1
|
López-Martín M, Montero-Pau J, Ylla G, Gómez-Guillamón ML, Picó B, Pérez-de-Castro A. Insights into the early transcriptomic response against watermelon mosaic virus in melon. BMC PLANT BIOLOGY 2024; 24:58. [PMID: 38245701 PMCID: PMC10799517 DOI: 10.1186/s12870-024-04745-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 01/11/2024] [Indexed: 01/22/2024]
Abstract
BACKGROUND Watermelon mosaic virus (WMV) is one of the most prevalent viruses affecting melon worldwide. Recessive resistance to WMV in melon has previously been reported in the African accession TGR-1551. Moreover, the genomic regions associated to the resistance have also been described. Nevertheless, the transcriptomic response that might infer the resistance to this potyvirus has not been explored. RESULTS We have performed a comparative transcriptomic analysis using mock and WMV-inoculated plants of the susceptible cultivar "Bola de oro" (BO) and a resistant RIL (Recombinant inbred line) derived from the initial cross between "TGR-1551" and BO. In total, 616 genes were identified as differentially expressed and the weighted gene co-expression network analysis (WGCNA) detected 19 gene clusters (GCs), of which 7 were differentially expressed for the genotype x treatment interaction term. SNPs with a predicted high impact on the protein function were detected within the coding regions of most of the detected DEGs. Moreover, 3 and 16 DEGs were detected within the QTL regions previously described in chromosomes 11 and 5, respectively. In addition to these two specific genomic regions, we also observde large transcriptomic changes from genes spread across the genome in the resistant plants in response to the virus infection. This early response against WMV implied genes involved in plant-pathogen interaction, plant hormone signal transduction, the MAPK signaling pathway or ubiquitin mediated proteolysis, in detriment to the photosynthetic and basal metabolites pathways. Moreover, the gene MELO3C021395, which coded a mediator of RNA polymerase II transcription subunit 33A (MED33A), has been proposed as the candidate gene located on chromosome 11 conferring resistance to WMV. CONCLUSIONS The comparative transcriptomic analysis presented here showed that, even though the resistance to WMV in TGR-1551 has a recessive nature, it triggers an active defense response at a transcriptomic level, which involves broad-spectrum resistance mechanisms. Thus, this study represents a step forward on our understanding of the mechanisms underlaying WMV resistance in melon. In addition, it sheds light into a broader topic on the mechanisms of recessive resistances.
Collapse
Affiliation(s)
- María López-Martín
- COMAV, Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Cno. de Vera, s/n, 46022, València, Spain
| | - Javier Montero-Pau
- Instituto Cavanilles de biodiversidad y la biología evolutiva (ICBIBE), Universidad de Valencia, C/ del Catedrátic José Beltrán Martínez, 2, 46980, Paterna, Spain
| | - Guillem Ylla
- Laboratory of Bioinformatics and Genome Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387, Kraków, Poland
| | - María Luisa Gómez-Guillamón
- Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora, CSIC-UMA, Avda. Dr. Wienberg s/n, 29750, Málaga, Spain
| | - Belén Picó
- COMAV, Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Cno. de Vera, s/n, 46022, València, Spain
| | - Ana Pérez-de-Castro
- COMAV, Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Cno. de Vera, s/n, 46022, València, Spain.
