1
|
Ostuni A, Albarella S, Tassoni L, Pugliano M, D'Anza E, Crudele MA, Ciotola F, Beato MS, Iovane V, Cecchini Gualandi S, Frontoso R, De Vendel J, Peretti V, Bavoso A. Circulation of small ruminant lentivirus in endangered goat and sheep breeds of Southern Italy. Heliyon 2024; 10:e33906. [PMID: 39027592 PMCID: PMC11255564 DOI: 10.1016/j.heliyon.2024.e33906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/20/2024] Open
Abstract
According to the Domestic Animal Diversity Information System (DAD-IS) of the FAO, Italy has one of the largest numbers of local small ruminant breeds among European countries. In Southern Italy, namely the Campania Region, Bagnolese and Laticauda sheep breeds and Cilentana goat breeds are considered endangered according to the DAD-IS. Conservation of endangered animal breeds is a goal of the European Union (EU). However, the role of infectious diseases as risk factors for endangered breeds has rarely been considered. Small ruminant lentiviruses (SRLV) infect sheep and goats, causing slow-progressive, persistent, and debilitating diseases that can lead to animal death and productivity loss. In this study, we investigated the presence of SRLV in Bagnolese, Laticauda, and Cilentana breeds using a commercial ELISA in parallel with an in-house ELISA. The results of the two tests were in good agreement (Cohen Kappa 0.84, 95 % CI = 0.76-0.93). Discrepancies between the two tests were resolved using western blotting. In total, 430 samples were tested (248 Bagnolese, 125 Laticauda, and 57 Cilentana). The apparent prevalence rates were 12.5 %, 6.4 %, and 1.7 % in Bagnolese, Laticauda, and Cilentana, respectively. In the molecular analysis of 11 proviral partial sequences, subtypes B2 and A24 were identified in two Bagnolese herds. Owing to the beneficial role of sheep and goat breeding in marginal areas, it is important to screen the entire population and implement control/eradication of SRLV infections in conjunction with each conservation program.
Collapse
Affiliation(s)
- Angela Ostuni
- Department of Sciences, University of Basilicata, Via dell’ Ateneo Lucano 10, 85100, Potenza, Italy
| | - Sara Albarella
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Via Delpino 1, 80137, Napoli, Italy
| | - Luca Tassoni
- National Reference Laboratory for Ruminant retroviruses, Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche (IZSUM), Via G. Salvemini 1, 06126, Perugia, PG, Italy
| | - Mariagiulia Pugliano
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Via Delpino 1, 80137, Napoli, Italy
| | - Emanuele D'Anza
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Via Delpino 1, 80137, Napoli, Italy
| | - Maria Antonietta Crudele
- Department of Sciences, University of Basilicata, Via dell’ Ateneo Lucano 10, 85100, Potenza, Italy
| | - Francesca Ciotola
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Via Delpino 1, 80137, Napoli, Italy
| | - Maria Serena Beato
- National Reference Laboratory for Ruminant retroviruses, Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche (IZSUM), Via G. Salvemini 1, 06126, Perugia, PG, Italy
| | - Valentina Iovane
- Dipartimento di Agraria, Università degli Studi di Napoli Federico II, Via Università 100, 80055, Portici, NA, Italy
| | | | - Raffaele Frontoso
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute, 2, 80055, Portici, NA, Italy
- OneHEco APS, 84047, Capaccio Paestum, SA, Italy
| | | | - Vincenzo Peretti
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Via Delpino 1, 80137, Napoli, Italy
| | - Alfonso Bavoso
- Department of Sciences, University of Basilicata, Via dell’ Ateneo Lucano 10, 85100, Potenza, Italy
| |
Collapse
|
2
|
Riggio S, Tolone M, Sottile G, Tumino S, Portolano B, Sutera AM, Sardina MT, Cesarani A, Mastrangelo S. A high-density genome-wide approach reveals novel genetic markers linked to small ruminant lentivirus susceptibility in sheep. Front Genet 2024; 15:1376883. [PMID: 38911298 PMCID: PMC11191640 DOI: 10.3389/fgene.2024.1376883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 05/10/2024] [Indexed: 06/25/2024] Open
Abstract
