1
|
Rameshrad M, Naraki K, Memariani Z, Hosseinzadeh H. Protective effects of Panax ginseng as a medical food against chemical toxic agents: molecular and cellular mechanisms. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:8395-8419. [PMID: 38861010 DOI: 10.1007/s00210-024-03186-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 05/24/2024] [Indexed: 06/12/2024]
Abstract
Humans are exposed to different types of toxic agents, which may directly induce organ malfunction or indirectly alter gene expression, leading to carcinogenic and teratogenic effects, and eventually death. Ginseng (Panax ginseng) is the most valuable of all medicinal herbs. Nevertheless, specific data on the antidotal mechanisms of this golden herb are currently unavailable. Based on the findings of in vitro, in vivo, and clinical studies, this review focused on the probable protective mechanisms of ginseng and its major components, such as protopanaxadiols, protopanaxatriols, and pentacyclic ginsenosides against various chemical toxic agents. Relevant articles from 2000 to 2023 were gathered from PubMed/Medline, Scopus, and Google Scholar. This literature review shows that P. ginseng and its main components have protective and antidotal effects against the deteriorative effects of pesticides, pharmaceutical agents, including acetaminophen, doxorubicin, isoproterenol, cyclosporine A, tacrolimus, and gentamicin, ethanol, and some chemical agents. These improvements occur through multi-functional mechanisms. They exhibit antioxidant activity, induce anti-inflammatory action, and block intrinsic and extrinsic apoptotic pathways. However, relevant clinical trials are necessary to validate the mentioned effects and translate the knowledge from basic science to human benefit, fulfilling the fundamental goal of all toxicologists.
Collapse
Affiliation(s)
- Maryam Rameshrad
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Karim Naraki
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Mashhad University of Medical Science, Mashhad, Iran
| | - Zahra Memariani
- Traditional Medicine and History of Medical Sciences Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Liu S, Geng J, Chen W, Zong Y, Zhao Y, Du R, He Z. Isolation, structure, biological activity and application progress of ginseng polysaccharides from the Araliaceae family. Int J Biol Macromol 2024; 276:133925. [PMID: 39032904 DOI: 10.1016/j.ijbiomac.2024.133925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/21/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
Phytopolysaccharides are a class of natural macromolecules with a range of biological activities. Ginseng, red ginseng, American ginseng, and Panax notoginseng are all members of the Araliaceae family. They are known to contain a variety of medicinal properties and are typically rich in a wide range of medicinal values. Polysaccharides represent is one of the principal active ingredients in the aforementioned plants. However, there is a paucity of detailed reports on the separation methods, structural characteristics and comparison of various pharmacological effects of these polysaccharides. This paper presents a review of the latest research reports on ginseng, red ginseng, American ginseng and ginseng polysaccharides. The differences in extraction, separation, purification, structural characterization, and pharmacological activities of the four polysaccharides are compared and clarified. Upon examination of the current research literature, it becomes evident that the extraction and separation processes of the four polysaccharides are highly similar. Modern pharmacological studies have corroborated the multiple biological activities of these polysaccharides. These activities encompass a range of beneficial effects, including antioxidant stress injury, fatigue reduction, tumor inhibition, depression alleviation, regulation of intestinal flora, immunomodulation, diabetes management, central nervous system protection, anti-aging, and improvement of skin health. This paper presents a review of studies on the extraction, purification, characterization, and bioactivities of four natural plant ginseng polysaccharides. Furthermore, the review presents the most recent research findings on their pharmacological activities. The information provides a theoretical basis for the future application of natural plant polysaccharides and offers a new perspective for the in-depth development of the medicinal value of ginseng in the clinical practice of traditional Chinese medicine.
Collapse
Affiliation(s)
- Silu Liu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Jianan Geng
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Weijia Chen
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Ying Zong
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Yan Zhao
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Rui Du
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education of China, Changchun 130118, China; Jilin Provincial Engineering Research Center for Efficient Breeding and Product Development of Sika Deer of China, Changchun 130118, China
| | - Zhongmei He
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
3
|
Feng Q, Yan H, Feng Y, Cui L, Hussain H, Park JH, Kwon SW, Xie L, Zhao Y, Zhang Z, Li J, Wang D. Characterization of the structure, anti-inflammatory activity and molecular docking of a neutral polysaccharide separated from American ginseng berries. Biomed Pharmacother 2024; 174:116521. [PMID: 38593700 DOI: 10.1016/j.biopha.2024.116521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 03/19/2024] [Accepted: 03/28/2024] [Indexed: 04/11/2024] Open
Abstract
AIM American ginseng berries, grown in the aerial parts and harvested in August, are a potentially valuable material. The aim of the study was to analyze the specific polysaccharides in American ginseng berries, and to demonstrate the anti-inflammation effect through in vitro and in vivo experiments and molecular docking. METHODS After deproteinization and dialysis, the extracted crude polysaccharide was separated and purified. The structure of the specific isolated polysaccharide was investigated by Fourier Transform infrared spectroscopy (FT-IR), GC-MS and nuclear magnetic resonance (NMR), and anti-inflammatory activity was evaluated using in vitro and in vivo models (Raw 264.7 cells and zebrafish). Molecular docking was used to analyze the binding capacity and interaction with cyclooxygenase-2 (COX-2). RESULTS A novel neutral polysaccharide fraction (AGBP-A) was isolated from American ginseng berries. The structural analysis demonstrated that AGBP-A had a weight-average molecular weight (Mw) of 122,988 Da with a dispersity index (Mw/Mn) value of 1.59 and was composed of arabinose and galactose with a core structure containing →6)-Gal-(1→ residues as the backbone and a branching substitution at the C3 position. The side-chains comprised of α-L-Ara-(1→, α-L-Ara-(1→, →5)-α-L-Ara-(1→, β-D-Gal-(1→. The results showed that it significantly decreased pro-inflammatory cytokines in the cell model. In a zebrafish model, AGBP-A reduced the massive recruitment of neutrophils to the caudal lateral line neuromast, suggesting the relief of inflammation. Molecular docking was used to analyze the combined capacity and interaction with COX-2. CONCLUSION Our study indicated the potential efficacy of AGBP-A as a safe and valid natural anti-inflammatory component.
