1
|
Wuni R, Amerah H, Ammache S, Cruvinel NT, da Silva NR, Kuhnle GGC, Horst MA, Vimaleswaran KS. Interaction between genetic risk score and dietary fat intake on lipid-related traits in Brazilian young adults. Br J Nutr 2024; 132:575-589. [PMID: 39308196 PMCID: PMC11536265 DOI: 10.1017/s0007114524001594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 07/18/2024] [Accepted: 07/24/2024] [Indexed: 11/01/2024]
Abstract
The occurrence of dyslipidaemia, which is an established risk factor for cardiovascular diseases, has been attributed to multiple factors including genetic and environmental factors. We used a genetic risk score (GRS) to assess the interactions between genetic variants and dietary factors on lipid-related traits in a cross-sectional study of 190 Brazilians (mean age: 21 ± 2 years). Dietary intake was assessed by a trained nutritionist using three 24-h dietary recalls. The high GRS was significantly associated with increased concentration of TAG (beta = 0·10 mg/dl, 95 % CI 0·05-0·16; P < 0·001), LDL-cholesterol (beta = 0·07 mg/dl, 95 % CI 0·04, 0·11; P < 0·0001), total cholesterol (beta = 0·05 mg/dl, 95 % CI: 0·03, 0·07; P < 0·0001) and the ratio of TAG to HDL-cholesterol (beta = 0·09 mg/dl, 95 % CI: 0·03, 0·15; P = 0·002). Significant interactions were found between the high GRS and total fat intake on TAG:HDL-cholesterol ratio (Pinteraction = 0·03) and between the high GRS and SFA intake on TAG:HDL-cholesterol ratio (Pinteraction = 0·03). A high intake of total fat (>31·5 % of energy) and SFA (>8·6 % of energy) was associated with higher TAG:HDL-cholesterol ratio in individuals with the high GRS (beta = 0·14, 95 % CI: 0·06, 0·23; P < 0·001 for total fat intake; beta = 0·13, 95 % CI: 0·05, 0·22; P = 0·003 for SFA intake). Our study provides evidence that the genetic risk of high TAG:HDL-cholesterol ratio might be modulated by dietary fat intake in Brazilians, and these individuals might benefit from limiting their intake of total fat and SFA.
Collapse
Affiliation(s)
- Ramatu Wuni
- Hugh Sinclair Unit of Human Nutrition, Department of Food and Nutritional Sciences and Institute for Cardiovascular and Metabolic Research (ICMR), University of Reading, ReadingRG6 6DZ, UK
| | - Heyam Amerah
- Hugh Sinclair Unit of Human Nutrition, Department of Food and Nutritional Sciences and Institute for Cardiovascular and Metabolic Research (ICMR), University of Reading, ReadingRG6 6DZ, UK
| | - Serena Ammache
- Hugh Sinclair Unit of Human Nutrition, Department of Food and Nutritional Sciences and Institute for Cardiovascular and Metabolic Research (ICMR), University of Reading, ReadingRG6 6DZ, UK
| | - Nathália T. Cruvinel
- Nutritional Genomics Research Group, Faculty of Nutrition, Federal University of Goiás (UFG), Goiania, Brazil
| | - Nara R. da Silva
- Nutritional Genomics Research Group, Faculty of Nutrition, Federal University of Goiás (UFG), Goiania, Brazil
| | - Gunter G. C. Kuhnle
- Hugh Sinclair Unit of Human Nutrition, Department of Food and Nutritional Sciences and Institute for Cardiovascular and Metabolic Research (ICMR), University of Reading, ReadingRG6 6DZ, UK
| | - Maria A. Horst
- Nutritional Genomics Research Group, Faculty of Nutrition, Federal University of Goiás (UFG), Goiania, Brazil
| | - Karani S. Vimaleswaran
- Hugh Sinclair Unit of Human Nutrition, Department of Food and Nutritional Sciences and Institute for Cardiovascular and Metabolic Research (ICMR), University of Reading, ReadingRG6 6DZ, UK
- Institute for Food, Nutrition, and Health (IFNH), University of Reading, ReadingRG6 6EU, UK
| |
Collapse
|
2
|
Xiao C, Liu Y, Zhao W, Liang Y, Cui C, Yang S, Fang W, Miao L, Yuan Z, Lin Z, Zhai B, Zhao Z, Zhang L, Ma H, Jin H, Cao Y. The comparison of meat yield, quality, and flavor between small-tailed Han sheep and two crossbred sheep and the verification of related candidate genes. Front Nutr 2024; 11:1399390. [PMID: 39149545 PMCID: PMC11324605 DOI: 10.3389/fnut.2024.1399390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 07/12/2024] [Indexed: 08/17/2024] Open
Abstract
Introduction In Northeast China, Dorper and Australian White rams are commonly crossbred with small-tailed Han (STH) ewes to improve the offspring's meat yield and quality. However, the differences in traits and the flavor between the crossbred sheep and STH sheep remain unclear. In addition, the candidate genes potentially influencing the meat quality in the three sheep breeds require further verification. Methods A total of 18 2-month-old healthy rams were raised over a period of 5 months, which included 6 STH, 6 Dorper and small-tailed Han crossbred (Do × STH), and 6 Australian white and small-tailed Han crossbred (Au × STH) offspring. The differences in slaughter, meat quality traits, fatty acid and amino acid composition in the muscular longissimus dorsi (MLD), and volatile compounds in the semitendinosus muscle were compared between the sheep breeds. The candidate genes related to intramuscular fat (IMF) content and fatty acids were validated. Results The results of this study revealed that the crossbred sheep had higher body weight, carcass weight, bone weight, net meat weight, and IMF content than the STH sheep (p < 0.05). The Do × STH offspring had a higher pH value (24 h), moisture content, and cooking percentage; they also had redder and brighter meat color. The content of myristate, palmitic, and margaric acids in the crossbred sheep was higher than that in the STH sheep (p < 0.05). The Do × STH offspring had the highest saturated fatty acid content (p < 0.05). The Au × STH offspring had the highest protein content (p < 0.05). The arachidonic acid and amino acid (Asp, Ala, Ile, Leu, Lys, Thr, and essential amino acid) contents were higher in the STH sheep than in the crossbred sheep (p < 0.05). The odor activity value (OAV) analysis showed that most of the aldehydes in the Au × STH offspring had higher values. The PDK4 gene expression was positively associated with the IMF content and was negatively correlated with the linoleic acid content in the Do × STH sheep (p < 0.05). The TMEM273 gene expression was positively associated with linoleic and arachidonic acid contents and was negatively correlated with oleic and palmitic acid contents in the Do × STH sheep (p < 0.05). Discussion The results showed the differences between the crossbred sheep and STH sheep and provided the candidate genes related to meat quality in sheep.
