product innovations, ambiguity continues to surround the terms prebiotic and prebiotic effect, leading to products that lack in full regulatory adherence being marketed worldwide. Thus, to reflect the current state of scientific research and knowledge and for the continuous advancement of the category, an update to the current prebiotic definition is warranted. This update includes removing the term selectivity, considering additional locations of action besides the gut, highlighting prebiotic performance benefits such as cognitive and athletic, and providing a clear standalone definition for prebiotic effect. The Global Prebiotic Association (GPA) is a leading information and industry hub committed to raising awareness about prebiotics, their emerging and well-established health benefits, and prebiotic product integrity and efficacy. In this position paper, GPA builds on previous prebiotic definitions to propose the following expanded definition for prebiotic: "a compound or ingredient that is utilized by the microbiota producing a health or performance benefit." In addition to prebiotic, GPA also defines prebiotic effect as: "a health or performance benefit that arises from alteration of the composition and/or activity of the microbiota, as a direct or indirect result of the utilization of a specific and well-defined compound or ingredient by microorganisms." With these two definitions, GPA aims to paint a clearer picture for the term prebiotic, and by incorporating an industry point of view, these updated definitions may be used alongside current scientific and regulatory perspectives to move the category forward. STATEMENT OF SIGNIFICANCE: The purpose of this paper is to revisit the concepts of prebiotic and prebiotic effect by providing a scientific-based industry perspective. The proposed definitions of prebiotic and prebiotic effect reflect the recent discoveries in metagenomics and prebiotic research after the International Scientific Association for Probiotics and Prebiotics' (ISAPP's) 2017 prebiotic definition and propose terminology changes that are timely and necessary. These changes aim to maintain the clarity and usefulness of the prebiotic definition to the scientific community, industry, healthcare providers, and consumers, while ensuring scientific validity, comprehensiveness, and justification of each part of the prebiotic definition, including abandoning the term selectivity and introducing concepts of performance benefits and prebiotic effect.
Collapse
Affiliation(s)
- Edward C Deehan
- Department of Food Science and Technology, University of Nebraska, Lincoln, NE, 68588, USA; Nebraska Food for Health Center, University of Nebraska, Lincoln, NE, 68588, USA; Scientific & Technical Committee, Global Prebiotic Association, 540 N. Dearborn St., Suite 10837, Chicago, IL, 60610, USA.
| | - Santa Al Antwan
- SGS Nutrasource, 120 Research Ln, Guelph, ON, N1G 0B4, Canada
| | - Rhonda S Witwer
- Scientific & Technical Committee, Global Prebiotic Association, 540 N. Dearborn St., Suite 10837, Chicago, IL, 60610, USA; Archer Daniels Midland Company, 4666 Faries Parkway, Decatur, IL, 62525, USA
| | - Paula Guerra
- Scientific & Technical Committee, Global Prebiotic Association, 540 N. Dearborn St., Suite 10837, Chicago, IL, 60610, USA; SGS Nutrasource, 120 Research Ln, Guelph, ON, N1G 0B4, Canada.