Collapse
Affiliation(s)
- Qixiang Feng
- Medicine and Food R&D and Health Product Creation International Joint Laboratory, Biological Engineering Technology Innovation Center of Shandong Province, Heze Branch of Qilu University of Technology (Shandong Academy of Sciences), Heze 274000, China; School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Huijiao Yan
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Yu Feng
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Li Cui
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Hidayat Hussain
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, Halle (Saale) D-06120, Germany
| | - Jeong Hill Park
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 151-742, Korea
| | - Sung Won Kwon
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 151-742, Korea
| | - Lei Xie
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Yan Zhao
- Medicine and Food R&D and Health Product Creation International Joint Laboratory, Biological Engineering Technology Innovation Center of Shandong Province, Heze Branch of Qilu University of Technology (Shandong Academy of Sciences), Heze 274000, China
| | - Zhihao Zhang
- Medicine and Food R&D and Health Product Creation International Joint Laboratory, Biological Engineering Technology Innovation Center of Shandong Province, Heze Branch of Qilu University of Technology (Shandong Academy of Sciences), Heze 274000, China
| | - Jinfan Li
- Medicine and Food R&D and Health Product Creation International Joint Laboratory, Biological Engineering Technology Innovation Center of Shandong Province, Heze Branch of Qilu University of Technology (Shandong Academy of Sciences), Heze 274000, China
| | - Daijie Wang
- Medicine and Food R&D and Health Product Creation International Joint Laboratory, Biological Engineering Technology Innovation Center of Shandong Province, Heze Branch of Qilu University of Technology (Shandong Academy of Sciences), Heze 274000, China; School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250014, China.
| |
Collapse
|
4
|
Zhao L, Zhang T, Zhang K. Pharmacological effects of ginseng and ginsenosides on intestinal inflammation and the immune system. Front Immunol 2024; 15:1353614. [PMID: 38698858 PMCID: PMC11064651 DOI: 10.3389/fimmu.2024.1353614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 04/03/2024] [Indexed: 05/05/2024] Open
Abstract
Intestinal inflammatory imbalance and immune dysfunction may lead to a spectrum of intestinal diseases, such as inflammatory bowel disease (IBD) and gastrointestinal tumors. As the king of herbs, ginseng has exerted a wide range of pharmacological effects in various diseases. Especially, it has been shown that ginseng and ginsenosides have strong immunomodulatory and anti-inflammatory abilities in intestinal system. In this review, we summarized how ginseng and various extracts influence intestinal inflammation and immune function, including regulating the immune balance, modulating the expression of inflammatory mediators and cytokines, promoting intestinal mucosal wound healing, preventing colitis-associated colorectal cancer, recovering gut microbiota and metabolism imbalance, alleviating antibiotic-induced diarrhea, and relieving the symptoms of irritable bowel syndrome. In addition, the specific experimental methods and key control mechanisms are also briefly described.
Collapse
Affiliation(s)
| | | | - Kai Zhang
- Department of General Surgery, The Second Hospital of Jilin University, Jilin University, Changchun, Jilin, China
| |
Collapse
|
5
|
Pyropia yezoensis-derived porphyran attenuates acute and chronic colitis by suppressing dendritic cells. Int J Biol Macromol 2023; 231:123148. [PMID: 36639074 DOI: 10.1016/j.ijbiomac.2023.123148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/26/2022] [Accepted: 01/02/2023] [Indexed: 01/12/2023]
Abstract
Porphyran is known to inhibit immune cell function. Previously, porphyran was shown to prevent lipopolysaccharide-induced sepsis in mice. However, studies on the inhibitory effects of porphyran during colitis are currently lacking. In this study, we evaluated the effects of Pyropia yezoensis-derived porphyran on dextran sodium sulfate (DSS)-induced acute and chronic colitis. The oral or intraperitoneal administration of porphyran inhibited the progression of DSS-induced colitis in mice, with the former also preventing immune cell infiltration in the colon. The levels of intracellular interferon-γ and interleukin-17 in T cells decreased when porphyran was administered orally. Porphyran inhibited T cell activation by suppressing dendritic cells (DCs) and macrophages. Porphyran prevented pathogen-associated molecular pattern and damage-associated molecular pattern-dependent DC and macrophage activation. Finally, porphyran attenuated chronic colitis caused via the long-term administration of DSS. These findings indicate that the oral administration of porphyran can inhibit DSS-induced colitis by suppressing DC and macrophage activation.
Collapse
|
6
|
Lee CW, You BH, Yim S, Han SY, Chae HS, Bae M, Kim SY, Yu JE, Jung J, Nhoek P, Kim H, Choi HS, Chin YW, Kim HW, Choi YH. Change of metformin concentrations in the liver as a pharmacological target site of metformin after long-term combined treatment with ginseng berry extract. Front Pharmacol 2023; 14:1148155. [PMID: 36998615 PMCID: PMC10043734 DOI: 10.3389/fphar.2023.1148155] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 02/21/2023] [Indexed: 03/12/2023] Open
Abstract
Metformin as an oral glucose-lowering drug is used to treat type 2 diabetic mellitus. Considering the relatively high incidence of cardiovascular complications and other metabolic diseases in diabetic mellitus patients, a combination of metformin plus herbal supplements is a preferrable way to improve the therapeutic outcomes of metformin. Ginseng berry, the fruit of Panax ginseng Meyer, has investigated as a candidate in metformin combination mainly due to its anti-hyperglycemic, anti-hyperlipidemic, anti-obesity, anti-hepatic steatosis and anti-inflammatory effects. Moreover, the pharmacokinetic interaction of metformin via OCTs and MATEs leads to changes in the efficacy and/or toxicity of metformin. Thus, we assessed how ginseng berry extract (GB) affects metformin pharmacokinetics in mice, specially focusing on the effect of the treatment period (i.e., 1-day and 28-day) of GB on metformin pharmacokinetics. In 1-day and 28-day co-treatment of metformin and GB, GB did not affect renal excretion as a main elimination route of metformin and GB therefore did not change the systemic exposure of metformin. Interestingly, 28-day co-treatment of GB increased metformin concentration in the livers (i.e., 37.3, 59.3% and 60.9% increases versus 1-day metformin, 1-day metformin plus GB and 28-day metformin groups, respectively). This was probably due to the increased metformin uptake via OCT1 and decreased metformin biliary excretion via MATE1 in the livers. These results suggest that co-treatment of GB for 28 days (i.e., long-term combined treatment of GB) enhanced metformin concentration in the liver as a pharmacological target tissue of metformin. However, GB showed a negligible impact on the systemic exposure of metformin in relation to its toxicity (i.e., renal and plasma concentrations of metformin).