Collapse
Affiliation(s)
- Cheng Xiao
- Institute of Animal and Veterinary Sciences, Jilin Academy of Agricultural Sciences, Gongzhuling, China
- Research Institute for Farm Animal Biology (FBN), Institute of Muscle Biology and Growth, Dummerstorf, Germany
- Institute of Agricultural and Environmental Sciences, Rostock University, Rostock, Germany
| | - Yu Liu
- Institute of Animal and Veterinary Sciences, Jilin Academy of Agricultural Sciences, Gongzhuling, China
| | - Wenjun Zhao
- Institute of Animal and Veterinary Sciences, Jilin Academy of Agricultural Sciences, Gongzhuling, China
- College of Agriculture, YanBian University, Yanji, China
| | - Yingjia Liang
- Institute of Animal and Veterinary Sciences, Jilin Academy of Agricultural Sciences, Gongzhuling, China
| | - Chao Cui
- Institute of Animal and Veterinary Sciences, Jilin Academy of Agricultural Sciences, Gongzhuling, China
| | - Shaoying Yang
- Institute of Animal and Veterinary Sciences, Jilin Academy of Agricultural Sciences, Gongzhuling, China
| | - WenWen Fang
- Institute of Animal and Veterinary Sciences, Jilin Academy of Agricultural Sciences, Gongzhuling, China
| | - Lisheng Miao
- Institute of Animal and Veterinary Sciences, Jilin Academy of Agricultural Sciences, Gongzhuling, China
| | - Zhiyu Yuan
- Institute of Animal and Veterinary Sciences, Jilin Academy of Agricultural Sciences, Gongzhuling, China
| | - Zihan Lin
- College of Plant Protection, Jilin Agricultural University, Changchun, China
| | - Bo Zhai
- Institute of Animal and Veterinary Sciences, Jilin Academy of Agricultural Sciences, Gongzhuling, China
| | - Zhongli Zhao
- Institute of Animal and Veterinary Sciences, Jilin Academy of Agricultural Sciences, Gongzhuling, China
| | - Lichun Zhang
- Institute of Animal and Veterinary Sciences, Jilin Academy of Agricultural Sciences, Gongzhuling, China
| | - Huihai Ma
- Institute of Animal and Veterinary Sciences, Jilin Academy of Agricultural Sciences, Gongzhuling, China
| | - Haiguo Jin
- Institute of Animal and Veterinary Sciences, Jilin Academy of Agricultural Sciences, Gongzhuling, China
| | - Yang Cao
- Institute of Animal and Veterinary Sciences, Jilin Academy of Agricultural Sciences, Gongzhuling, China
| |
Collapse
|
3
|
Gao D, Zhang C, Chen Q, Cao Z, Li P, Zhou G, Xu H, Xu B, Wang Z. Association between dietary fatty acids and urinary incontinence. Heliyon 2024; 10:e28595. [PMID: 38571581 PMCID: PMC10988052 DOI: 10.1016/j.heliyon.2024.e28595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 04/05/2024] Open
Abstract
Background Dietary nutrient intake contributes to urination; however, the association between dietary nutrient intake, especially that of fat, and urinary incontinence (UI) is not well understood. The most common types of UI include stress UI (SUI) and urgency UI (UUI). Objective To investigate the potential effect(s) of dietary fat intake on UI and explore its mechanism of action in relation to body mass index (BMI). Methods A cross-sectional survey of data from 15,121 individuals (20-85 years of age) from the National Health and Nutrition Examination Survey (2001-2008), a random population-based sample, was performed. Data regarding dietary nutrient intake were collected through 24 h dietary recall interviews. UI and covariate data were collected through in-person interviews. UI was assessed according to the American Urological Association Symptom Index. The odds ratio (OR) for SUI and UUI were calculated using multivariate logistic regression analysis. The mediation effect was estimated using observational mediation analysis. Results Higher total fat intake was positively associated with increased odds for developing UI (OR 1.44 [95% confidence interval (CI) 1.08-1.93]). Females who consumed more saturated fatty acids (SFA), monounsaturated fatty acids (MUFA), and polyunsaturated fatty acids (PUFA) were more likely to develop SUI. BMI partially explained the association between total fat, SFA, MUFA, and PUFA and SUI; the proportions of the mediation effect of BMI were 14.7%, 13.0%, 18.7%, and 16.3%, respectively. Conclusions Results of this study emphasize the key role of dietary fat intake in the prevalence of UI. Higher fat intake was positively associated with UI and BMI partially mediated the effect of fat intake on SUI.
Collapse
Affiliation(s)
- Dajun Gao
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai, 200011, China
| | - Caoxu Zhang
- The Core Laboratory in Medical Center of Clinical Research, Department of Molecular Diagnostics and Endocrinology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qi Chen
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai, 200011, China
| | - Zhi Cao
- Shanghai Changhai Hospital, Shanghai, China
| | - Peizhang Li
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai, 200011, China
| | | | - Huan Xu
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai, 200011, China
| | - Bin Xu
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai, 200011, China
| | - Zhong Wang
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai, 200011, China
| |
Collapse
|
4
|
Moreno LG, César NR, Melo DS, Figueiró MTO, Dos Santos EC, Evangelista-Silva PH, de Sousa Santos C, Costa KB, Rocha-Vieira E, Dias-Peixoto MF, Castro Magalhães FD, Esteves EA. A MUFA/carotenoid-rich oil ameliorated insulin resistance by improving inflammation and oxidative stress in obese rats. Mol Cell Endocrinol 2024; 581:112110. [PMID: 37981187 DOI: 10.1016/j.mce.2023.112110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 11/06/2023] [Accepted: 11/13/2023] [Indexed: 11/21/2023]
Abstract
Obesity is associated with low-grade inflammation and oxidative stress, leading to insulin resistance and type II diabetes. Caryocar brasiliense pulp oil (pequi oil - PO) is rich in oleic acid and carotenoids and positively implicated in regulating inflammation and oxidative stress. This study investigated PO's antioxidant and anti-inflammatory effects in a diet-induced obesity model. Male Wistar rats were allocated into three experimental groups: Control (CD), Western Diet (WD), and Western Diet, with 27% of lard switched by PO (WDP). Metabolic, inflammatory, and oxidative stress biomarkers were evaluated after 12 weeks of diet protocols in liver and adipose tissue. WDP rats gained less body mass and epididymal fat, had less hepatic fat infiltration, and were more glucose-tolerant and insulin-sensitive than WD (p < 0.05). In the liver, the WDP group had the highest non-enzymatic antioxidant capacity, SOD and GPx activities, CAT, SOD II, and HSP72 expression compared to WD (p < 0.05). Adipose tissue IL-6 and TNF were reduced, and IL-10 was increased in WDP compared to WD (p < 0.05). Our data suggest that the partial replacement of lard by PO in a Western diet prevented visceral fat accumulation and contributed to reducing inflammation in adipose tissue and liver oxidative stress, improving obesity-related insulin resistance.