Visna/Maedi virus (VMV) is lentiviral disease of sheep responsible for severe production losses. Multiple genomic regions associated with infection were reported indicating genetic complexity. In this study, a combined genome-wide approach using a high-density SNP array has been performed, comparing VMV-infected (n = 78) and non-infected (n = 66) individuals of the Valle del Belice breed. The serological tests showed a seroprevalence of 26%. The comparison among results from different approaches (GWAS, Fisher's exact test and the FST analysis) revealed two association signals: on OAR03 close to the GRIN2B gene and on OAR05 close to the TMEM232 gene. To the best of our knowledge, there has been no previous association between these genes and lentiviral infection in any species. The GRIN2B gene plays a role in pain response, synaptic transmission, and receptor clustering, while TMEM232 is involved in the development of immune-related disorders. The results highlighted new aspects of the genetic complexity related to the resistance/susceptibility to VMV in sheep, confirming that studies on different breeds can lead to different results. The ideal approach for validation of the markers identified in our study is to use samples from a population independent from the discovery population with the same phenotype used in the discovery stage.
Collapse
Affiliation(s)
- Silvia Riggio
- Dipartimento Scienze Agrarie, Alimentari e Forestali, University of Palermo, Palermo, Italy
| | - Marco Tolone
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche, ed Ambientali, University of Messina, Messina, Italy
| | - Gianluca Sottile
- Dipartimento Scienze Economiche, Aziendali e Statistiche, University of Palermo, Palermo, Italy
| | - Serena Tumino
- Dipartimento di Agricoltura, Alimentazione e Ambiente, University of Catania, Catania, Italy
| | - Baldassare Portolano
- Dipartimento Scienze Agrarie, Alimentari e Forestali, University of Palermo, Palermo, Italy
| | - Anna Maria Sutera
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche, ed Ambientali, University of Messina, Messina, Italy
| | - Maria Teresa Sardina
- Dipartimento Scienze Agrarie, Alimentari e Forestali, University of Palermo, Palermo, Italy
| | - Alberto Cesarani
- Dipartimento di Agraria, University of Sassari, Sassari, Italy
- Department of Animal and Dairy Science, University of Georgia, Athens, GA, United States
| | - Salvatore Mastrangelo
- Dipartimento Scienze Agrarie, Alimentari e Forestali, University of Palermo, Palermo, Italy
| |
Collapse
|
3
|
Olech M. The genetic variability of small-ruminant lentiviruses and its impact on tropism, the development of diagnostic tests and vaccines and the effectiveness of control programmes. J Vet Res 2023; 67:479-502. [PMID: 38130459 PMCID: PMC10730557 DOI: 10.2478/jvetres-2023-0064] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 11/13/2023] [Indexed: 12/23/2023] Open
Abstract
Introduction Maedi-visna virus and caprine arthritis encephalitis virus are two closely related lentiviruses which cause multisystemic, progressive and persistent infection in goats and sheep. Because these viruses frequently cross the species barrier, they are considered to be one genetic group called small-ruminant lentiviruses (SRLV). They have in vivo tropism mainly for monocytes and macrophages and organ tropism with unknown mechanisms. Typical clinical signs are pneumonia in sheep, arthritis in goats, and mastitis in both species. Infection with SRLV cannot currently be treated or prevented, and control programmes are the only approaches to avoiding its spread. These programmes rely mainly on annual serological testing and elimination of positive animals. However, the high genetic and antigenic variability of SRLV complicate their early and definitive diagnosis. The objective of this review is to summarise the current knowledge of SRLV genetic variation and its implications for tropism, the development of diagnostic tests and vaccines and the effectiveness of control and eradication programmes. Material and Methods Subject literature was selected from the PubMed and the Google Scholar databases. Results The high genetic diversity of SRLV affects the performance of diagnostic tools and therefore control programmes. For the early and definitive diagnosis of SRLV infection, a combination of serological and molecular tests is suggested. Testing by PCR can also be considered for sub-yearling animals. There are still significant gaps in our knowledge of the epidemiology, immunology and biology of SRLV and their impact on animal production and welfare. Conclusion This information may aid selection of the most effective SRLV spread reduction measures.