| |
Collapse
|
2
|
Jailani AAK, Paret ML. Development of a multiplex RT-RPA assay for simultaneous detection of three viruses in cucurbits. MOLECULAR PLANT PATHOLOGY 2023; 24:1443-1450. [PMID: 37462133 PMCID: PMC10576173 DOI: 10.1111/mpp.13380] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/28/2023] [Accepted: 07/03/2023] [Indexed: 10/15/2023]
Abstract
Begomoviruses and criniviruses, vectored by whiteflies (Bemisia tabaci), are important threats to crops worldwide. In recent years, the spread of cucurbit leaf crumple virus (CuLCrV), cucurbit yellow stunting disorder virus (CYSDV) and cucurbit chlorotic yellows virus (CCYV) on cucurbit crops has been reported to cause devastating crop losses in many regions of the world. In this study, a multiplex recombinase polymerase amplification (RPA) assay, an isothermal technique for rapid and simultaneous detection of DNA and RNA viruses CuLCrV, CYSDV and CCYV was developed. Highly specific and sensitive multiplex RPA primers for the coat protein region of these viruses were created and evaluated. The sensitivity of the multiplex RPA assay was examined using serially diluted plasmid containing the target regions. The results demonstrated that multiplex RPA primers have high sensitivity with a detection limit of a single copy of the viruses. The multiplex RPA primers were specific to the target as indicated by testing against other begomoviruses, potyviruses and an ilarvirus, and no nonspecific amplifications were noted. The primers simultaneously detected mixed infection of CCYV, CYSDV and CuLCrV in watermelon and squash crude extracts. This study is the first report of a multiplex RPA assay for simultaneous detection of mixed infection of DNA and RNA plant viruses.
Collapse
Affiliation(s)
- A. Abdul Kader Jailani
- North Florida Research and Education CenterUniversity of FloridaQuincyFloridaUSA
- Plant Pathology DepartmentUniversity of FloridaGainesvilleFloridaUSA
| | - Mathews L. Paret
- North Florida Research and Education CenterUniversity of FloridaQuincyFloridaUSA
- Plant Pathology DepartmentUniversity of FloridaGainesvilleFloridaUSA
| |
Collapse
|
3
|
Luigi M, Manglli A, Corrado CL, Tiberini A, Costantini E, Ferretti L, Tomassoli L, Bertin S. Development, Validation, and Application of Reverse Transcription Real-Time and Droplet Digital PCR Assays for the Detection of the Potyviruses Watermelon Mosaic Virus and Zucchini Yellow Mosaic Virus in Cucurbits. PLANTS (BASEL, SWITZERLAND) 2023; 12:2364. [PMID: 37375989 DOI: 10.3390/plants12122364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/29/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023]
Abstract
Among the cucurbit-infecting viruses, watermelon mosaic virus (WMV) and zucchini yellow mosaic virus (ZYMV) (Potyvirus: Potyviridae) are responsible for severe symptoms on cucumber, melon, watermelon, and zucchini cultivations worldwide. In this study, reverse transcription real-time PCR (real-time RT-PCR) and droplet-digital PCR (RT-ddPCR) assays targeting the coat protein (CP) genes of WMV and ZYMV were developed and validated according to the international standards of plant pest diagnosis (EPPO PM 7/98 (5)). First, the diagnostic performance of WMV-CP and ZYMV-CP real-time RT-PCRs was evaluated, and the assays displayed an analytical sensitivity of 10-5 and 10-3, respectively. The tests also showed an optimal repeatability, reproducibility and analytical specificity, and were reliable for the virus detection in naturally infected samples and across a wide range of cucurbit hosts. Based on these results, the real-time RT-PCR reactions were adapted to set up RT-ddPCR assays. These were the first RT-ddPCR assays aiming at the detection and quantification of WMV and ZYMV and showed a high sensitivity, being able to detect until 9 and 8 copies/µL of WMV or ZYMV, respectively. The RT-ddPCRs allowed the direct estimation of the virus concentrations and opened to a broad range of applications in disease management, such as the evaluation of partial resistance in breeding processes, identification of antagonistic/synergistic events, and studies on the implementation of natural compounds in the integrated management strategies.