Collapse
Affiliation(s)
- Lauane Gomes Moreno
- Programa de Pós-Graduação Em Ciências da Saúde, Universidade Federal Dos Vales Do Jequitinhonha e Mucuri - UFVJM, Rodovia MGT 367 - Km 583. N. 5000, Alto da Jacuba, Diamantina, MG, 39100-000, Brazil.
| | - Nayara Rayane César
- Programa de Pós-graduação Multicêntrico Em Ciências Fisiológicas, Universidade Federal Dos Vales Do Jequitinhonha e Mucuri, Rodovia MGT 367 - Km 583. N. 5000, Alto da Jacuba, Diamantina, MG, 39100-000, Brazil.
| | - Dirceu Sousa Melo
- Instituto de Ciências Naturais, Departamento de Biologia, Universidade Federal de Lavras - UFLA, Aquenta Sol, Lavras, MG, 37200-900, Brazil.
| | - Maria Thereza Otoni Figueiró
- Programa de Pós-Graduação Em Ciências da Saúde, Universidade Federal Dos Vales Do Jequitinhonha e Mucuri - UFVJM, Rodovia MGT 367 - Km 583. N. 5000, Alto da Jacuba, Diamantina, MG, 39100-000, Brazil.
| | - Edivânia Cordeiro Dos Santos
- Programa de Pós-graduação Multicêntrico Em Ciências Fisiológicas, Universidade Federal Dos Vales Do Jequitinhonha e Mucuri, Rodovia MGT 367 - Km 583. N. 5000, Alto da Jacuba, Diamantina, MG, 39100-000, Brazil.
| | | | - Carina de Sousa Santos
- Faculdade de Ciências da Saúde, Curso de Nutrição, Universidade Federal de Grande Dourados - UFGD, Dourados, Brazil.
| | - Karine Beatriz Costa
- Programa de Pós-graduação Em Ciências Aplicadas à Saúde - PPgCAS, Universidade Federal de Juiz de Fora - UFJF, Governador Valadares, MG, 35010-180, Brazil.
| | - Etel Rocha-Vieira
- Programa de Pós-Graduação Em Ciências da Saúde, Universidade Federal Dos Vales Do Jequitinhonha e Mucuri - UFVJM, Rodovia MGT 367 - Km 583. N. 5000, Alto da Jacuba, Diamantina, MG, 39100-000, Brazil; Programa de Pós-graduação Multicêntrico Em Ciências Fisiológicas, Universidade Federal Dos Vales Do Jequitinhonha e Mucuri, Rodovia MGT 367 - Km 583. N. 5000, Alto da Jacuba, Diamantina, MG, 39100-000, Brazil.
| | - Marco Fabrício Dias-Peixoto
- Programa de Pós-Graduação Em Ciências da Saúde, Universidade Federal Dos Vales Do Jequitinhonha e Mucuri - UFVJM, Rodovia MGT 367 - Km 583. N. 5000, Alto da Jacuba, Diamantina, MG, 39100-000, Brazil; Programa de Pós-graduação Multicêntrico Em Ciências Fisiológicas, Universidade Federal Dos Vales Do Jequitinhonha e Mucuri, Rodovia MGT 367 - Km 583. N. 5000, Alto da Jacuba, Diamantina, MG, 39100-000, Brazil.
| | - Flávio de Castro Magalhães
- Programa de Pós-Graduação Em Ciências da Saúde, Universidade Federal Dos Vales Do Jequitinhonha e Mucuri - UFVJM, Rodovia MGT 367 - Km 583. N. 5000, Alto da Jacuba, Diamantina, MG, 39100-000, Brazil; Programa de Pós-graduação Multicêntrico Em Ciências Fisiológicas, Universidade Federal Dos Vales Do Jequitinhonha e Mucuri, Rodovia MGT 367 - Km 583. N. 5000, Alto da Jacuba, Diamantina, MG, 39100-000, Brazil.
| | - Elizabethe Adriana Esteves
- Programa de Pós-Graduação Em Ciências da Saúde, Universidade Federal Dos Vales Do Jequitinhonha e Mucuri - UFVJM, Rodovia MGT 367 - Km 583. N. 5000, Alto da Jacuba, Diamantina, MG, 39100-000, Brazil; Programa de Pós-graduação Multicêntrico Em Ciências Fisiológicas, Universidade Federal Dos Vales Do Jequitinhonha e Mucuri, Rodovia MGT 367 - Km 583. N. 5000, Alto da Jacuba, Diamantina, MG, 39100-000, Brazil.
| |
Collapse
|
5
|
Hsu LW, Chien YW. Effects of Melatonin Supplementation on Lipid Metabolism and Body Fat Accumulation in Ovariectomized Rats. Nutrients 2023; 15:2800. [PMID: 37375706 DOI: 10.3390/nu15122800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/17/2023] [Accepted: 06/18/2023] [Indexed: 06/29/2023] Open
Abstract
Postmenopausal obesity is a rising problem. Melatonin (Mel) is a hormone secreted by the pineal gland that regulates the circadian rhythms and improves obesity. In this experiment, ovariectomized (OVX) rats were used as a menopause model to explore the effects of Mel supplementation on lipid metabolism, body fat accumulation, and obesity. Nine-week-old female rats underwent an OVX surgery and were assigned to the following groups: control group (C), low-dose group (L, 10 mg/kg body weight (BW) Mel), medium-dose group (M, 20 mg/kg BW Mel), and high-dose group (H, 50 mg/kg BW Mel), administered by gavage for 8 weeks. The results showed that the OVX rats supplemented with low, medium, and high doses of Mel for 8 weeks exhibited reduced BW gain, perirenal fat mass, and gonads fat mass, and an increased serum irisin level. Low and high doses of Mel induced brite/beige adipocytes in the white adipose tissues. In addition, the messenger RNA levels of the fatty acid synthesis enzymes were significantly reduced after the high-dose Mel supplementation. Thus, Mel can reduce the hepatic fatty acid synthesis and promote the browning of white adipose tissues through irisin; thereby, improving obesity and body fat accumulation in OVX rats.