| | - Tania John
- Scientific & Technical Committee, Global Prebiotic Association, 540 N. Dearborn St., Suite 10837, Chicago, IL, 60610, USA; SGS Nutrasource, 120 Research Ln, Guelph, ON, N1G 0B4, Canada
| | - Len Monheit
- Scientific & Technical Committee, Global Prebiotic Association, 540 N. Dearborn St., Suite 10837, Chicago, IL, 60610, USA; Global Prebiotic Association / Industry Transparency Center, 540 N. Dearborn St., Suite 10837, Chicago, IL, 60610, USA
| |
Collapse
|
2
|
Martinez Tuppia C, Rezaei MN, Machuron F, Duysburgh C, Ghyselinck J, Marzorati M, Koper JEB, Monnet C, Bosco N. In Vitro Human Gastrointestinal Digestibility and Colonic Fermentation of Wheat Sourdough and Yeast Breads. Foods 2024; 13:3014. [PMID: 39335943 PMCID: PMC11431057 DOI: 10.3390/foods13183014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/13/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
Bread can vary in textural and nutritional attributes based on differences in the bread making process (e.g., flour type, fermentation agent, fermentation time). Four bread recipes (BRs) made with sourdough preferments (BR1, white flour; BR2, whole grain flour) or regular yeast breads (BR3, white flour; BR4, whole grain flour) were evaluated for texture, digestibility, and their effect on the metabolic activity and composition of the gut microbiota using texture profile analysis (TPA) coupled with in vitro upper gastrointestinal (GIT) digestion and colonic fermentation (Colon-on-a-plate™ model), using fecal samples from eight healthy human donors. TPA revealed significantly higher values for hardness, fracturability, gumminess, and chewiness, and significantly lower values for springiness, cohesiveness, and resilience with whole grain versus white breads (all p < 0.001); values for springiness, cohesiveness, and resilience were significantly higher for sourdough versus yeast bread (p < 0.001). Nutrient composition and bioaccessibility were generally comparable between sourdough and yeast bread with similar flours. Following simulation of upper GIT digestion, all BRs demonstrated good digestibility of minerals, carbohydrates, and proteins. Colonic fermentation revealed changes in gut microbiota composition, significant increases in short-chain fatty acids, and a significant decrease in branched short-chain fatty acids with all BRs versus a blank. Overall, new insights into wheat bread digestibility and colonic fermentation were provided, which are important aspects to fully characterize bread nutritional profile and potential.
Collapse
Affiliation(s)
- Ccori Martinez Tuppia
- Lesaffre Institute of Science and Technology, 59700 Marcq-en-Barœul, France; (C.M.T.); (M.N.R.); (F.M.); (J.E.B.K.); (C.M.)
| | - Mohammad N. Rezaei
- Lesaffre Institute of Science and Technology, 59700 Marcq-en-Barœul, France; (C.M.T.); (M.N.R.); (F.M.); (J.E.B.K.); (C.M.)
| | - François Machuron
- Lesaffre Institute of Science and Technology, 59700 Marcq-en-Barœul, France; (C.M.T.); (M.N.R.); (F.M.); (J.E.B.K.); (C.M.)
| | - Cindy Duysburgh
- Prodigest, Technologiepark 82, 9052 Zwijnaarde, Belgium; (C.D.); (J.G.); (M.M.)
| | - Jonas Ghyselinck
- Prodigest, Technologiepark 82, 9052 Zwijnaarde, Belgium; (C.D.); (J.G.); (M.M.)
| | - Massimo Marzorati
- Prodigest, Technologiepark 82, 9052 Zwijnaarde, Belgium; (C.D.); (J.G.); (M.M.)
| | - Jonna E. B. Koper
- Lesaffre Institute of Science and Technology, 59700 Marcq-en-Barœul, France; (C.M.T.); (M.N.R.); (F.M.); (J.E.B.K.); (C.M.)
| | - Céline Monnet
- Lesaffre Institute of Science and Technology, 59700 Marcq-en-Barœul, France; (C.M.T.); (M.N.R.); (F.M.); (J.E.B.K.); (C.M.)
| | - Nabil Bosco
- Lesaffre Institute of Science and Technology, 59700 Marcq-en-Barœul, France; (C.M.T.); (M.N.R.); (F.M.); (J.E.B.K.); (C.M.)