Collapse
Affiliation(s)
- Monika Olech
- Department of Pathology, National Veterinary Research Institute, 24-100Puławy, Poland
| |
Collapse
|
4
|
Ostuni A, Iovane V, Monné M, Crudele MA, Scicluna MT, Nardini R, Raimondi P, Frontoso R, Boni R, Bavoso A. A double-strain TM (gp45) polypeptide antigen and its application in the serodiagnosis of equine infectious anemia. J Virol Methods 2023; 315:114704. [PMID: 36842487 DOI: 10.1016/j.jviromet.2023.114704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 02/26/2023]
Abstract
Lentiviruses, including equine infectious anemia virus (EIAV), are considered viral quasispecies because of their intrinsic genetic, structural and phenotypic variability. Immunoenzymatic tests (ELISA) for EIAV reported in the literature were obtained mainly by using the capsid protein p26, which is derived almost exclusively from a single strain (Wyoming), and do not reflect the great potential epitopic variability of the EIAV quasispecies. In this investigation, the GenBank database was exploited in a systematic approach to design a set of representative protein antigens useful for EIAV serodiagnosis. The main bioinformatic tools used were clustering, molecular modelling, epitope predictions and aggregative/ solubility predictions. This approach led to the design of two antigenic proteins, i.e. a full sequence p26 capsid protein and a doublestrain polypeptide derived from the gp45 transmembrane protein fused to Maltose Binding Protein (MBP) that were expressed by recombinant DNA technology starting from synthetic genes, and analyzed by circular dichroism (CD) spectroscopy. Both proteins were used in an indirect ELISA test that can address some of the high variability of EIAV. The novel addition of the gp45 double-strain antigen contributed to enhance the diagnostic sensitivity and could be also useful for immunoblotting application.
Collapse
Affiliation(s)
- Angela Ostuni
- Department of Sciences, University of Basilicata, viale Ateneo Lucano 10, 85100 Potenza, Italy.
| | - Valentina Iovane
- Dipartimento di Agraria - Università degli Studi di Napoli Federico II -Via Università, 100 - 80055 Portici, NA, Italy
| | - Magnus Monné
- Department of Sciences, University of Basilicata, viale Ateneo Lucano 10, 85100 Potenza, Italy
| | | | - Maria Teresa Scicluna
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", Via Appia Nuova, 1411, 00178 Roma, Italy
| | - Roberto Nardini
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", Via Appia Nuova, 1411, 00178 Roma, Italy
| | | | - Raffaele Frontoso
- OneHEco APS, 84047 Capaccio Paestum, SA, Italy; Istituto Zooprofilattico Sperimentale del Mezzogiorno Via Salute, 2 - 80055 Portici, Napoli, Italy
| | - Raffaele Boni
- Department of Sciences, University of Basilicata, viale Ateneo Lucano 10, 85100 Potenza, Italy
| | - Alfonso Bavoso
- Department of Sciences, University of Basilicata, viale Ateneo Lucano 10, 85100 Potenza, Italy
| |
Collapse
|
5
|
Rodrigues CS, de Faria DA, Lacerda TS, Paiva SR, Caetano AR, Blackburn H, McManus C. Lentivirus Susceptibility in Brazilian and US Sheep with TMEM154 Mutations. Genes (Basel) 2022; 14:genes14010070. [PMID: 36672811 PMCID: PMC9858560 DOI: 10.3390/genes14010070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/13/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Small ruminant lentiviruses (SRLVs) affect sheep and goats worldwide. The major gene related to SRLV infections is the Transmembrane Protein Gene 154 (TMEM154). We estimated the haplotype frequencies of TMEM154 in the USA (USDA-ARS) and Brazil (Embrapa) Gene Banks by using two different SNP genotyping methodologies, FluidigmTM and KASPTM. We also genotyped the ZNF389_ss748775100 deletion variant in Brazilian flocks. A total of 1040 blood samples and 112 semen samples from 15 Brazilian breeds were genotyped with Fluidigm for the SNP ZNF389_ss748775100 and 12 TMEM154 SNPs. A total of 484 blood samples from the Santa Inês breed and 188 semen samples from 14 North American sheep breeds were genotyped with KASP for 6 TMEM154 SNPs. All the Brazilian samples had the "I/I" genotype for the ZNF389_ss748775100 mutation. There were 25 TMEM154 haplotypes distributed across the Brazilian breeds, and 4 haplotypes in the US breeds. Haplotypes associated with susceptibility were present in almost all breeds, which suggests that genetic testing can help to improve herd health and productivity by selecting non-susceptible animals as founders of the next generations. Fluidigm and KASP are reliable assays when compared with Beadchip arrays. Further studies are necessary to understand the unknown role of TMEM154 mutations, host-pathogen interaction and new genes associated with the clinical condition.