Collapse
Affiliation(s)
- Ling-Wen Hsu
- Department of Nutrition and Health Science, Taipei Medical University, Taipei 11031, Taiwan
| | - Yi-Wen Chien
- Department of Nutrition and Health Science, Taipei Medical University, Taipei 11031, Taiwan
- Research Center of Geriatric Nutrition, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan
- Graduate Institute of Metabolism and Obesity Sciences, Taipei Medical University, Taipei 11031, Taiwan
- Nutrition Research Center, Taipei Medical University Hospital, Taipei 11031, Taiwan
- TMU Research Center for Digestive Medicine, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
6
|
Aldamarany W, Taocui H, Liling D, Wanfu Y, Zhong G. Oral Supplementation with Three Vegetable Oils Differing in Fatty Acid Composition Alleviates High-Fat Diet-Induced Obesity in Mice by Regulating Inflammation and Lipid Metabolism. POL J FOOD NUTR SCI 2023. [DOI: 10.31883/pjfns/160186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023] Open
|
7
|
Effects of Different Vegetable Oils on the Nonalcoholic Fatty Liver Disease in C57/BL Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2023; 2023:4197955. [PMID: 36691598 PMCID: PMC9867581 DOI: 10.1155/2023/4197955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 07/05/2022] [Accepted: 07/08/2022] [Indexed: 01/15/2023]
Abstract
Background Nonalcoholic fatty liver disease (NAFLD) is the most common hepatic disorder, affecting 22-28% of the adult population and more than 50% of obese people all over the world. Modulation of the fatty acids in diet as a means of prevention against nonalcoholic fatty liver disease in animal models (NAFLD) remains unclear. The treatment of NAFLD has not been described in specific guidelines so far. Thus, the justification for the study is to check modifications in macronutrients composition, fatty acids, in particular, play a significant role in the treatment of NAFLD regardless of weight loss. Aim To investigate different vegetable oils in prevention and progression of NAFLD in animal models. Methods For the experiment were used fifty C57BL/6J mice male fed with high fat and fructose diet (HFD) to induce the NAFLD status and they received different commercial vegetable oils for 16 weeks to prevent steatosis. Liver steatosis and oxidative stress parameters were analyzed using biochemical and histological methods. Fatty acids profile in the oils and in the liver samples was obtained. Results The high fat and fructose diet led to obesity and the vegetable oils offered were effective in maintaining body weight similar to the control group. At the end of the experiment (16 weeks), the HFHFr group had a greater body weight compared to control and treated groups (HFHFr: 44.20 ± 2.34 g/animal vs. control: 34.80 ± 3.45 g/animal; p < 0.001; HFHFr/OL: 35.40 ± 4.19 g/animal; HFHFr/C: 36.10 ± 3.92 g/animal; HFHFr/S: 36.25 ± 5.70 g/animal; p < 0.01). Furthermore, the HFD diet has caused an increase in total liver fat compared to control (p < 0.01). Among the treated groups, the animals receiving canola oil showed a reduction of hepatic and retroperitoneal fat (p < 0.05). These biochemical levels were positively correlated with the hepatic histology findings. Hepatic levels of omega-3 decreased in the olive oil and high fat diet groups compared to the control group, whereas these levels increased in the groups receiving canola and soybean oil compared to control and the high fat groups. Conclusion In conclusion, the commercial vegetable oils either contributed to the prevention or reduction of induced nonalcoholic fatty liver with high fat and fructose diet, especially canola oil.
Collapse
|
8
|
Guo F, Wang M, Guo X, Pu L, Sun M, Li S, Feng T, Tong L, Zhao S, Gao W, Lin X, Yao Y, Jin L. The association between fatty acid intake and breast cancer based on the NHANES and Mendelian randomization study. Cancer Epidemiol 2021; 73:101966. [PMID: 34146915 DOI: 10.1016/j.canep.2021.101966] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 05/20/2021] [Accepted: 06/07/2021] [Indexed: 12/26/2022]
Abstract
BACKGROUND Observational studies have examined the association between fatty acid intake and breast cancer (BC), and the association might vary depending on menopausal status, but the results remain controversial. The objective of this study was to investigate the associations between fatty acid intake and BC. METHODS The National Health and Nutrition Examination Survey (NHANES) 1999-2016 was used in the study, and stratified analysis by menopausal status was performed. Logistic regression models were used to evaluate the associations between BC and intake of saturated fatty acids (SFAs), monounsaturated fatty acids (MUFAs), and polyunsaturated fatty acids (PUFAs), adjusting for covariates. Three two-sample Mendelian randomization (MR) methods-inverse variance weighted (IVW), weighted median, and Mendelian randomization-Egger (MR-Egger) regression-were applied to further verify the associations between intake of fatty acids and BC. RESULTS Higher intake of MUFAs was associated with lower risk of BC in premenopausal women: ORs (95 %CI): 0.325 (0.110, 0.964). IVW showed that increased intake of MUFAs was associated with a reduced risk of BC: 0.997 (0.995, 1.000), p = 0.024. No associations between BC and SFAs, MUFAs or PUFAs were found in postmenopausal women or in the overall population. CONCLUSIONS Increasing intake of MUFAs might reduce the risk of BC in premenopausal women. The protective effect of MUFAs on BC was also supported by MR study.