| |
Collapse
|
3
|
Govaert M, Rotsaert C, Vannieuwenhuyse C, Duysburgh C, Medlin S, Marzorati M, Jarrett H. Survival of Probiotic Bacterial Cells in the Upper Gastrointestinal Tract and the Effect of the Surviving Population on the Colonic Microbial Community Activity and Composition. Nutrients 2024; 16:2791. [PMID: 39203927 PMCID: PMC11357584 DOI: 10.3390/nu16162791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/09/2024] [Accepted: 08/16/2024] [Indexed: 09/03/2024] Open
Abstract
Many health-promoting effects have been attributed to the intake of probiotic cells. However, it is important that probiotic cells arrive at the site of their activity in a viable state in order to exert their beneficial effects. Careful selection of the appropriate probiotic formulation is therefore required as mainly the type of probiotic species/strain and the administration strategy may affect survival of the probiotic cells during the upper gastrointestinal (GIT) passage. Therefore, the current study implemented Simulator of the Human Microbial Ecosystem (SHIME®) technology to investigate the efficacy of different commercially available probiotic formulations on the survival and culturability of probiotic bacteria during upper GIT passage. Moreover, Colon-on-a-Plate (CoaP™) technology was applied to assess the effect of the surviving probiotic bacteria on the gut microbial community (activity and composition) of three human donors. Significantly greater survival and culturability rates were reported for the delayed-release capsule formulation (>50%) as compared to the powder, liquid, and standard capsule formulations (<1%) (p < 0.05), indicating that the delayed-release capsule was most efficacious in delivering live bacteria cells. Indeed, administration of the delayed-release capsule probiotic digest resulted in enhanced production of SCFAs and shifted gut microbial community composition towards beneficial bacterial species. These results thus indicate that careful selection of the appropriate probiotic formulation and administration strategy is crucial to deliver probiotic cells in a viable state at the site of their activity (distal ileum and colon).
Collapse
Affiliation(s)
- Marlies Govaert
- ProDigest BV, Technologiepark 82, 9052 Ghent, Belgium; (M.G.); (C.R.); (C.V.)
| | - Chloë Rotsaert
- ProDigest BV, Technologiepark 82, 9052 Ghent, Belgium; (M.G.); (C.R.); (C.V.)
| | | | - Cindy Duysburgh
- ProDigest BV, Technologiepark 82, 9052 Ghent, Belgium; (M.G.); (C.R.); (C.V.)
| | - Sophie Medlin
- Heights, Department for Research and Development, London W1D 2LG, UK; (S.M.); (H.J.)
| | - Massimo Marzorati
- ProDigest BV, Technologiepark 82, 9052 Ghent, Belgium; (M.G.); (C.R.); (C.V.)
- Center of Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Harry Jarrett
- Heights, Department for Research and Development, London W1D 2LG, UK; (S.M.); (H.J.)
| |
Collapse
|
4
|
Chang DYH, Yong SB, Yii CY, Lin CH. Correspondence "Validation of fermentation techniques for prebiotic impact on gut microbiota". Pharmacol Res 2024; 206:107270. [PMID: 38885781 DOI: 10.1016/j.phrs.2024.107270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 06/20/2024]
Affiliation(s)
| | - Su-Boon Yong
- Department of Allergy and Immunology, China Medical University Children's Hospital, Taichung, Taiwan; Department of Medicine, College of Medicine, China Medical University, Taichung, Taiwan; Center for Allergy, Immunology, and Microbiome (A.I.M.), China Medical University Hospital, Taichung, Taiwan.
| | - Chin-Yuan Yii
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Landseed International Hospital, Taoyuan, Taiwan.
| | - Chien-Heng Lin
- Division of Pediatric Pulmonology, China Medical University Children's Hospital, Taichung, Taiwan; Department of Biomedical Imaging and Radiological Science, College of Health Care, China Medical University, Taichung, Taiwan.