Collapse
Affiliation(s)
- Marta Luigi
- Research Centre for Plant Protection and Certification, Council for Agricultural Research and Economics, 00156 Rome, Italy
| | - Ariana Manglli
- Research Centre for Plant Protection and Certification, Council for Agricultural Research and Economics, 00156 Rome, Italy
| | - Carla Libia Corrado
- Research Centre for Plant Protection and Certification, Council for Agricultural Research and Economics, 00156 Rome, Italy
| | - Antonio Tiberini
- Research Centre for Plant Protection and Certification, Council for Agricultural Research and Economics, 00156 Rome, Italy
| | - Elisa Costantini
- Research Centre for Plant Protection and Certification, Council for Agricultural Research and Economics, 00156 Rome, Italy
| | - Luca Ferretti
- Research Centre for Plant Protection and Certification, Council for Agricultural Research and Economics, 00156 Rome, Italy
| | - Laura Tomassoli
- Research Centre for Plant Protection and Certification, Council for Agricultural Research and Economics, 00156 Rome, Italy
| | - Sabrina Bertin
- Research Centre for Plant Protection and Certification, Council for Agricultural Research and Economics, 00156 Rome, Italy
| |
Collapse
|
4
|
Vidal AH, Lacorte C, Sanches MM, Alves-Freitas DMT, Abreu EFM, Pinheiro-Lima B, Rosa RCC, Jesus ON, Campos MA, Felix GP, Abreu ACR, Santos YS, Lacerda ALM, Varsani A, Melo FL, Ribeiro SG. Characterization of Cucurbit Aphid-Borne Yellows Virus (CABYV) from Passion Fruit in Brazil: Evidence of a Complex of Species within CABYV Isolates. Viruses 2023; 15:v15020410. [PMID: 36851624 PMCID: PMC9965994 DOI: 10.3390/v15020410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/25/2023] [Accepted: 01/28/2023] [Indexed: 02/05/2023] Open
Abstract
High-throughput sequencing (HTS) has been an important tool for the discovery of plant viruses and their surveillance. In 2015, several virus-like symptoms were observed in passion fruit (PF) plants in Bahia state, Brazil. Using HTS technology, bioinformatics tools, RT-PCR, and Sanger sequencing, we identified the cucurbit aphid-borne yellows virus (CABYV, Polerovirus, Solemoviridae) in co-infection with cowpea aphid-borne mosaic virus (CABMV, Potyvirus, Potyviridae) in PF, in green manure, and spontaneous plants in several localities in Bahia. Complete genomes of CABYV-PF isolates were determined and analyzed with other CABYV isolates available in GenBank that have been identified in various countries. Phylogenetic analysis and pairwise identity comparison with CABYV isolates showed that CABYV-PFs are more closely related to French and Spanish isolates. Overall, analyses of all the CABYV genomes revealed that these could represent ten distinct species, and we thus proposed reclassifying these CABYV as isolates into ten species, tentatively named "Polerovirus curcubitaeprimum" to "Polerovirus curcubitaenonum", and "Polerovirus melo". CABYV-PF is a member of "Polerovirus curcubitaeprimum".
Collapse
Affiliation(s)
- Andreza H. Vidal
- Embrapa Recursos Genéticos e Biotecnologia, Brasília 70770-917, DF, Brazil
- Instituto de Ciências Biológicas—IB, PPG BIOMOL, Universidade de Brasília, Brasília 70910-900, DF, Brazil
| | - Cristiano Lacorte
- Embrapa Recursos Genéticos e Biotecnologia, Brasília 70770-917, DF, Brazil
| | - Marcio M. Sanches
- Embrapa Recursos Genéticos e Biotecnologia, Brasília 70770-917, DF, Brazil
- Embrapa Gado de Corte, Campo Grande 79106-550, MS, Brazil
| | | | | | - Bruna Pinheiro-Lima
- Embrapa Recursos Genéticos e Biotecnologia, Brasília 70770-917, DF, Brazil
- Instituto de Ciências Biológicas—IB, PPG BIOMOL, Universidade de Brasília, Brasília 70910-900, DF, Brazil
| | | | - Onildo N. Jesus
- Embrapa Mandioca e Fruticultura, Cruz das Almas 44380-000, BA, Brazil
| | - Magnólia A. Campos