Collapse
Affiliation(s)
- Feng Guo
- Epidemiology and Biostatistics, School of Public Health, No. 1163 Xinmin Street, Jilin University, Changchun, Jilin, 130021, China.
| | - Min Wang
- Epidemiology and Biostatistics, School of Public Health, No. 1163 Xinmin Street, Jilin University, Changchun, Jilin, 130021, China.
| | - Xuecan Guo
- Epidemiology and Biostatistics, School of Public Health, No. 1163 Xinmin Street, Jilin University, Changchun, Jilin, 130021, China.
| | - Liyuan Pu
- Epidemiology and Biostatistics, School of Public Health, No. 1163 Xinmin Street, Jilin University, Changchun, Jilin, 130021, China.
| | - Mengzi Sun
- Epidemiology and Biostatistics, School of Public Health, No. 1163 Xinmin Street, Jilin University, Changchun, Jilin, 130021, China.
| | - Shuo Li
- Epidemiology and Biostatistics, School of Public Health, No. 1163 Xinmin Street, Jilin University, Changchun, Jilin, 130021, China.
| | - Tianyu Feng
- Epidemiology and Biostatistics, School of Public Health, No. 1163 Xinmin Street, Jilin University, Changchun, Jilin, 130021, China.
| | - Li Tong
- Epidemiology and Biostatistics, School of Public Health, No. 1163 Xinmin Street, Jilin University, Changchun, Jilin, 130021, China.
| | - Saisai Zhao
- Epidemiology and Biostatistics, School of Public Health, No. 1163 Xinmin Street, Jilin University, Changchun, Jilin, 130021, China.
| | - Wenhui Gao
- Epidemiology and Biostatistics, School of Public Health, No. 1163 Xinmin Street, Jilin University, Changchun, Jilin, 130021, China.
| | - Xinli Lin
- Department of Child and Adolescent Health, School of Public Health, No. 1163 Xinmin Street, Jilin University, Changchun, Jilin, 130021, China.
| | - Yan Yao
- Epidemiology and Biostatistics, School of Public Health, No. 1163 Xinmin Street, Jilin University, Changchun, Jilin, 130021, China.
| | - Lina Jin
- Epidemiology and Biostatistics, School of Public Health, No. 1163 Xinmin Street, Jilin University, Changchun, Jilin, 130021, China.
| |
Collapse
|
9
|
Yeh JH, Tung YT, Yeh YS, Chien YW. Effects of Dietary Fatty Acid Composition on Lipid Metabolism and Body Fat Accumulation in Ovariectomized Rats. Nutrients 2021; 13:nu13062022. [PMID: 34208400 PMCID: PMC8231186 DOI: 10.3390/nu13062022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/05/2021] [Accepted: 06/10/2021] [Indexed: 01/21/2023] Open
Abstract
Background: Obesity is a state of excess energy storage resulting in body fat accumulation, and postmenopausal obesity is a rising issue. In this study using ovariectomized (OVX) rats, we mimicked low estrogen levels in a postmenopausal state in order to investigate the effects of different amounts and types of dietary fatty acids on body fat accumulation and body lipid metabolism. Methods: At 9 weeks of age, rats (n = 40) were given an ovariectomy, eight of which were sham-operated to serve as a control group (S). We then divided OVX rats into four different intervention groups: diet with 5% soybean oil (C), and diet with 5% (L), 15% (M), and 20% (H) (w/w) experimental oil, containing 60% monounsaturated fatty acids (MUFAs) and with a polyunsaturated/saturated fatty acid (P/S) ratio of 5. Results: After OVX, compared to the S group, the C group showed significantly higher body weight, and insulin and leptin levels. Compared to the C group, the H group had lower hepatic triglyceride level and FAS enzyme activity, and higher hepatic ACO and CPT-1 gene expressions and enzyme activities. Conclusions: An OVX leads to severe weight gain and lipid metabolism abnormalities, while according to previous studies, high fat diet may worsen the situation. However, during our experiment, we discovered that the experimental oil mixture with 60% MUFAs and P/S = 5 may ameliorate these imbalances.
Collapse
Affiliation(s)
- Jhih-Han Yeh
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei 11031, Taiwan;
| | - Yu-Tang Tung
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan;
- Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
- Graduate Institute of Metabolism and Obesity Sciences, Taipei Medical University, Taipei 11031, Taiwan
| | - Yu-Sheng Yeh
- Department of Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, MO 63112, USA;
| | - Yi-Wen Chien
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei 11031, Taiwan;
- Graduate Institute of Metabolism and Obesity Sciences, Taipei Medical University, Taipei 11031, Taiwan
- Nutrition Research Center, Taipei Medical University Hospital, Taipei 11031, Taiwan
- Research Center of Geriatric Nutrition, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan
- Correspondence: ; Tel.: +886-2-2736-1661 (ext. 6556); Fax: +886-2-2737-3112
| |
Collapse
|
10
|
Shen H, Huang L, Dou H, Yang Y, Wu H. Effect of Trilobatin from Lithocarpus polystachyus Rehd on Gut Microbiota of Obese Rats Induced by a High-Fat Diet. Nutrients 2021; 13:nu13030891. [PMID: 33801901 PMCID: PMC8001797 DOI: 10.3390/nu13030891] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/04/2021] [Accepted: 03/05/2021] [Indexed: 12/12/2022] Open
Abstract
Trilobatin was identified as the primary bioactive component in the Lithocarpus polystachyus Rehd (LPR) leaves. This study explored the antiobesity effect of trilobatin from LPR leaves and its influence on gut microbiota in obese rats. Results showed that trilobatin could significantly reduce body and liver weight gain induced by a high-fat diet, and the accumulation of perirenal fat, epididymal fat, and brown fat of SD (Male Sprague–Dawley) obese rats in a dose-independent manner. Short-chain fatty acids (SCFAs) concentrations increased, especially the concentration of butyrate. Trilobatin supplementation could significantly increase the relative abundance of Lactobacillus, Prevotella, CF231, Bacteroides, and Oscillospira, and decrease greatly the abundance of Blautia, Allobaculum, Phascolarctobacterium, and Coprococcus, resulting in an increase of the ratio of Bacteroidetes to Firmicutes (except the genera of Lactobacillus and Oscillospira). The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway predicted by the Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) indicated the different relative metabolic pathways after trilobatin supplementation. This study may reveal the contribution of gut microbiota to the antiobesity effect of trilobatin from LPR leaves and predict the potential regulatory mechanism for obesity induced by a high-fat diet.
Collapse
Affiliation(s)
- Hailiang Shen
- Citrus Research Institute, Southwest University, Chongqing 400000, China; (H.S.); (L.H.); (H.D.)