Collapse
Affiliation(s)
- Choong Whan Lee
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University_Seoul, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Byoung Hoon You
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University_Seoul, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Sreymom Yim
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University_Seoul, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Seung Yon Han
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University_Seoul, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Hee-Sung Chae
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University_Seoul, Goyang-si, Gyeonggi-do, Republic of Korea
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, MS, United States
| | - Mingoo Bae
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University_Seoul, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Seo-Yeon Kim
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University_Seoul, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Jeong-Eun Yu
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University_Seoul, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Jieun Jung
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University_Seoul, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Piseth Nhoek
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University_Seoul, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Hojun Kim
- Department of Rehabilitation Medicine of Korean Medicine, Dongguk-University Ilsan Oriental Hospital, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Han Seok Choi
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Dongguk University Ilsan Hospital, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Young-Won Chin
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Hyun Woo Kim
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University_Seoul, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Young Hee Choi
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University_Seoul, Goyang-si, Gyeonggi-do, Republic of Korea
- *Correspondence: Young Hee Choi,
| |
Collapse
|
7
|
The Effects of Sishen Wan on T Cell Responses in Mice Models of Ulcerative Colitis Induced by Dextran Sodium Sulfate. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:9957709. [PMID: 34956391 PMCID: PMC8702314 DOI: 10.1155/2021/9957709] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 11/10/2021] [Accepted: 11/15/2021] [Indexed: 12/24/2022]
Abstract
Currently, it is unclear whether Sishen Wan (SSW) could modulate the balance of Th1 cells, Th17 cells, and Tregs and we evaluated the effects of SSW on T cell responses in mice models of ulcerative colitis (UC). The mice models of acute UC (4% dextran sodium sulfate (DSS), 8 days) and chronic UC (3% DSS, 16 days) with SSW were assayed. Colon tissues were collected for immunohistochemical analysis, enzyme linked immunosorbent assay (ELISA), and flow cytometry (FCM). The expressions of cytokines associated with Tregs, transcription factors of Th17 cells, the frequencies of Th1 cells, Th17 cells, and Tregs, and the functional plasticity of Th17 cells were detected. The frequency of IFN-γ+ T cells was not changed significantly with SSW treatment in acute DSS. In chronic models, the frequency of IFN-γ+ T cells was downregulated with SSW. Meanwhile, the levels of RORγt and the frequency of IL-17A+ Th17 cells showed no significant differences after SSW treatment. Despite no significant effect on the transdifferentiation of Th17 cells in chronic UC models, SSW transdifferentiated Th17 cells into IL-10+ Th17 cells and downregulated IFN-γ+ Th17 cells/IL-10+ Th17 cells in acute DSS. Moreover, there were no significant changes of cytokines secreted by Tregs in acute DSS after SSW treatment, but SSW facilitated the expressions of IL-10 and IL-35, as well as development of IL-10+ Tregs in chronic DSS. SSW showed depressive effects on the immunoreaction of Th17 cells and might promote the conversion of Th17 cells into IL-10+ Th17 cells in acute UC, while it inhibited the excessive reaction of Th1 cells, facilitated the development of Tregs, and enhanced the anti-inflammatory effects in chronic UC.
Collapse
|
8
|
Duan L, Cheng S, Li L, Liu Y, Wang D, Liu G. Natural Anti-Inflammatory Compounds as Drug Candidates for Inflammatory Bowel Disease. Front Pharmacol 2021; 12:684486. [PMID: 34335253 PMCID: PMC8316996 DOI: 10.3389/fphar.2021.684486] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 07/02/2021] [Indexed: 12/11/2022] Open
Abstract
Inflammatory bowel disease (IBD) represents chronic recurrent intestinal inflammation resulting from various factors. Crohn’s disease (CD) and ulcerative colitis (UC) have been identified as the two major types of IBD. Currently, most of the drugs for IBD used commonly in the clinic have adverse reactions, and only a few drugs present long-lasting treatment effects. Moreover, issues of drug resistance and disease recurrence are frequent and difficult to resolve. Together, these issues cause difficulties in treating patients with IBD. Therefore, the development of novel therapeutic agents for the prevention and treatment of IBD is of significance. In this context, research on natural compounds exhibiting anti-inflammatory activity could be a novel approach to developing effective therapeutic strategies for IBD. Phytochemicals such as astragalus polysaccharide (APS), quercetin, limonin, ginsenoside Rd, luteolin, kaempferol, and icariin are reported to be effective in IBD treatment. In brief, natural compounds with anti-inflammatory activities are considered important candidate drugs for IBD treatment. The present review discusses the potential of certain natural compounds and their synthetic derivatives in the prevention and treatment of IBD.
Collapse
Affiliation(s)
- Linshan Duan
- School of Pharmaceutical Sciences Xiamen University, Xiamen, China
| | - Shuyu Cheng
- Institute of Gastrointestinal Oncology, Medical College of Xiamen University, Xiamen, China
| | - Long Li
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, Xiamen, China
| | - Yanling Liu
- School of Pharmaceutical Sciences Xiamen University, Xiamen, China
| | - Dan Wang
- Institute of Gastrointestinal Oncology, Medical College of Xiamen University, Xiamen, China
| | - Guoyan Liu
- School of Pharmaceutical Sciences Xiamen University, Xiamen, China.,Institute of Gastrointestinal Oncology, Medical College of Xiamen University, Xiamen, China.,Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, Xiamen, China
| |
Collapse
|
9
|
Dou D, Liang J, Zhai X, Li G, Wang H, Han L, Lin L, Ren Y, Liu S, Liu C, Guo W, Li J. Oxytocin signalling in dendritic cells regulates immune tolerance in the intestine and alleviates DSS-induced colitis. Clin Sci (Lond) 2021; 135:597-611. [PMID: 33564880 DOI: 10.1042/cs20201438] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND Ulcerative colitis (UC) is a type of inflammatory bowel disease (IBD) that is associated with immune dysfunction. Recent studies have indicated that the neurosecretory hormone oxytocin (OXT) has been proven to alleviate experimental colitis. METHODS We investigated the role of OXT/OXT receptor (OXTR) signalling in dendritic cells (DCs) using mice with specific OXTR deletion in CD11c+ cells (OXTRflox/flox×CD11c-cre mice) and a dextran sulfate sodium (DSS)-induced colitis model. RESULTS The level of OXT was abnormal in the serum or colon tissue of DSS-induced colitis mice or the plasma of UC patients. Both bone marrow-derived DCs (BMDCs) and lamina propria DCs (LPDCs) express OXTR. Knocking out OXTR in DCs exacerbated DSS-induced acute and chronic colitis in mice. In contrast, the injection of OXT-pretreated DCs significantly ameliorated colitis. Mechanistically, OXT prevented DC maturation through the phosphatidylinositol 4,5-bisphosphate 3-kinase (Pi3K)/AKT pathway and promoted phagocytosis, adhesion and cytokine modulation in DCs. Furthermore, OXT pre-treated DCs prevent CD4+ T cells differentiation to T helper 1 (Th1) and Th17. CONCLUSIONS Our results suggest that OXT-induced tolerogenic DCs efficiently protect against experimental colitis via Pi3K/AKT pathway. Our work provides evidence that the nervous system participates in the immune regulation of colitis by modulating DCs. Our findings suggest that generating ex vivo DCs pretreated with OXT opens new therapeutic perspectives for the treatment of UC in humans.