- Centro de Educação e Saúde, Universidade Federal de Campina Grande, Cuité 58175-000, PB, Brazil
| | - Gustavo P. Felix
- Embrapa Recursos Genéticos e Biotecnologia, Brasília 70770-917, DF, Brazil
- Instituto de Ciências Biológicas—IB, Universidade de Brasília, Brasília 70910-900, DF, Brazil
| | - Ana Clara R. Abreu
- Embrapa Recursos Genéticos e Biotecnologia, Brasília 70770-917, DF, Brazil
- Instituto de Ciências Biológicas—IB, Universidade de Brasília, Brasília 70910-900, DF, Brazil
| | - Yam S. Santos
- Embrapa Recursos Genéticos e Biotecnologia, Brasília 70770-917, DF, Brazil
- Departamento de Microbiologia, Instituto de Biotecnologia Aplicada à Agropecuária, Universidade Federal de Viçosa (UFV), Viçosa 36570-900, MG, Brazil
| | | | - Arvind Varsani
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Fernando L. Melo
- Instituto de Ciências Biológicas—IB, PPG BIOMOL, Universidade de Brasília, Brasília 70910-900, DF, Brazil
| | - Simone G. Ribeiro
- Embrapa Recursos Genéticos e Biotecnologia, Brasília 70770-917, DF, Brazil
- Instituto de Ciências Biológicas—IB, PPG BIOMOL, Universidade de Brasília, Brasília 70910-900, DF, Brazil
- Correspondence:
| |
Collapse
|
5
|
Spychalski M, Kukawka R, Prasad R, Borodynko-Filas N, Stępniewska-Jarosz S, Turczański K, Smiglak M. A New Benzothiadiazole Derivative with Systemic Acquired Resistance Activity in the Protection of Zucchini ( Cucurbita pepo convar. giromontiina) against Viral and Fungal Pathogens. PLANTS (BASEL, SWITZERLAND) 2022; 12:43. [PMID: 36616170 PMCID: PMC9823545 DOI: 10.3390/plants12010043] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/11/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
The ability of plant resistance inducers to provide protection against viral diseases is one of their main advantages over conventional pesticides. In the case of viral diseases that cannot be controlled directly with pesticides, insecticides are used to control the vectors of viruses. However, the effectiveness of such treatments is strictly dependent on the time of application. The plant response to the application of systemic acquired resistance (SAR) inducers, as a result of the stimulating action of these substances, does not depend on the time of application as it triggers the plant's natural defence mechanism. The best-recognised substance showing SAR inducer activity is acibenzolar-S-methyl ester (ASM, BTH). As its activity against different plant pathogens of crops has been well documented, the current research is concentrated on the search for novel substances of the type. The tested substance, N-methoxy-N-methylbenzo(1,2,3)thiadiazole-7-carboxamide (BTHWA), is an amide derivative of benzothiadiazole, showing plant resistance-inducing activity. This article presents the activity of BTHWA that has led to increased resistance of zucchini (Cucurbita pepo convar. giromontiina) towards viral infections. In addition, since the occurrence of the fungal pathogen, powdery mildew, was also observed during the two-year field experiments, the activity of BTHWA related to the reduction of infection with this fungus was also investigated. The substance was applied in two different variants either four or eight times, over the whole vegetation season. Surprisingly, the variant of four applications performed at the beginning of the vegetation season proved more effective in protection against viruses and fungus. A possible explanation may be the occurrence of the growth-immunity trade-off phenomenon that is known in the literature. Disturbance in plant metabolism resulting from eight applications may lead to lower yields of plants treated with SAR inducers. Perhaps such overstimulation of the plants we treated eight times may not have brought the optimum increase in plant resistance.