- Citrus Research Institute, Chinese Academy of Agricultural Science, Chongqing 400000, China
| | - Linhua Huang
- Citrus Research Institute, Southwest University, Chongqing 400000, China; (H.S.); (L.H.); (H.D.)
- Citrus Research Institute, Chinese Academy of Agricultural Science, Chongqing 400000, China
| | - Huating Dou
- Citrus Research Institute, Southwest University, Chongqing 400000, China; (H.S.); (L.H.); (H.D.)
- Citrus Research Institute, Chinese Academy of Agricultural Science, Chongqing 400000, China
| | - Yali Yang
- Department of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an 710000, China;
- National Research and Development Center of Apple Processing Technology, Xi’an 710000, China
| | - Houjiu Wu
- Citrus Research Institute, Southwest University, Chongqing 400000, China; (H.S.); (L.H.); (H.D.)
- Citrus Research Institute, Chinese Academy of Agricultural Science, Chongqing 400000, China
- Correspondence: ; Tel./Fax: +86-023-68349701
| |
Collapse
|
11
|
Preguiça I, Alves A, Nunes S, Fernandes R, Gomes P, Viana SD, Reis F. Diet-induced rodent models of obesity-related metabolic disorders-A guide to a translational perspective. Obes Rev 2020; 21:e13081. [PMID: 32691524 DOI: 10.1111/obr.13081] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/12/2020] [Accepted: 05/28/2020] [Indexed: 12/12/2022]
Abstract
Diet is a critical element determining human health and diseases, and unbalanced food habits are major risk factors for the development of obesity and related metabolic disorders. Despite technological and pharmacological advances, as well as intensification of awareness campaigns, the prevalence of metabolic disorders worldwide is still increasing. Thus, novel therapeutic approaches with increased efficacy are urgently required, which often depends on cellular and molecular investigations using robust animal models. In the absence of perfect rodent models, those induced by excessive consumption of fat and sugars better replicate the key aspects that are the root causes of human metabolic diseases. However, the results obtained using these models cannot be directly compared, particularly because of the use of different dietary protocols, and animal species and strains, among other confounding factors. This review article revisits diet-induced models of obesity and related metabolic disorders, namely, metabolic syndrome, prediabetes, diabetes and nonalcoholic fatty liver disease. A critical analysis focused on the main pathophysiological features of rodent models, as opposed to the criteria defined for humans, is provided as a practical guide with a translational perspective for the establishment of animal models of obesity-related metabolic diseases.
Collapse
Affiliation(s)
- Inês Preguiça
- Institute of Pharmacology and Experimental Therapeutics, and Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal.,Clinical Academic Center of Coimbra (CACC), University of Coimbra, Coimbra, Portugal
| | - André Alves
- Institute of Pharmacology and Experimental Therapeutics, and Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal.,Clinical Academic Center of Coimbra (CACC), University of Coimbra, Coimbra, Portugal
| | - Sara Nunes
- Institute of Pharmacology and Experimental Therapeutics, and Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal.,Clinical Academic Center of Coimbra (CACC), University of Coimbra, Coimbra, Portugal
| | - Rosa Fernandes
- Institute of Pharmacology and Experimental Therapeutics, and Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal.,Clinical Academic Center of Coimbra (CACC), University of Coimbra, Coimbra, Portugal
| | - Pedro Gomes
- Institute of Pharmacology and Experimental Therapeutics, and Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal.,Clinical Academic Center of Coimbra (CACC), University of Coimbra, Coimbra, Portugal.,Department of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal.,Center for Health Technology and Services Research (CINTESIS), University of Porto, Porto, Portugal
| | - Sofia D Viana
- Institute of Pharmacology and Experimental Therapeutics, and Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal.,Clinical Academic Center of Coimbra (CACC), University of Coimbra, Coimbra, Portugal.,ESTESC-Coimbra Health School, Pharmacy, Polytechnic Institute of Coimbra, Coimbra, Portugal
| | - Flávio Reis
- Institute of Pharmacology and Experimental Therapeutics, and Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal.,Clinical Academic Center of Coimbra (CACC), University of Coimbra, Coimbra, Portugal
| |
Collapse
|
12
|
Klaikeaw N, Wongphoom J, Werawatganon D, Chayanupatkul M, Siriviriyakul P. Anti-inflammatory and anti-oxidant effects of aloe vera in rats with non-alcoholic steatohepatitis. World J Hepatol 2020; 12:363-377. [PMID: 32821335 PMCID: PMC7407916 DOI: 10.4254/wjh.v12.i7.363] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/12/2020] [Accepted: 05/30/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Aloe vera exerts several biological activities, such as, anti-inflammatory, antioxidant, and antimicrobial effects. It was recently shown to reduce insulin resistance and triglyceride level. We hypothesized that aloe vera would have beneficial effects in alleviating non-alcoholic steatohepatitis (NASH) in rats.
AIM To examine the therapeutic effects of aloe vera in NASH rats.
METHODS All rats were randomly divided into 3 groups (n = 6 in each group). Rats in the control group were fed ad libitum with a standard diet for 8 wk. Rats in the NASH group were fed ad libitum with a high-fat high-fructose diet (HFHFD) for 8 wk. Rats in the aloe vera group were fed ad libitum with a HFHFD and aloe vera in dimethylsulfoxide (50 mg/kg) by gavage daily for 8 wk. Liver samples were collected at the end of the treatment period.
RESULTS Hepatic malondialdehyde (MDA) levels increased significantly in the NASH group as compared with the control group (377 ± 77 nmol/mg vs 129 ± 51 nmol/mg protein, respectively, P < 0.001). Glutathione (GSH) levels were significantly lower in the NASH group than the control group (9 ± 2 nmol/mg vs 24 ± 8 nmol/mg protein, respectively, P = 0.001). The expression of interleukin-18 (IL-18), nuclear factor-kappa β, and caspase-3 increased, while peroxisome proliferator-activated receptor gamma decreased in the NASH group compared with the controls. Following aloe vera administration, MDA levels decreased (199 ± 35 nmol/mg protein) and GSH increased (18 ± 4 nmol/mg protein) markedly. Steatosis, hepatocyte ballooning, lobular inflammation and increased hepatocyte apoptosis were observed in the NASH group. Aloe vera treatment attenuated these changes in liver histology.