Collapse
Affiliation(s)
- Dandan Dou
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Jinghui Liang
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Xiangyu Zhai
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Guosheng Li
- Department of Hematology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Hongjuan Wang
- Department of Gastroenterology, Second Hospital, Shandong University, Jinan 250000, China
| | - Liying Han
- College of Life Science, Shandong Normal University, Jinan 250014, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266000, China
| | - Lin Lin
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Yifei Ren
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Shilian Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Chuanyong Liu
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Wei Guo
- Department of Colorectal Surgery, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Jingxin Li
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| |
Collapse
|
10
|
Yang Y, Hu N, Gao XJ, Li T, Yan ZX, Wang PP, Wei B, Li S, Zhang ZJ, Li SL, Yan R. Dextran sulfate sodium-induced colitis and ginseng intervention altered oral pharmacokinetics of cyclosporine A in rats. JOURNAL OF ETHNOPHARMACOLOGY 2021; 265:113251. [PMID: 32810615 DOI: 10.1016/j.jep.2020.113251] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 07/04/2020] [Accepted: 08/04/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Application of cyclosporine A (CsA) as a rescue treatment in acute severe ulcerative colitis (UC) is limited by its narrow therapeutic window and great interpatient variability. As a substrate of cytochrome P450 3A enzyme (CYP3A) and P-glycoprotein (P-gp), the oral pharmacokinetics of CsA is susceptible to disease status and concomitant medications. Combined treatment with ginseng, a famous medicinal herb frequently prescribed for ameliorating abnormal immune response in many diseases including UC, showed immunologic safety in CsA-based immunosuppression. AIM OF THE STUDY Since the therapeutic levels of CsA can be achieved within 24 h, this study first assessed the impact of acute colitis and ginseng intervention on the single oral dose pharmacokinetics of CsA and explored the underlying mechanisms in dextran sulfate sodium (DSS)-induced colitis rats and Caco-2 cells. MATERIALS AND METHODS Rats received drinking water (normal group), 5% DSS (UC group), or 5% DSS plus daily oral ginseng extract (GS+UC group). On day 7, GS+UC group only received an oral dose of CsA (5 mg/kg), while animals of normal or UC group received an oral, intravenous (1.25 mg/kg), or intraperitoneal dose of CsA (1.25 mg/kg), respectively. Blood, liver/intestine tissues and fecal samples were collected for determining CsA and main hydroxylated metabolite HO-CsA or measuring hepatic/intestinal CYP3A activity. Caco-2 cells were incubated with gut microbial culture supernatant (CS) of different groups or ginseng (decoction or polysaccharides), and then CYP3A, P-gp and tight junction (TJ) proteins were determined. RESULTS Oral CsA exhibited enhanced absorption, systemic exposure and tissue accumulation, and lower fecal excretion, while intravenous or intraperitoneal CsA showed lower systemic exposure and enhanced distribution, in colitis rats. Diminished intestinal and hepatic P-gp expression well explained the changes with DSS-induced colitis. Moreover, blood exposures of HO-CsA in both normal and colitis after oral dosing were significantly higher than intravenous/intraperitoneal dosing, supporting the dominant role of intestinal first-pass metabolism. Interestingly, colitis reduced CYP3A expression in intestine and liver but only potentiated intestinal CYP3A activity, causing higher oral systemic exposure of HO-CsA. Oral ginseng mitigated colitis-induced down-regulation of CYP3A and P-gp expression, facilitated HO-CsA production, biliary excretion and colonic sequestration of CsA, while not affected CsA oral systemic exposure. In Caco-2 cells, gut microbial CS from both colitis and GS+UC group diminished P-gp function, while ginseng polysaccharides directly affected ZO-1 distribution and suppressed TJ proteins expression, explaining unaltered oral CsA systemic exposure. CONCLUSIONS DSS-induced colitis significantly altered oral CsA disposition through regulating intestinal and hepatic P-gp and CYP3A. One-week ginseng treatment enhanced colonic accumulation while not altered the systemic exposure of CsA after single oral dosing, indicating pharmacokinetic compatibility between the two medications.
Collapse
Affiliation(s)
- Ying Yang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China; Zhuhai UM Science & Technology Research Institute, Zhuhai, 519080, China
| | - Nan Hu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China; Zhuhai UM Science & Technology Research Institute, Zhuhai, 519080, China
| | - Xue-Jiao Gao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China; Zhuhai UM Science & Technology Research Institute, Zhuhai, 519080, China
| | - Ting Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China; Zhuhai UM Science & Technology Research Institute, Zhuhai, 519080, China
| | - Zhi-Xiang Yan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China; Zhuhai UM Science & Technology Research Institute, Zhuhai, 519080, China
| | - Pan-Pan Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China; Zhuhai UM Science & Technology Research Institute, Zhuhai, 519080, China
| | - Bin Wei
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China; Zhuhai UM Science & Technology Research Institute, Zhuhai, 519080, China
| | - Sai Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China; Zhuhai UM Science & Technology Research Institute, Zhuhai, 519080, China
| | - Zai-Jun Zhang
- Institute of New Drug Research and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine, Jinan University College of Pharmacy, Guangzhou, 510632, China
| | - Song-Lin Li
- Department of Pharmaceutical Analysis and Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, China
| | - Ru Yan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China; Zhuhai UM Science & Technology Research Institute, Zhuhai, 519080, China.
| |
Collapse
|
11
|
Kang Z, Zhonga Y, Wu T, Huang J, Zhao H, Liu D. Ginsenoside from ginseng: a promising treatment for inflammatory bowel disease. Pharmacol Rep 2021; 73:700-711. [PMID: 33462754 PMCID: PMC8180475 DOI: 10.1007/s43440-020-00213-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/18/2020] [Accepted: 12/28/2020] [Indexed: 12/16/2022]
Abstract
Inflammatory bowel disease (IBD) is an autoimmune disease mediated by immune disorder and termed as one of the most refractory diseases by the Word Health Organization. Its morbidity has increased steadily over the past half century worldwide. Environmental, genetic, infectious, and immune factors are integral to the pathogenesis of IBD. Commonly known as the king of herbs, ginseng has been consumed in many countries for the past 2000 years. Its active ingredient ginsenosides, as the most prominent saponins of ginseng, have a wide range of pharmacological effects. Recent studies have confirmed that the active components of Panax ginseng have anti-inflammatory and immunomodulatory effects on IBD, including regulating the balance of immune cells, inhibiting the expression of cytokines, as well as activating Toll-like receptor 4, Nuclear factor-kappa B (NF-κB), nucleotide-binding oligomerization domain-like receptor (NLRP), mitogen-activated protein kinase signaling, and so on. Accumulated evidence indicates that ginsenosides may serve as a potential novel therapeutic drug or health product additive in IBD prevention and treatment in the future.