Collapse
Affiliation(s)
- Camila Souza Rodrigues
- Faculdade de Agronomia e Medicina Veterinária, Instituto Central de Ciências, Campus Darcy Ribeiro, Universidade de Brasília, Asa Norte, Brasilia 70910-900, DF, Brazil
| | - Danielle Assis de Faria
- Faculdade de Agronomia e Medicina Veterinária, Instituto Central de Ciências, Campus Darcy Ribeiro, Universidade de Brasília, Asa Norte, Brasilia 70910-900, DF, Brazil
| | - Thaísa Sant’Anna Lacerda
- Faculdade de Agronomia e Medicina Veterinária, Instituto Central de Ciências, Campus Darcy Ribeiro, Universidade de Brasília, Asa Norte, Brasilia 70910-900, DF, Brazil
| | - Samuel Rezende Paiva
- Embrapa Recursos Genéticos e Biotecnologia, Final W5 Norte, Brasilia 70770-917, DF, Brazil
- Correspondence:
| | | | - Harvey Blackburn
- USDA-ARS—Agricultural Genetic Resources Preservation Research, 1111 South Mason Street, Fort Collins, CO 805214500, USA
| | - Concepta McManus
- Departamento de Ciências Fisiológicas, Instituto de Biologia, Campus Darcy Ribeiro, Universidade de Brasilia, Asa Norte, Brasilia 70910-900, DF, Brazil
| |
Collapse
|
6
|
Alternative Molecular Tools for the Fight against Infectious Diseases of Small Ruminants: Native Sicilian Sheep Breeds and Maedi-Visna Genetic Susceptibility. Animals (Basel) 2022; 12:ani12131630. [PMID: 35804527 PMCID: PMC9264923 DOI: 10.3390/ani12131630] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 12/04/2022] Open
Abstract
Simple Summary Local breeds represent a precious reservoir of genetic diversity, crucial to adapting to environmental and climate changes and reacting to evolving diseases. In Sicily, four native dairy breeds, namely Valle del Belìce, Comisana, Barbaresca, and Pinzirita, have adapted to low-input farming systems and semiarid environments, having an essential role in producing high-quality milk and typical dairy products. Maedi-visna (MV) is one of the most important chronic diseases affecting the sheep sector worldwide, causing production losses. Different target genes play an important role in immunity and in genetic resilience to MV, such as TMEM154, TLR9, MYD88, and CCR5. A major host genetic component to sheep MV susceptibility was identified in the ovine TMEM154 gene. Animals with either of TMEM154 haplotypes that encode glutamate at position 35 (E35) of the protein are at higher risk of MV infection than those homozygous with lysine at position 35 (K35). In the tested Sicilian breeds, animals carrying the allele E35 showed a greater risk of being serologically positive. Comisana, Barbaresca, and Pinzirita breeds showed a good frequency of the protective allele K35, whilst a high frequency of risk allele was found in the Valle del Belìce breed, related to the selection strategies addressed to obtain a productive dairy sheep. Our results highlight the importance of the preservation of autochthonous breeds as a reservoir of natural resistance against infectious disease. Abstract Maedi-visna (MV) is a disease caused by small ruminant lentiviruses. It is included in the list of notifiable terrestrial animal diseases due to economic losses and animal welfare harm in the sheep sector. To date, control programs remain the onliest approach to avoiding infection. The allelic variant p.Glu35Lys (E35K) of the TMEM154 gene has been strongly associated with host vulnerability to MV illness. The present study aimed to investigate the association of TMEM154 E35K allele frequencies with MV susceptibility in native Sicilian sheep breeds. More than 400 animals from 14 local sheep were serologically tested and genotyped for the TMEM154 E35K polymorphism. The local breeds displayed different values of MV seroprevalence, with the lowest antibody prevalence in Barbaresca and Pinzirita breeds. TMEM154 protective allele (K35) was less frequent than the risk allele (E35) in Valle del Belìce breed, whereas the other three breeds showed a more balanced alleles distribution. A positive association between seroprevalence and genotype was found in the entire sample set. The risk of infection resulted in more than 3-fold times as high in sheep with EK and EE genotype compared to the KK genotype. Our data could be helpful in establishing selection breeding programs aimed at reducing MV infection in Sicilian sheep farming and encouraging the breeding of native breeds.
