1
|
Lykkesfeldt J, Carr AC, Tveden-Nyborg P. The pharmacology of vitamin C. Pharmacol Rev 2025; 77:100043. [PMID: 39986139 DOI: 10.1016/j.pharmr.2025.100043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 01/14/2025] [Indexed: 02/24/2025] Open
Abstract
Ascorbic acid, the reduced form of vitamin C, is a ubiquitous small carbohydrate. Despite decades of focused research, new metabolic functions of this universal electron donor are still being discovered and add to the complexity of our view of vitamin C in human health. Although praised as an unsurpassed water-soluble antioxidant in plasma and cells, the most interesting functions of vitamin C seem to be its roles as specific electron donor in numerous biological reactions ranging from the well-known hydroxylation of proline to cofactor for the epigenetic master regulators ten-eleven translocation enzymes and Jumonji domain-containing histone-lysine demethylases. Some of these functions may have important implications for disease prevention and treatment and have spiked renewed interest in, eg, vitamin C's potential in cancer therapy. Moreover, some fundamental pharmacokinetic properties of vitamin C remain to be established including if other mechanisms than passive diffusion governs the efflux of ascorbate anions from the cell. Taken together, there still seems to be much to learn about the pharmacology of vitamin C and its role in health and disease. This review explores new avenues of vitamin C and integrates our present knowledge of its pharmacology. SIGNIFICANCE STATEMENT: Vitamin C is involved in multiple biological reactions of which most are essential to human health. Hundreds of millions of people are considered deficient in vitamin C according to accepted guidelines, but little is known about the long-term consequences. Although the complexity of vitamin C's physiology and pharmacology has been widely disregarded in clinical studies for decades, it seems clear that a deeper understanding of particularly its pharmacology holds the key to unravel and possibly exploit the potential of vitamin C in disease prevention and therapy.
Collapse
Affiliation(s)
- Jens Lykkesfeldt
- Section of Biomedicine, Department of Veterinary and Animal Science, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Anitra C Carr
- Nutrition in Medicine Research Group, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Pernille Tveden-Nyborg
- Section of Biomedicine, Department of Veterinary and Animal Science, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
2
|
Portugal CC. Ascorbate and its transporter SVCT2: The dynamic duo's integrated roles in CNS neurobiology and pathophysiology. Free Radic Biol Med 2024; 212:448-462. [PMID: 38182073 DOI: 10.1016/j.freeradbiomed.2023.12.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/11/2023] [Accepted: 12/27/2023] [Indexed: 01/07/2024]
Abstract
Ascorbate is a small antioxidant molecule essential for the proper development and function of the brain. Ascorbate is transported into the brain and between brain cells via the Sodium vitamin C co-transporter 2 (SVCT2). This review provides an in-depth analysis of ascorbate's physiology, including how ascorbate is absorbed from food into the CNS, emphasizing cellular mechanisms of ascorbate recycling and release in different CNS compartments. Additionally, the review delves into the various functions of ascorbate in the CNS, including its impact on epigenetic modulation, synaptic plasticity, and neurotransmission. It also emphasizes ascorbate's role on neuromodulation and its involvement in neurodevelopmental processes and disorders. Furthermore, it analyzes the relationship between the duo ascorbate/SVCT2 in neuroinflammation, particularly its effects on microglial activation, cytokine release, and oxidative stress responses, highlighting its association with neurodegenerative diseases, such as Alzheimer's disease (AD). Overall, this review emphasizes the crucial role of the dynamic duo ascorbate/SVCT2 in CNS physiology and pathology and the need for further research to fully comprehend its significance in a neurobiological context and its potential therapeutic applications.