Collapse
Affiliation(s)
- Zengping Kang
- Graduate School, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, Jiangxi, China
| | - Youbao Zhonga
- Graduate School, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, Jiangxi, China.,Experimental Animal Science and Technology Center, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, Jiangxi, China
| | - Tiantian Wu
- Graduate School, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, Jiangxi, China
| | - Jiaqi Huang
- Graduate School, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, Jiangxi, China
| | - Haimei Zhao
- College of Traditional Chinese Medicine, Jiangxi University of Traditional Chinese Medicine, 1688 Meiling Road, Nanchang, 330004, Jiangxi, China.
| | - Duanyong Liu
- Science and Technology College, Jiangxi University of Traditional Chinese Medicine, 1689 Meiling Road, Nanchang, 330004, Jiangxi, China.
| |
Collapse
|
12
|
Wang H, Huang R, Li H, Jiao L, Liu S, Wu W. Serum metabolomic analysis of the anti-diabetic effect of Ginseng berry in type II diabetic rats based on ultra high-performance liquid chromatography-high resolution mass spectrometry. J Pharm Biomed Anal 2021; 196:113897. [PMID: 33508764 DOI: 10.1016/j.jpba.2021.113897] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 01/08/2021] [Accepted: 01/08/2021] [Indexed: 12/14/2022]
Abstract
Serum metabolomic method was used to investigated the anti-diabetic effects and mechanism of Ginseng berry (GB) on high-fat diet combined streptozotocin induced type II diabetes mellitus (T2DM) rats based on ultra high performance liquid chromatography coupled with quadrupole Exactive orbitrap mass spectrometry (UHPLC-Q-Exactive Orbitrap/MS). Serum samples from control group, T2DM group, metformin treatment group, and GB ginsenoside treatment group rats were collected after intervention. The biochemical parameters of serum were firstly analyzed. Then metabolomic studies based on UHPLC-Q-Exactive Orbitrap/MS and multivariate statistical analysis were performed for the pattern recognition and characteristic metabolites identification. The differential metabolites were analyzed by KEGG metabolic pathway to study the potential mechanism. The treatment of GB ginsenoside significantly reduced the blood glucose level, increased the content of serum SOD, and reduced the content of malondialdehyde. Respectively 16, 9, and 24 differential metabolites were found and identified in T2DM compared to control group, metformin compared to T2DM group and GB compared to T2DM group. Metabolic pathways analysis indicated that GB ginsenoside regulated bile acid metabolism, arachidonic acid metabolism, glucuronization to play a role in the treatment of T2DM. This study verified the anti-diabetic and anti-oxidation effects of ginseng berry, elaborated that GB regulated the secretion of bile acids, activated GLP-1 pathway, increased the secretion of insulin, promoted the hydrolysis of fat and triglyceride, inhibited the activity of 5α - reductase, reduced weight and insulin resistance, so as to improved and treated T2DM, and laid the foundation for the further development and utilization.
Collapse
Affiliation(s)
- Heyu Wang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, China
| | - Rensong Huang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, China
| | - Hui Li
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, China
| | - Lili Jiao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, China
| | - Shuying Liu
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, China
| | - Wei Wu
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, China.
| |
Collapse
|
13
|
Dharmawansa KS, Hoskin DW, Rupasinghe HPV. Chemopreventive Effect of Dietary Anthocyanins against Gastrointestinal Cancers: A Review of Recent Advances and Perspectives. Int J Mol Sci 2020; 21:ijms21186555. [PMID: 32911639 PMCID: PMC7554903 DOI: 10.3390/ijms21186555] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 08/28/2020] [Accepted: 09/02/2020] [Indexed: 12/14/2022] Open
Abstract
Anthocyanins are a group of dietary polyphenols, abundant mainly in fruits and their products. Dietary interventions of anthocyanins are being studied extensively related to the prevention of gastrointestinal (GI) cancer, among many other chronic disorders. This review summarizes the hereditary and non-hereditary characteristics of GI cancers, chemistry, and bioavailability of anthocyanins, and the most recent findings of anthocyanin in GI cancer prevention through modulating cellular signaling pathways. GI cancer-preventive attributes of anthocyanins are primarily due to their antioxidative, anti-inflammatory, and anti-proliferative properties, and their ability to regulate gene expression and metabolic pathways, as well as induce the apoptosis of cancer cells.
Collapse
Affiliation(s)
- K.V. Surangi Dharmawansa
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada;
| | - David W. Hoskin
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada;
- Department of Microbiology and Immunology, and Department of Surgery, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - H. P. Vasantha Rupasinghe
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada;
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada;
- Correspondence: ; Tel.: +1-902-893-6623
| |
Collapse
|
14
|
Rondanelli M, Lamburghini S, Faliva MA, Peroni G, Riva A, Allegrini P, Spadaccini D, Gasparri C, Iannello G, Infantino V, Alalwan TA, Perna S, Miccono A. A food pyramid, based on a review of the emerging literature, for subjects with inflammatory bowel disease. ACTA ACUST UNITED AC 2020; 68:17-46. [PMID: 32499202 DOI: 10.1016/j.endinu.2020.01.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 12/14/2019] [Accepted: 01/08/2020] [Indexed: 02/07/2023]
Abstract
Emerging literature suggests that diet plays an important modulatory role in inflammatory bowel disease (IBD) through the management of inflammation and oxidative stress. The aim of this narrative review is to evaluate the evidence collected up till now regarding optimum diet therapy for IBD and to design a food pyramid for these patients. The pyramid shows that carbohydrates should be consumed every day (3 portions), together with tolerated fruits and vegetables (5 portions), yogurt (125ml), and extra virgin olive oil; weekly, fish (4 portions), white meat (3 portions), eggs (3 portions), pureed legumes (2 portions), seasoned cheeses (2 portions), and red or processed meats (once a week). At the top of the pyramid, there are two pennants: the red one means that subjects with IBD need some personalized supplementation and the black one means that there are some foods that are banned. The food pyramid makes it easier for patients to decide what they should eat.