Collapse
Affiliation(s)
- Maciej Spychalski
- Poznan Science and Technology Park, Rubież 46, 61-612 Poznan, Poland
| | - Rafal Kukawka
- Poznan Science and Technology Park, Rubież 46, 61-612 Poznan, Poland
- Innosil Sp. z o.o., Rubież 46, 61-612 Poznan, Poland
| | - Raghavendra Prasad
- Environmental Horticulture, Royal Horticultural Society (RHS), Wisley, Surrey GU23 6QB, UK
| | - Natasza Borodynko-Filas
- Plant Disease Clinic and Bank of Pathogens, Institute of Plant Protection-National Research Institute, ul. Węgorka 20, 60-318 Poznan, Poland
| | - Sylwia Stępniewska-Jarosz
- Plant Disease Clinic and Bank of Pathogens, Institute of Plant Protection-National Research Institute, ul. Węgorka 20, 60-318 Poznan, Poland
| | - Krzysztof Turczański
- Poznan Science and Technology Park, Rubież 46, 61-612 Poznan, Poland
- Department of Botany and Forest Habitats, Faculty of Forestry and Wood Technology, Poznan University of Life Sciences, Wojska Polskiego 71d, 60-625 Poznan, Poland
| | - Marcin Smiglak
- Poznan Science and Technology Park, Rubież 46, 61-612 Poznan, Poland
- Innosil Sp. z o.o., Rubież 46, 61-612 Poznan, Poland
| |
Collapse
|
6
|
Khanal V, Ali A. High Mutation Frequency and Significant Population Differentiation in Papaya Ringspot Virus-W Isolates. Pathogens 2021; 10:pathogens10101278. [PMID: 34684227 PMCID: PMC8537659 DOI: 10.3390/pathogens10101278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 11/18/2022] Open
Abstract
A total of 101 papaya ringspot virus-W (PRSV-W) isolates were collected from five different cucurbit hosts in six counties of Oklahoma during the 2016–2018 growing seasons. The coat protein (CP) coding region of these isolates was amplified by reverse transcription-polymerase chain reaction, and 370 clones (3–5 clones/isolate) were sequenced. Phylogenetic analysis revealed three phylogroups while host, location, and collection time of isolates had minimal impact on grouping pattern. When CP gene sequences of these isolates were compared with sequences of published PRSV isolates (both P and W strains), they clustered into four phylogroups based on geographical location. Oklahoman PRSV-W isolates formed one of the four distinct major phylogroups. The permutation-based tests, including Ks, Ks *, Z *, Snn, and neutrality tests, indicated significant genetic differentiation and polymorphisms among PRSV-W populations in Oklahoma. The selection analysis confirmed that the CP gene is undergoing purifying selection. The mutation frequencies among all PRSV-W isolates were within the range of 1 × 10−3. The substitution mutations in 370 clones of PRSV-W isolates showed a high proportion of transition mutations, which gave rise to higher GC content. The N-terminal region of the CP gene mostly contained the variable sites with numerous mutational hotspots, while the core region was highly conserved.
Collapse
|
7
|
Abdalla OA, Ali A. Genetic Variability and Evidence of a New Subgroup in Watermelon Mosaic Virus Isolates. Pathogens 2021; 10:pathogens10101245. [PMID: 34684194 PMCID: PMC8538135 DOI: 10.3390/pathogens10101245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 11/16/2022] Open
Abstract
Watermelon mosaic virus (WMV) is one of the important Potyviruses that infect cucurbits worldwide. To better understand the population structure of WMV in the United States (U.S.), 57 isolates were collected from cucurbit fields located in nine southern states. The complete coat protein gene of all WMV isolates was cloned, sequenced and compared with 89 reported WMV isolates. The nucleotide and amino acid sequence identities among the U.S. WMV isolates ranged from 88.9 to 99.7% and from 91.5 to 100%, respectively. Phylogenetic analysis revealed that all the U.S. WMV isolates irrespective of their geographic origin or hosts belonged to Group 3. However, the fifty-seven isolates made three clusters in G3, where two clusters were similar to previously reported subgroups EM1 and EM2, and the third cluster, containing nine WMV isolates, formed a distinct subgroup named EM5 in this study. The ratio of non-synonymous to synonymous nucleotide substitution was low indicating the occurrence of negative purifying selection in the CP gene of WMV. Phylogenetic analysis of selected 37 complete genome sequences of WMV isolates also supported the above major grouping. Recombination analysis in the CP genes confirmed various recombinant events, indicating that purifying selection and recombination are the two dominant forces for the evolution of WMV isolates in the U.S.
Collapse
Affiliation(s)
- Osama A. Abdalla
- Department of Biological Science, The University of Tulsa, Tulsa, OK 74104, USA;
- Department of Plant Pathology, Faculty of Agriculture, Assiut University, Assiut 71526, Egypt
| | - Akhtar Ali
- Department of Biological Science, The University of Tulsa, Tulsa, OK 74104, USA;
- Correspondence: ; Tel.: +1-918-631-2018
| |
Collapse
|