Collapse
Affiliation(s)
- Camila C Portugal
- I3s - Instituto de Investigação e Inovação em Saúde da Universidade do Porto and IBMC - Instituto de Biologia Molecular e Celular, Rua Alfredo Allen 208, 4200-135, Porto, Portugal.
| |
Collapse
|
3
|
Fernández-González JF, García-Pedraza JÁ, Ordóñez JL, Terol-Úbeda AC, Martín ML, Morán A, García-Domingo M. Renal Sympathetic Hyperactivity in Diabetes Is Modulated by 5-HT 1D Receptor Activation via NO Pathway. Int J Mol Sci 2023; 24:ijms24021378. [PMID: 36674892 PMCID: PMC9865738 DOI: 10.3390/ijms24021378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/24/2022] [Accepted: 12/28/2022] [Indexed: 01/13/2023] Open
Abstract
Renal vasculature, which is highly innervated by sympathetic fibers, contributes to cardiovascular homeostasis. This renal sympathetic outflow is inhibited by 5-HT in normoglycaemic rats. Considering that diabetes induces cardiovascular complications, we aimed to determine whether diabetic state modifies noradrenergic input at renal level and its serotonergic modulation in rats. Alloxan diabetic rats were anaesthetized (pentobarbital; 60 mg/kg i.p.) and prepared for in situ autoperfusion of the left kidney to continuously measure systemic blood pressure (SBP), heart rate (HR), and renal perfusion pressure (RPP). Electrical stimulation of renal sympathetic outflow induces frequency-dependent increases (Δ) in RPP (23.9 ± 2.1, 59.5 ± 1.9, and 80.5 ± 3.5 mm Hg at 2, 4, and 6 Hz, respectively), which were higher than in normoglycaemic rats, without modifying HR or SBP. Intraarterial bolus of 5-HT and 5-CT (5-HT1/5/7 agonist) reduced electrically induced ΔRPP. Only L-694,247 (5-HT1D agonist) reproduced 5-CT inhibition on sympathetic-induced vasoconstrictions, whereas it did not modify exogenous noradrenaline-induced ΔRPP. 5-CT inhibition was exclusively abolished by i.v. bolus of LY310762 (5-HT1D antagonist). An inhibitor of guanylyl cyclase, ODQ (i.v.), completely reversed the L-694,247 inhibitory effect. In conclusion, diabetes induces an enhancement in sympathetic-induced vasopressor responses at the renal level. Prejunctional 5-HT1D receptors, via the nitric oxide pathway, inhibit noradrenergic-induced vasoconstrictions in diabetic rats.
Collapse
Affiliation(s)
- Juan Francisco Fernández-González
- Laboratorio de Farmacología, Departamento de Fisiología y Farmacología, Facultad de Farmacia, Universidad de Salamanca, 37007 Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Paseo San Vicente 58-182, 37007 Salamanca, Spain
| | - José Ángel García-Pedraza
- Laboratorio de Farmacología, Departamento de Fisiología y Farmacología, Facultad de Farmacia, Universidad de Salamanca, 37007 Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Paseo San Vicente 58-182, 37007 Salamanca, Spain
| | - José Luis Ordóñez
- Laboratorio de Farmacología, Departamento de Fisiología y Farmacología, Facultad de Farmacia, Universidad de Salamanca, 37007 Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Paseo San Vicente 58-182, 37007 Salamanca, Spain
| | - Anaïs Clara Terol-Úbeda
- Laboratorio de Farmacología, Departamento de Fisiología y Farmacología, Facultad de Farmacia, Universidad de Salamanca, 37007 Salamanca, Spain
| | - María Luisa Martín
- Laboratorio de Farmacología, Departamento de Fisiología y Farmacología, Facultad de Farmacia, Universidad de Salamanca, 37007 Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Paseo San Vicente 58-182, 37007 Salamanca, Spain
| | - Asunción Morán
- Laboratorio de Farmacología, Departamento de Fisiología y Farmacología, Facultad de Farmacia, Universidad de Salamanca, 37007 Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Paseo San Vicente 58-182, 37007 Salamanca, Spain
- Correspondence: ; Tel.: +34-663-18-24-55; Fax: +34-923-29-45-15
| | - Mónica García-Domingo
- Laboratorio de Farmacología, Departamento de Fisiología y Farmacología, Facultad de Farmacia, Universidad de Salamanca, 37007 Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Paseo San Vicente 58-182, 37007 Salamanca, Spain
| |
Collapse
|
4
|