Collapse
Affiliation(s)
- Mariangela Rondanelli
- IRCCS Mondino Foundation, Pavia, Department of Public Health, Experimental and Forensic Medicine, Unit of Human and Clinical Nutrition, University of Pavia, Pavia 27100, Italy
| | - Silvia Lamburghini
- University of Pavia, Department of Public Health, Experimental and Forensic Medicine, Section of Human Nutrition, Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona, Pavia 27100, Italy
| | - Milena A Faliva
- University of Pavia, Department of Public Health, Experimental and Forensic Medicine, Section of Human Nutrition, Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona, Pavia 27100, Italy
| | - Gabriella Peroni
- University of Pavia, Department of Public Health, Experimental and Forensic Medicine, Section of Human Nutrition, Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona, Pavia 27100, Italy
| | - Antonella Riva
- Research and Development Unit, Indena, Milan 20146, Italy
| | | | - Daniele Spadaccini
- University of Pavia, Department of Public Health, Experimental and Forensic Medicine, Section of Human Nutrition, Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona, Pavia 27100, Italy
| | - Clara Gasparri
- University of Pavia, Department of Public Health, Experimental and Forensic Medicine, Section of Human Nutrition, Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona, Pavia 27100, Italy
| | - Giancarlo Iannello
- General Management, Azienda di Servizi alla Persona "Istituto Santa Margherita", Pavia 27100, Italy
| | - Vittoria Infantino
- University of Bari Aldo Moro, Department of Biomedical Science and Human Oncology, Section of Human Nutrition, Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona, Pavia 27100, Italy.
| | - Tariq A Alalwan
- Department of Biology, College of Science, University of Bahrain, Sakhir Campus, P.O. Box 32038, Bahrain
| | - Simone Perna
- Department of Biology, College of Science, University of Bahrain, Sakhir Campus, P.O. Box 32038, Bahrain
| | - Alessandra Miccono
- University of Pavia, Department of Public Health, Experimental and Forensic Medicine, Section of Human Nutrition, Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona, Pavia 27100, Italy
| |
Collapse
|
15
|
Hu JR, Chun YS, Kim JK, Cho IJ, Ku SK. Ginseng berry aqueous extract prevents scopolamine-induced memory impairment in mice. Exp Ther Med 2019; 18:4388-4396. [PMID: 31772634 PMCID: PMC6862129 DOI: 10.3892/etm.2019.8090] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 09/09/2019] [Indexed: 12/13/2022] Open
Abstract
Ginseng berry exhibits a diverse range of pharmacological activities. The present study aimed to examine the neuroprotective effects of ginseng berry aqueous extract (GBE) against oxidative stress and to assess the impact of GBE on memory impairment in mice. In HT-22 cells, GBE pretreatment significantly inhibited glutamate- and hydrogen peroxide-mediated cytotoxicity in a concentration-dependent manner, while treatment with up to 100 µg/ml GBE alone did not change cell viability. In a murine model of scopolamine (SCP)-induced memory impairment, results from the passive avoidance test and the Morris water maze test indicated that GBE administration for 4 weeks prolonged step-through latency time and shortened escape latency time, suggesting that GBE can attenuate deficits in long-term memory induced by SCP. Additionally, GBE prevented SCP-induced reductions in acetylcholine by decreasing acetylcholinesterase activity and upregulating choline acetyltransferase mRNA levels in the hippocampus. GBE mitigated SCP-mediated mRNA decreases in brain-derived neurotrophic factor levels and its associated signaling molecules. Furthermore, GBE administration significantly suppressed malondialdehyde production and increased glutathione levels, catalase activity and superoxide dismutase activity in SCP-induced memory impaired mice. Therefore, the results of the current study indicated that ginseng berry may be a potential candidate for treating or preventing memory deficits that are associated with neurodegenerative disorders.
Collapse
Affiliation(s)
- Jin Ryul Hu
- Research Center for Herbal Convergence on Liver Disease, College of Korean Medicine, Daegu Haany University, Gyeongsan, Gyeongsangbuk-do 38610, Republic of Korea
| | - Yoon Seok Chun
- Central Research Center, Aribio Co., Ltd., Pyeongtaek, Gyeonggi-do 17749, Republic of Korea
| | - Jong Kyu Kim
- Central Research Center, Aribio Co., Ltd., Pyeongtaek, Gyeonggi-do 17749, Republic of Korea
| | - Il Je Cho
- Research Center for Herbal Convergence on Liver Disease, College of Korean Medicine, Daegu Haany University, Gyeongsan, Gyeongsangbuk-do 38610, Republic of Korea
| | - Sae Kwang Ku
- Research Center for Herbal Convergence on Liver Disease, College of Korean Medicine, Daegu Haany University, Gyeongsan, Gyeongsangbuk-do 38610, Republic of Korea
| |
Collapse
|
16
|
Zhang W, Kwak M, Park HB, Okimura T, Oda T, Lee PCW, Jin JO. Activation of Human Dendritic Cells by Ascophyllan Purified from Ascophyllum nodosum. Mar Drugs 2019; 17:E66. [PMID: 30669428 PMCID: PMC6356493 DOI: 10.3390/md17010066] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 01/16/2019] [Accepted: 01/17/2019] [Indexed: 12/26/2022] Open
Abstract
In our previous study, we showed that ascophyllan purified from Ascophyllum nodosum treatment promotes mouse dendritic cell (DC) activation in vivo, further induces an antigen-specific immune response and has anticancer effects in mice. However, the effect of ascophyllan has not been studied in human immune cells, specifically in terms of activation of human monocyte-derived DCs (MDDCs) and human peripheral blood DCs (PBDCs). We found that the treatment with ascophyllan induced morphological changes in MDDCs and upregulated co-stimulatory molecules and major histocompatibility complex class I (MHC I) and MHC II expression. In addition, pro-inflammatory cytokine levels in culture medium was also dramatically increased following ascophyllan treatment of MDDCs. Moreover, ascophyllan promoted phosphorylation of ERK, p38 and JNK signaling pathways, and inhibition of p38 almost completely suppressed the ascophyllan-induced activation of MDDCs. Finally, treatment with ascophyllan induced activation of BDCA1 and BDCA3 PBDCs. Thus, these data suggest that ascophyllan could be used as an immune stimulator in humans.
Collapse
Affiliation(s)
- Wei Zhang
- Scientific Research Center, Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 201508, China.
| | - Minseok Kwak
- Department of Chemistry, Pukyong National University, Busan 48513, Korea.