CONCLUSION Aloe vera attenuated oxidative stress, hepatic inflammation and hepatocyte apoptosis, thus improving liver pathology in rats with NASH.
Collapse
Affiliation(s)
- Naruemon Klaikeaw
- Department of Pathology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Jutamas Wongphoom
- Department of Pathology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Duangporn Werawatganon
- Alternative and Complementary Medicine for Gastrointestinal and Liver Diseases Research Unit, Department of Physiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Maneerat Chayanupatkul
- Alternative and Complementary Medicine for Gastrointestinal and Liver Diseases Research Unit, Department of Physiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Prasong Siriviriyakul
- Alternative and Complementary Medicine for Gastrointestinal and Liver Diseases Research Unit, Department of Physiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
13
|
Anti-inflammatory and anti-oxidant effects of aloe vera in rats with non-alcoholic steatohepatitis. World J Hepatol 2020. [DOI: 10.4254/wjh.v12.i7.364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
14
|
Tutunchi H, Ostadrahimi A, Saghafi-Asl M. The Effects of Diets Enriched in Monounsaturated Oleic Acid on the Management and Prevention of Obesity: a Systematic Review of Human Intervention Studies. Adv Nutr 2020; 11:864-877. [PMID: 32135008 PMCID: PMC7360458 DOI: 10.1093/advances/nmaa013] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 01/06/2020] [Accepted: 02/04/2020] [Indexed: 12/21/2022] Open
Abstract
Obesity is associated with an increased risk of several major noncommunicable diseases, and is an important public health concern globally. Dietary fat content is a major contributor to the increase in global obesity rates. Changes in dietary habits, such as the quality of fatty acids in the diet, are proposed to prevent obesity and its metabolic complications. In recent years, a number of studies have found that oleic acid (OA), the most common MUFA in daily nutrition, has protective effects against human disease. Importantly, there is emerging evidence indicating the beneficial effects of OA in regulating body weight. Accordingly, the objective of this systematic review was to investigate the effects of diets enriched in monounsaturated OA on the management and prevention of obesity, emphasizing possible mechanisms of action of OA in energy homeostasis. Searches were performed in PubMed/MEDLINE, ScienceDirect, Scopus, ProQuest, and Google Scholar databases for clinical trials that examined the effects of diets rich in OA on obesity. Of 821 full-text articles assessed, 28 clinical trials were included in the present study. According to the studies examined in this review, diets enriched in OA can influence fat balance, body weight, and possibly energy expenditure. Importantly, abdominal fat and central obesity can be reduced following consumption of high-OA-containing meals. Mechanistically, OA-rich diets can be involved in the regulation of food intake, body mass, and energy expenditure by stimulating AMP-activated protein kinase signaling. Other proposed mechanisms include the prevention of the nucleotide-binding oligomerization domain-like receptor 3/caspase-1 inflammasome pathway, the induction of oleoylethanolamide synthesis, and possibly the downregulation of stearoyl-CoA desaturase 1 activity. In summary, current findings lend support to advice not restricting consumption of OA-rich meals so as to maintain a healthy body weight.
Collapse
Affiliation(s)
- Helda Tutunchi
- Nutrition Research Center, Student Research Committee, School of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran,Department of Clinical Nutrition, School of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | |
Collapse
|
15
|
Liu X, Zhao K, Yang X, Zhao Y. Gut Microbiota and Metabolome Response of Decaisnea insignis Seed Oil on Metabolism Disorder Induced by Excess Alcohol Consumption. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:10667-10677. [PMID: 31483636 DOI: 10.1021/acs.jafc.9b04792] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This study investigated the modulatory effects of Decaisnea insignis seed oil (DISO), which was rich in palmitoleic acid (55.25%), palmitic acid (12.25%), and oleic acid (28.74%), on alcohol-induced metabolism disorder in mice. Fifty mice were orally administered with 38% alcohol (0.4 mL/day) and without or with DISO (3, 6, and 12 g/kg) for consecutive 12 weeks. DISO inhibited the alcohol-induced weight loss and liver function abnormality (p < 0.01) and shifted the profiles of cecal microbiome: elevating the abundance of Lactobacillus, Ruminoccoceae_UCG_004 (p < 0.05) and decreasing abundance of Parabacteroides (p < 0.05). This treatment also regulated metabolome response of amino acid and lipid metabolism in cecal content: upregulating 5-hydroxyindole-3-acetic acid (p < 0.05), 6-hydroxynicotinic acid, 5-methoxytryptamine, nicotinamide, and nicotinic acid (p < 0.1) and downregulating androsterone, tryptophan, and indole-3-acetamide (p < 0.05). DISO protected against alcoholic liver injury and gut microbiota dysbiosis by enriching the relative abundance of Lactobacillus, which was positively associated with the improvement of intestinal permeability and tryptophan metabolism.
Collapse
|
16
|
Tseng YH, Chang CW, Chiang W, Hsieh SC. Adlay Bran Oil Suppresses Hepatic Gluconeogenesis and Attenuates Hyperlipidemia in Type 2 Diabetes Rats. J Med Food 2019; 22:22-28. [PMID: 30673500 DOI: 10.1089/jmf.2018.4237] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
This study aimed to examine the antidiabetic effects of various concentrations of adlay bran oil (ABO) in high fat diet and streptozotocin-induced diabetic rats. Dietary supplementation with 10% ABO for 4 weeks effectively decreased the blood triacylglycerol, glucose, and total cholesterol levels in diabetic rats, although body weight remained the same. The mRNA and protein expressions of hepatic glucose transporter 2 (GLUT-2) and phosphoenolpyruvate carboxykinase (PEPCK) were increased and that of glucokinase (GCK) were decreased in diabetic rats. However, 10% ABO treatment reduced the mRNA and protein expressions of GLUT-2 and PEPCK and elevated the expression of hepatic GCK in diabetic rats. Thus, ABO enhanced hepatic glucose metabolism to decrease blood glucose in diabetic rats. In addition, 10% ABO supplementation increased the expression of phosphorylated protein kinase B (Akt) relative to the total Akt levels in the muscles of diabetic rats, indicating enhanced insulin sensitivity. The results indicate that ABO displays a potential for improving hyperlipidemia and hyperglycemia in diabetes by enhancing insulin sensitivity and hepatic glucose metabolism.