Vitamin C Deficiency Exacerbates Dysfunction of Atherosclerotic Coronary Arteries in Guinea Pigs Fed a High-Fat Diet. Antioxidants (Basel) 2022; 11:antiox11112226. [PMID: 36421412 PMCID: PMC9686655 DOI: 10.3390/antiox11112226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/31/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Vitamin C (vitC) deficiency has been associated with an increased risk of cardiovascular disease; while several putative mechanistic links have been proposed, functional evidence supporting a causal relationship is scarce. In this study, we investigated how vitC deficiency affects coronary artery vasomotor function and the development of coronary atherosclerotic plaques in guinea pigs subjected to chronic dyslipidemia by a high-fat diet regime. Female Hartley guinea pigs were fed either a control (low-fat diet and sufficient vitC) (N = 8) or a high-fat diet with either sufficient (N = 8) or deficient (N = 10) vitC for 32 weeks. Guinea pigs subjected to the high-fat diet developed significant atherosclerotic plaques in their coronary arteries, with no quantitative effect of vitC deficiency. In isolated coronary arteries, vasomotor responses to potassium, carbachol, nitric oxide, or bradykinin were studied in a wire myograph. Carbachol, bradykinin, and nitric oxide mediated relaxation in the coronary arteries of the control group. While vasorelaxation to carbachol and nitric oxide was preserved in the two high-fat diet groups, bradykinin-induced vasorelaxation was abolished. Interestingly, bradykinin induced a significant contraction in coronary arteries from vitC-deficient guinea pigs (p < 0.05). The bradykinin-induced contraction was unaffected by L-NAME but significantly inhibited by both indomethacin and vitC, suggesting that, during vitC deficiency, increased release of arachidonic acid metabolites and vascular oxidative stress are involved in the constrictor effects mediated by bradykinin. In conclusion, the present study shows supporting evidence that poor vitC status negatively affects coronary artery function.
Collapse
|
5
|
Caldwell JT, Jones KMD, Park H, Pinto JR, Ghosh P, Reid-Foley EC, Ulrich B, Delp MD, Behnke BJ, Muller-Delp JM. Aerobic exercise training reduces cardiac function and coronary flow-induced vasodilation in mice lacking adiponectin. Am J Physiol Heart Circ Physiol 2021; 321:H1-H14. [PMID: 33989084 DOI: 10.1152/ajpheart.00885.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We tested the hypothesis that adiponectin deficiency attenuates cardiac and coronary microvascular function and prevents exercise training-induced adaptations of the myocardium and the coronary microvasculature in adult mice. Adult wild-type (WT) or adiponectin knockout (adiponectin KO) mice underwent treadmill exercise training or remained sedentary for 8-10 wk. Systolic and diastolic functions were assessed before and after exercise training or cage confinement. Vasoreactivity of coronary resistance arteries was assessed at the end of exercise training or cage confinement. Before exercise training, ejection fraction and fractional shortening were similar in adiponectin KO and WT mice, but isovolumic contraction time was significantly lengthened in adiponectin KO mice. Exercise training increased ejection fraction (12%) and fractional shortening (20%) with no change in isovolumic contraction time in WT mice. In adiponectin KO mice, both ejection fraction (-9%) and fractional shortening (-12%) were reduced after exercise training and these decreases were coupled to a further increase in isovolumic contraction time (20%). In sedentary mice, endothelium-dependent dilation to flow was higher in arterioles from adiponectin KO mice as compared with WT mice. Exercise training enhanced dilation to flow in WT mice but decreased flow-induced dilation in adiponectin KO mice. These data suggest that compensatory mechanisms contribute to the maintenance of cardiac and coronary microvascular function in sedentary mice lacking adiponectin; however, in the absence of adiponectin, cardiac and coronary microvascular adaptations to exercise training are compromised.NEW & NOTEWORTHY We report that compensatory mechanisms contribute to the maintenance of cardiac and coronary microvascular function in sedentary mice in which adiponectin has been deleted; however, when mice lacking adiponectin are subjected to the physiological stress of exercise training, beneficial coronary microvascular and cardiac adaptations are compromised or absent.