Collapse
|
7
|
Olech M, Ropka-Molik K, Szmatoła T, Piórkowska K, Kuźmak J. Transcriptome Analysis for Genes Associated with Small Ruminant Lentiviruses Infection in Goats of Carpathian Breed. Viruses 2021; 13:v13102054. [PMID: 34696484 DOI: 10.3390/v13102054] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/11/2021] [Accepted: 10/11/2021] [Indexed: 12/19/2022] Open
Abstract
Small ruminant lentiviruses (SRLV) are economically important viral pathogens of sheep and goats. SRLV infection may interfere in the innate and adaptive immunity of the host, and genes associated with resistance or susceptibility to infection with SRLV have not been fully recognized. The presence of animals with relatively high and low proviral load suggests that some host factors are involved in the control of virus replication. To better understand the role of the genes involved in the host response to SRLV infection, RNA sequencing (RNA-seq) method was used to compare whole gene expression profiles in goats carrying both a high (HPL) and low (LPL) proviral load of SRLV and uninfected animals. Data enabled the identification of 1130 significant differentially expressed genes (DEGs) between control and LPL groups: 411 between control and HPL groups and 1434 DEGs between HPL and LPL groups. DEGs detected between the control group and groups with a proviral load were found to be significantly enriched in several gene ontology (GO) terms, including an integral component of membrane, extracellular region, response to growth factor, inflammatory and innate immune response, transmembrane signaling receptor activity, myeloid differentiation primary response gene 88 (MyD88)-dependent toll-like receptor signaling pathway as well as regulation of cytokine secretion. Our results also demonstrated significant deregulation of selected pathways in response to viral infection. The presence of SRLV proviral load in blood resulted in the modification of gene expression belonging to the toll-like receptor signaling pathway, the tumor necrosis factor (TNF) signaling pathway, the cytokine-cytokine receptor interaction, the phagosome, the Ras signaling pathway, the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) (PI3K-Akt) signaling pathway and rheumatoid arthritis. It is worth mentioning that the most predominant in all pathways were genes represented by toll-like receptors, tubulins, growth factors as well as interferon gamma receptors. DEGs detected between LPL and HPL groups were found to have significantly enriched regulation of signaling receptor activity, the response to toxic substances, nicotinamide adenine dinucleotide (NADH) dehydrogenase complex assembly, cytokine production, vesicle, and vacuole organization. In turn, the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway tool classified DEGs that enrich molecular processes such as B and T-cell receptor signaling pathways, natural killer cell-mediated cytotoxicity, Fc gamma R-mediated phagocytosis, toll-like receptor signaling pathways, TNF, mammalian target of rapamycin (mTOR) signaling and forkhead box O (Foxo) signaling pathways, etc. Our data indicate that changes in SRLV proviral load induced altered expression of genes related to different biological processes such as immune response, inflammation, cell locomotion, and cytokine production. These findings provide significant insights into defense mechanisms against SRLV infection. Furthermore, these data can be useful to develop strategies against SRLV infection by selection of animals with reduced SRLV proviral concentration that may lead to a reduction in the spread of the virus.