Collapse
Affiliation(s)
- Yi-Han Tseng
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Ching-Wen Chang
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Wenchang Chiang
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Shu-Chen Hsieh
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
17
|
Yang XF, Qiu YQ, Wang L, Gao KG, Jiang ZY. A high-fat diet increases body fat mass and up-regulates expression of genes related to adipogenesis and inflammation in a genetically lean pig. J Zhejiang Univ Sci B 2019; 19:884-894. [PMID: 30387338 DOI: 10.1631/jzus.b1700507] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Because of their physiological similarity to humans, pigs provide an excellent model for the study of obesity. This study evaluated diet-induced adiposity in genetically lean pigs and found that body weight and energy intake did not differ between controls and pigs fed the high-fat (HF) diet for three months. However, fat mass percentage, adipocyte size, concentrations of total cholesterol (TC), triglyceride (TG), high-density lipoprotein cholesterol (HDL-C) and low-density lipoprotein cholesterol (LDL-C), insulin, and leptin in plasma were significantly higher in HF pigs than in controls. The HF diet increased the expression in backfat tissue of genes responsible for cholesterol synthesis such as Insig-1 and Insig-2. Lipid metabolism-related genes including sterol regulatory element binding protein 1c (SREBP-1c), fatty acid synthase 1 (FASN1), diacylglycerol O-acyltransferase 2 (DGAT2), and fatty acid binding protein 4 (FABP4) were significantly up-regulated in backfat tissue, while the expression of proliferator-activated receptor-α (PPAR-α) and carnitine palmitoyl transferase 2 (CPT2), both involved in fatty acid oxidation, was reduced. In liver tissue, HF feeding significantly elevated the expression of SREBP-1c, FASN1, DGAT2, and hepatocyte nuclear factor-4α (HNF-4α) mRNAs. Microarray analysis further showed that the HF diet had a significant effect on the expression of 576 genes. Among these, 108 genes were related to 21 pathways, with 20 genes involved in adiposity deposition and 26 related to immune response. Our results suggest that an HF diet can induce genetically lean pigs into obesity with body fat mass expansion and adipose-related inflammation.
Collapse
Affiliation(s)
- Xue-Fen Yang
- Laboratory of Animal Nutrition and Feed (South China), Ministry of Agriculture / State Key Laboratory of Livestock and Poultry Breeding / Guangdong Key Laboratory of Animal Breeding and Nutrition / Guangdong Public Laboratory of Animal Breeding and Nutrition / Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Yue-Qin Qiu
- Laboratory of Animal Nutrition and Feed (South China), Ministry of Agriculture / State Key Laboratory of Livestock and Poultry Breeding / Guangdong Key Laboratory of Animal Breeding and Nutrition / Guangdong Public Laboratory of Animal Breeding and Nutrition / Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Li Wang
- Laboratory of Animal Nutrition and Feed (South China), Ministry of Agriculture / State Key Laboratory of Livestock and Poultry Breeding / Guangdong Key Laboratory of Animal Breeding and Nutrition / Guangdong Public Laboratory of Animal Breeding and Nutrition / Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Kai-Guo Gao
- Laboratory of Animal Nutrition and Feed (South China), Ministry of Agriculture / State Key Laboratory of Livestock and Poultry Breeding / Guangdong Key Laboratory of Animal Breeding and Nutrition / Guangdong Public Laboratory of Animal Breeding and Nutrition / Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Zong-Yong Jiang
- Laboratory of Animal Nutrition and Feed (South China), Ministry of Agriculture / State Key Laboratory of Livestock and Poultry Breeding / Guangdong Key Laboratory of Animal Breeding and Nutrition / Guangdong Public Laboratory of Animal Breeding and Nutrition / Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| |
Collapse
|
18
|
Dietary Fat, but Not Protein or Carbohydrate, Regulates Energy Intake and Causes Adiposity in Mice. Cell Metab 2018; 28:415-431.e4. [PMID: 30017356 DOI: 10.1016/j.cmet.2018.06.010] [Citation(s) in RCA: 184] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 02/25/2018] [Accepted: 06/14/2018] [Indexed: 12/30/2022]
Abstract
The impacts of different macronutrients on body weight regulation remain unresolved, with different studies suggesting increased dietary fat, increased carbohydrates (particularly sugars), or reduced protein may all stimulate overconsumption and drive obesity. We exposed C57BL/6 mice to 29 different diets varying from 8.3% to 80% fat, 10% to 80% carbohydrate, 5% to 30% protein, and 5% to 30% sucrose. Only increased dietary fat content was associated with elevated energy intake and adiposity. This response was associated with increased gene expression in the 5-HT receptors, and the dopamine and opioid signaling pathways in the hypothalamus. We replicated the core findings in four other mouse strains (DBA/2, BALB/c, FVB, and C3H). Mice regulate their food consumption primarily to meet an energy rather than a protein target, but this system can be over-ridden by hedonic factors linked to fat, but not sucrose, consumption.
Collapse
|
19
|
Effect of Locally Manufactured Niger Seed Oil on Lipid Profile Compared to Imported Palm and Sunflower Oils on Rat Models. J Lipids 2018; 2018:7846350. [PMID: 29854466 PMCID: PMC5954901 DOI: 10.1155/2018/7846350] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 03/19/2018] [Accepted: 03/26/2018] [Indexed: 11/18/2022] Open
Abstract
Background Different types of dietary lipids have been shown to affect lipid metabolism and lipid profile differently. Objective This study aims to assess the effect of local niger seed oil on serum lipid profile compared to palm oil and sunflower oil in rats. Methods The effect of the 15% plant oils on serum lipid profile, body weight gain percentage, and feed efficiency ratio was assessed after 8 weeks of experimental period. Results and Conclusion The 15% niger seed oil showed decrease and increase in the level of lipid profile as compared to rats fed with 15% palm oil and sunflower oil (except Triacylglycerol), respectively. The 15% niger seed oil showed significant decrease and increase in body weight gain percentage as compared to the 15% palm oil and 15% sunflower oil, respectively. The feed efficiency ratio was significantly higher and lower in the 15% niger seed oil compared to rats fed with 15% sunflower oil and control group and the palm oil fed rats, respectively. The current study concluded that consumption of locally manufactured niger seed oil decreased the blood lipid profiles, body weight gain percentage, and feed efficiency ratio as compared to palm oil. Utilization of oils containing more unsaturated fatty acids like niger seed oil is recommended to reduce the risk of developing cardiovascular disease.
Collapse
|