- Marine-integrated Bionics Research Center, Pukyong National University, Busan 48513, Korea.
| | - Hae-Bin Park
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea.
| | - Takasi Okimura
- Research and Development Division, Hayashikane Sangyo Co., Ltd., Shimonoseki, Yamaguchi 750-8608, Japan.
| | - Tatsuya Oda
- Graduate School of Science and Technology, Nagasaki University, Nagasaki 852-8521, Japan.
| | - Peter Chang-Whan Lee
- Department of Biomedical Sciences, University of Ulsan College of Medicine, ASAN Medical Center, Seoul 05505, Korea.
| | - Jun-O Jin
- Scientific Research Center, Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 201508, China.
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea.
| |
Collapse
|
17
|
Kim J, Toda T, Watanabe K, Shibuya S, Ozawa Y, Izuo N, Cho S, Seo DB, Yokote K, Shimizu T. Syringaresinol Reverses Age-Related Skin Atrophy by Suppressing FoxO3a-Mediated Matrix Metalloproteinase-2 Activation in Copper/Zinc Superoxide Dismutase-Deficient Mice. J Invest Dermatol 2018; 139:648-655. [PMID: 30798853 DOI: 10.1016/j.jid.2018.10.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 09/30/2018] [Accepted: 10/16/2018] [Indexed: 01/06/2023]
Abstract
Aging is characterized by accumulation of chronic and irreversible oxidative damage, chronic inflammation, and organ dysfunction. Superoxide dismutase (SOD) serves as a major enzyme for cellular superoxide radical metabolism and physiologically regulates cellular redox balance throughout the body. Copper/zinc superoxide dismutase-deficient (SOD1-/-) mice showed diverse phenotypes associated with enhanced oxidative damage in whole organs. Here, we found that oral treatment with syringaresinol (also known as lirioresinol B), which is the active component in the berries of Korean ginseng (Panax ginseng C.A. Meyer), attenuated the age-related changes in Sod1-/- skin. Interestingly, syringaresinol morphologically normalized skin atrophy in Sod1-/- mice and promoted fibroblast outgrowth from Sod1-/- skin in vitro. These protective effects were mediated by the suppression of matrix metalloproteinase-2 overproduction in Sod1-/- skin, but not by increased collagen expression. Syringaresinol also decreased the oxidative damage and the phosphorylation of FoxO3a protein, which was a transcriptional factor of matrix metalloproteinase-2, in Sod1-/- skin. These results strongly suggest that syringaresinol regulates the FoxO3-matrix metalloproteinase-2 axis in oxidative damaged skin and exhibits beneficial effects on age-related skin involution in Sod1-/- mice.
Collapse
Affiliation(s)
- Juewon Kim
- Vital Beautie Research Division, Amorepacific R&D Center, Giheung-gu, Yongin-si, Gyeonggi-do, Korea; Department of Advanced Aging Medicine, Chiba University Graduate School of Medicine, Chuo-ku, Chiba, Japan; Department of Clinical Cell Biology and Medicine, Chiba University Graduate School of Medicine, Chuo-ku, Chiba, Japan
| | - Toshihiko Toda
- Department of Advanced Aging Medicine, Chiba University Graduate School of Medicine, Chuo-ku, Chiba, Japan
| | - Kenji Watanabe
- Department of Advanced Aging Medicine, Chiba University Graduate School of Medicine, Chuo-ku, Chiba, Japan
| | - Shuichi Shibuya
- Department of Advanced Aging Medicine, Chiba University Graduate School of Medicine, Chuo-ku, Chiba, Japan
| | - Yusuke Ozawa
- Department of Advanced Aging Medicine, Chiba University Graduate School of Medicine, Chuo-ku, Chiba, Japan
| | - Naotaka Izuo
- Department of Advanced Aging Medicine, Chiba University Graduate School of Medicine, Chuo-ku, Chiba, Japan
| | - Siyoung Cho
- Vital Beautie Research Division, Amorepacific R&D Center, Giheung-gu, Yongin-si, Gyeonggi-do, Korea
| | - Dae Bang Seo
- Vital Beautie Research Division, Amorepacific R&D Center, Giheung-gu, Yongin-si, Gyeonggi-do, Korea
| | - Koutaro Yokote
- Department of Clinical Cell Biology and Medicine, Chiba University Graduate School of Medicine, Chuo-ku, Chiba, Japan
| | - Takahiko Shimizu
- Department of Advanced Aging Medicine, Chiba University Graduate School of Medicine, Chuo-ku, Chiba, Japan; Department of Clinical Cell Biology and Medicine, Chiba University Graduate School of Medicine, Chuo-ku, Chiba, Japan.
| |
Collapse
|
18
|
Therapeutic efficacy of a combined sage and bitter apple phytopharmaceutical in chronic DSS-induced colitis. Sci Rep 2017; 7:14214. [PMID: 29079781 PMCID: PMC5660161 DOI: 10.1038/s41598-017-13985-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 10/02/2017] [Indexed: 12/20/2022] Open
Abstract
Inflammatory bowel diseases are multifactorial disorders of the gastrointestinal tract with rising incidence worldwide. Current standard therapies are only partially effective and often show severe adverse effects. Thus, novel, more efficient and well-tolerated therapeutic options are urgently needed. We have studied the therapeutic potential of a phytopharmaceutical combining sage and bitter apple (SBA) in the mouse model of chronic dextran sulfate sodium (DSS) colitis. SBA represents a traditional medicine against diarrhea and was shown to exhibit anti-inflammatory effects in vitro. In the chronic DSS colitis model SBA treatment significantly reduced clinical symptoms in a dose-dependent manner. The positive therapeutic effect of SBA was characterized by a decreased histopathological score indicating tissue healing. Moreover, the number of neutrophils as well as the expression of the neutrophil-recruiting chemokine CXCL-1/KC in the colon tissue was significantly reduced, whereas the recruitment of macrophages was induced. Also, the expression of inflammatory markers was significantly suppressed, while the expression of the anti-inflammatory cytokine interleukin-10 was induced in colon tissue following treatment with SBA. Phytopharmaceuticals are increasingly recognized as potential therapeutics in IBD. Thus, based on the results from this study, SBA can be considered as an alternative or supplementary option for IBD therapy.