Collapse
Affiliation(s)
- Monika Olech
- Department of Biochemistry, National Veterinary Research Institute, 24-100 Pulawy, Poland
| | - Katarzyna Ropka-Molik
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Krakowska 1, 32-083 Kraków, Poland
| | - Tomasz Szmatoła
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Krakowska 1, 32-083 Kraków, Poland
- Center for Experimental and Innovative Medicine, University of Agriculture in Krakow, Rędzina 1c, 30-248 Kraków, Poland
| | - Katarzyna Piórkowska
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Krakowska 1, 32-083 Kraków, Poland
| | - Jacek Kuźmak
- Department of Biochemistry, National Veterinary Research Institute, 24-100 Pulawy, Poland
| |
Collapse
|
8
|
Ostuni A, Monné M, Crudele MA, Cristinziano PL, Cecchini S, Amati M, De Vendel J, Raimondi P, Chassalevris T, Dovas CI, Bavoso A. Design and structural bioinformatic analysis of polypeptide antigens useful for the SRLV serodiagnosis. J Virol Methods 2021; 297:114266. [PMID: 34454989 DOI: 10.1016/j.jviromet.2021.114266] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 06/30/2021] [Accepted: 08/18/2021] [Indexed: 10/20/2022]
Abstract
Due to their intrinsic genetic, structural and phenotypic variability the Lentiviruses, and specifically small ruminant lentiviruses (SRLV), are considered viral quasispecies with a population structure that consists of extremely large numbers of variant genomes, termed mutant spectra or mutant cloud. Immunoenzymatic tests for SRLVs are available but the dynamic heterogeneity of the virus makes the development of a diagnostic "golden standard" extremely difficult. The ELISA reported in the literature have been obtained using proteins derived from a single strain or they are multi-strain based assay that may increase the sensitivity of the serological diagnosis. Hundreds of SRLV protein sequences derived from different viral strains are deposited in GenBank. The aim of this study is to verify if the database can be exploited with the help of bioinformatics in order to have a more systematic approach in the design of a set of representative protein antigens useful in the SRLV serodiagnosis. Clustering, molecular modelling, molecular dynamics, epitope predictions and aggregative/solubility predictions were the main bioinformatic tools used. This approach led to the design of SRLV antigenic proteins that were expressed by recombinant DNA technology using synthetic genes, analyzed by CD spectroscopy, tested by ELISA and preliminarily compared to currently commercially available detection kits.
Collapse
Affiliation(s)
- Angela Ostuni
- Department of Sciences, University of Basilicata, viale Ateneo Lucano 10, 85100, Potenza, Italy.