Collapse
Affiliation(s)
- Jacob T Caldwell
- Department of Biomedical Sciences, Florida State University, Tallahassee, Florida
| | | | - Hyerim Park
- Department of Nutrition, Food and Exercise Science, Florida State University, Tallahassee, Florida
| | - Jose R Pinto
- Department of Biomedical Sciences, Florida State University, Tallahassee, Florida
| | - Payal Ghosh
- Department of Nutrition, Food and Exercise Science, Florida State University, Tallahassee, Florida
| | - Emily C Reid-Foley
- Department of Biomedical Sciences, Florida State University, Tallahassee, Florida
| | - Brody Ulrich
- Department of Biomedical Sciences, Florida State University, Tallahassee, Florida
| | - Michael D Delp
- Department of Nutrition, Food and Exercise Science, Florida State University, Tallahassee, Florida
| | - Brad J Behnke
- Department of Kinesiology, Johnson Cancer Research Center, Kansas State University, Manhattan, Kansas
| | - Judy M Muller-Delp
- Department of Biomedical Sciences, Florida State University, Tallahassee, Florida
| |
Collapse
|
6
|
Panday S, Kar S, Kavdia M. How does ascorbate improve endothelial dysfunction? - A computational analysis. Free Radic Biol Med 2021; 165:111-126. [PMID: 33497797 DOI: 10.1016/j.freeradbiomed.2021.01.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 12/23/2020] [Accepted: 01/14/2021] [Indexed: 01/02/2023]
Abstract
Low levels of ascorbate (Asc) are observed in cardiovascular and neurovascular diseases. Asc has therapeutic potential for the treatment of endothelial dysfunction, which is characterized by a reduction in nitric oxide (NO) bioavailability and increased oxidative stress in the vasculature. However, the potential mechanisms remain poorly understood for the Asc mitigation of endothelial dysfunction. In this study, we developed an endothelial cell based computational model integrating endothelial cell nitric oxide synthase (eNOS) biochemical pathway with downstream reactions and interactions of oxidative stress, tetrahydrobiopterin (BH4) synthesis and biopterin ratio ([BH4]/[TBP]), Asc and glutathione (GSH). We quantitatively analyzed three Asc mediated mechanisms that are reported to improve/maintain endothelial cell function. The mechanisms include the reduction of •BH3 to BH4, direct scavenging of superoxide (O2•-) and peroxynitrite (ONOO-) and increasing eNOS activity. The model predicted that Asc at 0.1-100 μM concentrations improved endothelial cell NO production, total biopterin and biopterin ratio in a dose dependent manner and the extent of cellular oxidative stress. Asc increased BH4 availability and restored eNOS coupling under oxidative stress conditions. Asc at concentrations of 1-10 mM reduced O2•- and ONOO- levels and could act as an antioxidant. We predicted that glutathione peroxidase and peroxiredoxin in combination with GSH and Asc can restore eNOS coupling and NO production under oxidative stress conditions. Asc supplementation may be used as an effective therapeutic strategy when BH4 levels are depleted. This study provides detailed understanding of the mechanism responsible and the optimal cellular Asc levels for improvement in endothelial dysfunction.
Collapse
Affiliation(s)
- Sheetal Panday
- Department of Biomedical Engineering, Wayne State University, Detroit, 48202, MI, USA
| | - Saptarshi Kar
- College of Engineering and Technology, American University of the Middle East, Kuwait
| | - Mahendra Kavdia
- Department of Biomedical Engineering, Wayne State University, Detroit, 48202, MI, USA.