Collapse
|
19
|
Wan JY, Huang WH, Zheng W, Park CW, Kim SH, Seo DB, Shin KS, Zeng J, Yao H, Sava-Segal C, Wang CZ, Yuan CS. Multiple Effects of Ginseng Berry Polysaccharides: Plasma Cholesterol Level Reduction and Enteric Neoplasm Prevention. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2017; 45:1293-1307. [PMID: 28830208 DOI: 10.1142/s0192415x17500719] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The root of Asian ginseng (Panax ginseng C.A. Meyer) has been used for centuries in Oriental medicine to improve general well-being and to relieve various medical conditions. It is commonly understood that ginsenosides are responsible for the pharmacological activities of ginseng. Compared to the root of ginseng, studies on the berry are considerably limited. In this study, we evaluated the effects of polysaccharides from Asian ginseng berries on plasma lipid levels, chemically-induced enteric inflammation and neoplasm, and cancer chemoprevention in different experimental models. We tested two polysaccharide preparations: regular ginseng berry polysaccharide extract (GBPE) and ginseng berry polysaccharide portion (GBPP, removed MV [Formula: see text]). We first observed that both oral GBPE and oral GBPP significantly reduced plasma cholesterol and triglycerides levels in a dose-related manner in ob/ob mice, without obvious body weight changes. Then, in AOM/DSS-induced acute colitis mice, GBPE and GBPP significantly ameliorated the increased gut disease activity index and inhibited the reduction of the colon length. Further, the berry polysaccharides significantly suppressed chemically-induced pro-inflammatory cytokine levels. This is consistent with the observation that GBPE and GBPP attenuated tumorigenesis in mice by significantly and dose-dependently reducing tumor load. Finally, in vitro HCT-116 and HT-29 human colon cancer cells were used. While these berry preparations had better antiproliferation effects on the HCT-116 than the HT-29 cells, the GBPE had significantly stronger inhibitory effects than GBPP. The observed in vitro GBPE's effect could contribute to the actions of its small-molecule non-polysaccharide compounds due to their direct antiproliferative activities. Results obtained from the present study suggest that ginseng berry polysaccharides may have a therapeutic role in the management of high lipid levels, enteric inflammation, and colon malignancies.
Collapse
Affiliation(s)
- Jin-Yi Wan
- * School of Pharmacy, Jiangsu University, Zhenjiang, P. R. China.,∥ Tang Center for Herbal Medicine Research and Department of Anesthesia & Critical Care, Pritzker School of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Wei-Hua Huang
- † Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, P. R. China.,∥ Tang Center for Herbal Medicine Research and Department of Anesthesia & Critical Care, Pritzker School of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Wei Zheng
- ∥ Tang Center for Herbal Medicine Research and Department of Anesthesia & Critical Care, Pritzker School of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Chan Woong Park
- ‡ Vital Beautie Research Institute, R&D Center, AmorePacific Corporation, Yongin, Republic of Korea.,¶ Department of Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Su Hwan Kim
- ‡ Vital Beautie Research Institute, R&D Center, AmorePacific Corporation, Yongin, Republic of Korea
| | - Dae Bang Seo
- ‡ Vital Beautie Research Institute, R&D Center, AmorePacific Corporation, Yongin, Republic of Korea
| | - Kwang-Soon Shin
- § Department of Food Science and Biotechnology, Kyonggi University, Suwon, Republic of Korea
| | - Jinxiang Zeng
- ∥ Tang Center for Herbal Medicine Research and Department of Anesthesia & Critical Care, Pritzker School of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Haiqiang Yao
- ∥ Tang Center for Herbal Medicine Research and Department of Anesthesia & Critical Care, Pritzker School of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Clara Sava-Segal
- ∥ Tang Center for Herbal Medicine Research and Department of Anesthesia & Critical Care, Pritzker School of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Chong-Zhi Wang
- ∥ Tang Center for Herbal Medicine Research and Department of Anesthesia & Critical Care, Pritzker School of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Chun-Su Yuan
- ∥ Tang Center for Herbal Medicine Research and Department of Anesthesia & Critical Care, Pritzker School of Medicine, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
20
|
Cho M, Choi G, Shim I, Chung Y. Enhanced Rg3 negatively regulates Th1 cell responses. J Ginseng Res 2017; 43:49-57. [PMID: 30662293 PMCID: PMC6323242 DOI: 10.1016/j.jgr.2017.08.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 07/28/2017] [Accepted: 08/03/2017] [Indexed: 12/25/2022] Open
Abstract
Background Korean Red Ginseng (KRG; Panax ginseng Meyer) is a widely used medicinal herb known to exert various immune modulatory functions. KRG and one of its purified components, ginsenoside Rg3, are known to possess anti-inflammatory activities. How they impact helper T cell-mediated responses is not fully explored. In this study, we attempted to evaluate the effect of KRG extract (KRGE) and ginsenoside Rg3 on Th1 cell responses. Methods Using well-characterized T cell in vitro differentiation systems, we examined the effects of KRGE or enhanced Rg3 on the Th1-inducing cytokine production from dendritic cells (DC) and the naïve CD4+ T cells differentiation to Th1 cells. Furthermore, we examined the change of Th1 cell population in the intestine after treatment of enhanced Rg3. The influence of KRGE or enhanced Rg3 on Th1 cell differentiation was evaluated by fluorescence-activated cell sorting, enzyme-linked immunosorbent assay, and quantitative real-time polymerase chain reaction. Results KRGE significantly inhibited the production level of IL-12 from DCs and subsequent Th1 cell differentiation. Similarly, enhanced Rg3 significantly suppressed the expression of interferon gamma (IFNγ) and T-bet in T cells under Th1-skewing condition. Consistent with these effects in vitro, oral administration of enhanced Rg3 suppressed the frequency of Th1 cells in the Peyer's patch and lamina propria cells in vivo. Conclusion Enhanced Rg3 negatively regulates the differentiation of Th1 cell in vitro and Th1 cell responses in the gut in vivo, providing fundamental basis for the use of this agent to treat Th1-related diseases.
Collapse
Affiliation(s)
- Minkyoung Cho
- Laboratory of Immune Regulation, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Garam Choi
- Laboratory of Immune Regulation, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Republic of Korea.,Brain Korea 21 Program, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Inbo Shim
- Laboratory of Immune Regulation, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Yeonseok Chung
- Laboratory of Immune Regulation, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Republic of Korea.,Brain Korea 21 Program, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
21
|
Hyun TK, Jang KI. Are berries useless by-products of ginseng? Recent research on the potential health benefits of ginseng berry. EXCLI JOURNAL 2017; 16:780-784. [PMID: 28827994 PMCID: PMC5547390 DOI: 10.17179/excli2017-376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 05/17/2017] [Indexed: 11/10/2022]
Affiliation(s)
- Tae Kyung Hyun
- Department of Industrial Plant Science and Technology, College of Agricultural, Life and Environmental Sciences, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Keum-Il Jang
- Department of Food Science and Biotechnology, College of Agricultural, Life and Environmental Sciences, Chungbuk National University, Cheongju 28644, Republic of Korea
| |
Collapse
|