| |
Collapse
|
5
|
Wang F, Gao S, Peng Q, Tan L, Chen S, Xia Z. Effects of Heat-Treated Bifidobacterium longum CECT-7384 Combined with Fibersol-2 on the Intestinal Health of Cats Submitted to an Abrupt Dietary Change: A Randomized Controlled Study. Animals (Basel) 2024; 14:2179. [PMID: 39123705 PMCID: PMC11311022 DOI: 10.3390/ani14152179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/13/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Abrupt dietary change can disrupt the intestinal balance in felines. This study aimed to assess the impact of heat-treated Bifidobacterium longum CECT-7384 combined with Fibersol-2 on the intestinal health of adult cats before and after dietary change. We selected 24 British shorthair cats, dividing them into two groups. From day 1 to day 14, the control group received a lower protein (33%) concentration (LPF) diet, while the treated group received the same LPF diet supplemented with 0.16% functional additives, consisting of Bifidobacterium longum CECT-7384 combined with Fibersol-2. Subsequently, from day 15 to day 28, the control group transitioned to a higher protein (40%) concentration (HPF) diet, while the treated group received the same HPF diet supplemented with 0.16% functional additives. Blood and fresh feces were collected on day 0, 14, 17, 21, and 28 of the experiment. The results suggest that the use of heat-treated Bifidobacterium longum CECT-7384 combined with Fibersol-2 may improve gastrointestinal function in cats by reducing serum LPS levels and fecal pH, while increasing fecal sIgA levels. In addition, the functional additive regulates the fecal microbiota and its function, promoting intestinal homeostasis and colonization with beneficial bacteria such as Blautia. Furthermore, on day 28, there was a significant difference in fecal microbiota beta diversity between the two groups. In summary, the addition of heat-treated Bifidobacterium longum CECT-7384 combined with Fibersol-2 contributes to improving the intestinal health of adult cats affected by abrupt dietary change.
Collapse
Affiliation(s)
- Fan Wang
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (F.W.); (S.G.)
| | - Siyuan Gao
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (F.W.); (S.G.)
| | - Qianqian Peng
- ADM (Shanghai) Management Co., Ltd., Shanghai 200131, China; (Q.P.); (L.T.)
| | - Lili Tan
- ADM (Shanghai) Management Co., Ltd., Shanghai 200131, China; (Q.P.); (L.T.)
| | - Siyu Chen
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (F.W.); (S.G.)
| | - Zhaofei Xia
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (F.W.); (S.G.)
| |
Collapse
|
6
|
Zünd JN, Plüss S, Mujezinovic D, Menzi C, von Bieberstein PR, de Wouters T, Lacroix C, Leventhal GE, Pugin B. A flexible high-throughput cultivation protocol to assess the response of individuals' gut microbiota to diet-, drug-, and host-related factors. ISME COMMUNICATIONS 2024; 4:ycae035. [PMID: 38562261 PMCID: PMC10982853 DOI: 10.1093/ismeco/ycae035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/13/2023] [Accepted: 03/08/2024] [Indexed: 04/04/2024]
Abstract
The anaerobic cultivation of fecal microbiota is a promising approach to investigating how gut microbial communities respond to specific intestinal conditions and perturbations. Here, we describe a flexible protocol using 96-deepwell plates to cultivate stool-derived gut microbiota. Our protocol aims to address gaps in high-throughput culturing in an anaerobic chamber. We characterized the influence of the gas phase on the medium chemistry and microbial physiology and introduced a modular medium preparation process to enable the testing of several conditions simultaneously. Furthermore, we identified a medium formulation that maximized the compositional similarity of ex vivo cultures and donor microbiota while limiting the bloom of Enterobacteriaceae. Lastly, we validated the protocol by demonstrating that cultivated fecal microbiota responded similarly to dietary fibers (resistant dextrin, soluble starch) and drugs (ciprofloxacin, 5-fluorouracil) as reported in vivo. This high-throughput cultivation protocol has the potential to facilitate culture-dependent studies, accelerate the discovery of gut microbiota-diet-drug-host interactions, and pave the way to personalized microbiota-centered interventions.