| |
Collapse
|
7
|
Takeshita N, Kawade N, Suzuki W, Hara S, Horio F, Ichinose H. Deficiency of ascorbic acid decreases the contents of tetrahydrobiopterin in the liver and the brain of ODS rats. Neurosci Lett 2020; 715:134656. [PMID: 31794791 DOI: 10.1016/j.neulet.2019.134656] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/22/2019] [Accepted: 11/25/2019] [Indexed: 11/26/2022]
Abstract
Tetrahydrobiopterin (BH4) is a cofactor for tyrosine hydroxylase and tryptophan hydroxylase, which are essential enzymes for the biosynthesis of dopamine, norepinephrine, and serotonin. It has been known that BH4 is a labile molecule and easily oxidized. As ascorbic acid (AsA) is an antioxidant that is rich in the brain, alteration in the AsA concentration in the brain may affect the proper metabolism of BH4. Here, we examined the effect of AsA deficiency on the concentration of BH4 using ODS rats, which are defective in the gene for AsA synthesis. Intake of an AsA-deficient diet for 2 weeks in ODS rats resulted in great reductions in the AsA levels up to 7 % in the liver and up to 55 % in the brain compared to animals fed a basal diet containing an adequate amount of AsA. The BH4 concentrations in ODS rats fed an AsA-free diet were decreased to 71 % in the liver and 88 % in the brain of those fed a basal diet. We found that the levels of dopamine, norepinephrine, and serotonin were also decreased compared with the ODS rats fed a basal diet. Our data showed that AsA deficiency can affect the BH4 concentrations in the liver and brain, resulting in decreases in the monoamine levels in the brain. These results suggest the importance of AsA in the pathophysiology of neuropsychiatric and cardiovascular disorders through alteration in the BH4 metabolism.
Collapse
Affiliation(s)
- Naoki Takeshita
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Noe Kawade
- Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Wakana Suzuki
- Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Satoshi Hara
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Fumihiko Horio
- Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Hiroshi Ichinose
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan.
| |
Collapse
|
8
|
Skovsted GF, Tveden-Nyborg P, Lykkesfeldt J. Expression of endothelin type B receptors in uterine artery smooth muscle cells from pregnant Guinea pigs. Placenta 2019; 77:8-15. [PMID: 30827357 DOI: 10.1016/j.placenta.2019.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 01/15/2019] [Accepted: 01/19/2019] [Indexed: 10/27/2022]
Abstract
INTRODUCTION It is well established that upregulation of endothelin type B (ETB) receptors in vascular smooth muscle cells plays a role in pathophysiological artery remodeling as response to ischemia and atherosclerosis. This study aimed to investigate the ETB receptors function and localization under normal physiological remodeling. Specifically, in the guinea pig uterine arteries during pregnancy. METHODS Uterine artery contractility was assessed with sarafotoxin 6c and endothelin-1 in wire-myography in uterine arteries from non-pregnant and pregnant guinea pigs at gestational day 37 ± 5. Localization of ETB receptors, proliferation marker Ki-67, and SMC differentiation marker SM22α in uterine arteries were investigated with immunohistochemistry. RESULTS Uterine arteries from pregnant guinea pigs showed significantly increased ETB receptor-mediated vasoconstriction compared to uterine arteries from non-pregnant and to coronary arteries from pregnant guinea pigs (p < 0.001), suggesting that ETB-receptor upregulation in uterine artery SMCs is a normal physiological mechanism taking place during remodeling. Furthermore, uterine arteries from pregnant guinea pigs showed enhanced expression of ETB receptors, high density of Ki-67 positive SMCs and sparse SM22α staining in SMCs localized in the outer layer of the vessel wall. DISCUSSION Our results suggest that ETB receptors are expressed in dedifferentiated proliferating SMCs of uterine arteries in pregnant guinea pigs. This study provides novel insight into the function and expression of ETB receptors in uterine vascular remodeling during pregnancy.
Collapse
Affiliation(s)
- Gry Freja Skovsted
- University of Copenhagen, Faculty of Health & Medical Sciences, Experimental Pharmacology and Toxicology, Section of Experimental Animal Models, Department of Veterinary and Animal Sciences, Ridebanevej 9 - 1st Floor, DK-1870, Frederiksberg C, Denmark.
| | - Pernille Tveden-Nyborg
- University of Copenhagen, Faculty of Health & Medical Sciences, Experimental Pharmacology and Toxicology, Section of Experimental Animal Models, Department of Veterinary and Animal Sciences, Ridebanevej 9 - 1st Floor, DK-1870, Frederiksberg C, Denmark
| | - Jens Lykkesfeldt
- University of Copenhagen, Faculty of Health & Medical Sciences, Experimental Pharmacology and Toxicology, Section of Experimental Animal Models, Department of Veterinary and Animal Sciences, Ridebanevej 9 - 1st Floor, DK-1870, Frederiksberg C, Denmark
| |
Collapse
|