Collapse
Affiliation(s)
- Janina N Zünd
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, Department of Health Sciences and Technology, ETH Zürich, 8092 Zürich, Switzerland
| | - Serafina Plüss
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, Department of Health Sciences and Technology, ETH Zürich, 8092 Zürich, Switzerland
| | - Denisa Mujezinovic
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, Department of Health Sciences and Technology, ETH Zürich, 8092 Zürich, Switzerland
| | - Carmen Menzi
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, Department of Health Sciences and Technology, ETH Zürich, 8092 Zürich, Switzerland
- PharmaBiome AG, 8952 Schlieren, Switzerland
| | - Philipp R von Bieberstein
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, Department of Health Sciences and Technology, ETH Zürich, 8092 Zürich, Switzerland
- PharmaBiome AG, 8952 Schlieren, Switzerland
| | | | - Christophe Lacroix
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, Department of Health Sciences and Technology, ETH Zürich, 8092 Zürich, Switzerland
| | | | - Benoit Pugin
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, Department of Health Sciences and Technology, ETH Zürich, 8092 Zürich, Switzerland
| |
Collapse
|
7
|
Sánchez MC, Herráiz A, Tigre S, Llama-Palacios A, Hernández M, Ciudad MJ, Collado L. Evidence of the Beneficial Impact of Three Probiotic-Based Food Supplements on the Composition and Metabolic Activity of the Intestinal Microbiota in Healthy Individuals: An Ex Vivo Study. Nutrients 2023; 15:5077. [PMID: 38140334 PMCID: PMC10745619 DOI: 10.3390/nu15245077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/21/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Scientific evidence has increasingly supported the beneficial effects of probiotic-based food supplements on human intestinal health. This ex vivo study investigated the effects on the composition and metabolic activity of the intestinal microbiota of three probiotic-based food supplements, containing, respectively, (1) Bifidobacterium longum ES1, (2) Lactobacillus acidophilus NCFM®, and (3) a combination of L. acidophilus NCFM®, Lactobacillus paracasei Lpc-37™, Bifidobacterium lactis Bi-07™, and Bifidobacterium lactis Bl-04™. This study employed fecal samples from six healthy donors, inoculated in a Colon-on-a-plate® system. After 48 h of exposure or non-exposure to the food supplements, the effects were measured on the overall microbial fermentation (pH), changes in microbial metabolic activity through the production of short-chain and branched-chain fatty acids (SCFAs and BCFAs), ammonium, lactate, and microbial composition. The strongest effect on the fermentation process was observed for the combined formulation probiotics, characterized by the significant stimulation of butyrate production, a significant reduction in BCFAs and ammonium in all donors, and a significant stimulatory effect on bifidobacteria and lactobacilli growth. Our findings suggest that the combined formulation probiotics significantly impact the intestinal microbiome of the healthy individuals, showing changes in metabolic activity and microbial abundance as the health benefit endpoint.
Collapse
Affiliation(s)
- María Carmen Sánchez
- Department of Medicine, Faculty of Medicine, University Complutense, 28040 Madrid, Spain; (M.C.S.); (A.H.); (S.T.); (A.L.-P.); (L.C.)
- GINTRAMIS Research Group (Translational Research Group on Microbiota and Health), Faculty of Medicine, University Complutense, 28040 Madrid, Spain
| | - Ana Herráiz
- Department of Medicine, Faculty of Medicine, University Complutense, 28040 Madrid, Spain; (M.C.S.); (A.H.); (S.T.); (A.L.-P.); (L.C.)
| | - Sindy Tigre
- Department of Medicine, Faculty of Medicine, University Complutense, 28040 Madrid, Spain; (M.C.S.); (A.H.); (S.T.); (A.L.-P.); (L.C.)
| | - Arancha Llama-Palacios
- Department of Medicine, Faculty of Medicine, University Complutense, 28040 Madrid, Spain; (M.C.S.); (A.H.); (S.T.); (A.L.-P.); (L.C.)
- GINTRAMIS Research Group (Translational Research Group on Microbiota and Health), Faculty of Medicine, University Complutense, 28040 Madrid, Spain
| | | | - María José Ciudad
- Department of Medicine, Faculty of Medicine, University Complutense, 28040 Madrid, Spain; (M.C.S.); (A.H.); (S.T.); (A.L.-P.); (L.C.)
- GINTRAMIS Research Group (Translational Research Group on Microbiota and Health), Faculty of Medicine, University Complutense, 28040 Madrid, Spain
| | - Luis Collado
- Department of Medicine, Faculty of Medicine, University Complutense, 28040 Madrid, Spain; (M.C.S.); (A.H.); (S.T.); (A.L.-P.); (L.C.)
- GINTRAMIS Research Group (Translational Research Group on Microbiota and Health), Faculty of Medicine, University Complutense, 28040 Madrid, Spain
| |
Collapse
|