| | - Magnus Monné
- Department of Sciences, University of Basilicata, viale Ateneo Lucano 10, 85100, Potenza, Italy
| | | | - Pier Luigi Cristinziano
- Department of Sciences, University of Basilicata, viale Ateneo Lucano 10, 85100, Potenza, Italy
| | - Stefano Cecchini
- Department of Sciences, University of Basilicata, viale Ateneo Lucano 10, 85100, Potenza, Italy
| | - Mario Amati
- Department of Sciences, University of Basilicata, viale Ateneo Lucano 10, 85100, Potenza, Italy
| | | | | | - Taxiarchis Chassalevris
- Diagnostic Laboratory, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 11 Stavrou Voutyra Str., 54627, Thessaloniki, Greece
| | - Chrysostomos I Dovas
- Diagnostic Laboratory, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 11 Stavrou Voutyra Str., 54627, Thessaloniki, Greece
| | - Alfonso Bavoso
- Department of Sciences, University of Basilicata, viale Ateneo Lucano 10, 85100, Potenza, Italy
| |
Collapse
|
9
|
Kalogianni AI, Stavropoulos I, Chaintoutis SC, Bossis I, Gelasakis AI. Serological, Molecular and Culture-Based Diagnosis of Lentiviral Infections in Small Ruminants. Viruses 2021; 13:1711. [PMID: 34578292 PMCID: PMC8473411 DOI: 10.3390/v13091711] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/22/2021] [Accepted: 08/25/2021] [Indexed: 02/01/2023] Open
Abstract
Small ruminant lentiviruses (SRLVs) infections lead to chronic diseases and remarkable economic losses undermining health and welfare of animals and the sustainability of farms. Early and definite diagnosis of SRLVs infections is the cornerstone for any control and eradication efforts; however, a "gold standard" test and/or diagnostic protocols with extensive applicability have yet to be developed. The main challenges preventing the development of a universally accepted diagnostic tool with sufficient sensitivity, specificity, and accuracy to be integrated in SRLVs control programs are the genetic variability of SRLVs associated with mutations, recombination, and cross-species transmission and the peculiarities of small ruminants' humoral immune response regarding late seroconversion, as well as intermittent and epitope-specific antibody production. The objectives of this review paper were to summarize the available serological and molecular assays for the diagnosis of SRLVs, to highlight their diagnostic performance emphasizing on advantages and drawbacks of their application, and to discuss current and future perspectives, challenges, limitations and impacts regarding the development of reliable and efficient tools for the diagnosis of SRLVs infections.
Collapse
Affiliation(s)
- Aphrodite I. Kalogianni
- Laboratory of Anatomy and Physiology of Farm Animals, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens (AUA), Iera Odos 75 Str., 11855 Athens, Greece
| | - Ioannis Stavropoulos
- Laboratory of Animal Husbandry, Department of Agricultural Sciences, School of Agriculture, Forestry and Natural Resources, Aristotle University of Thessaloniki (AUTh), 54124 Thessaloniki, Greece; (Ι.S.); (I.B.)
| | - Serafeim C. Chaintoutis
- Diagnostic Laboratory, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki (AUTh), 11 Stavrou Voutyra Str., 54627 Thessaloniki, Greece;
| | - Ioannis Bossis
- Laboratory of Animal Husbandry, Department of Agricultural Sciences, School of Agriculture, Forestry and Natural Resources, Aristotle University of Thessaloniki (AUTh), 54124 Thessaloniki, Greece; (Ι.S.); (I.B.)
| | - Athanasios I. Gelasakis
- Laboratory of Anatomy and Physiology of Farm Animals, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens (AUA), Iera Odos 75 Str., 11855 Athens, Greece
| |
Collapse
|
10
|
First Survey of SNPs in TMEM154, TLR9, MYD88 and CCR5 Genes in Sheep Reared in Italy and Their Association with Resistance to SRLVs Infection. Viruses 2021; 13:v13071290. [PMID: 34372496 PMCID: PMC8310241 DOI: 10.3390/v13071290] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/28/2021] [Accepted: 06/30/2021] [Indexed: 01/01/2023] Open
Abstract
Maedi-visna virus (MVV) and caprine arthritis encephalitis virus (CAEV), referred to as small ruminant lentiviruses (SRLVs), belong to the genus Lentivirus of the Retroviridae family. SRLVs infect both sheep and goats, causing significant economic losses and animal welfare damage. Recent findings suggest an association between serological status and allelic variants of different genes such as TMEM154, TLR9, MYD88 and CCR5. The aim of this work was to investigate the role of specific polymorphisms of these genes in SRLVs infection in some sheep flocks in Italy. In addition to those already known, novel variants in the TMEM154 (P7H, I74V, I105V) gene were detected in this study. The risk of infection was determined finding an association between the serological status and polymorphisms P7H, E35K, N70I, I74V, I105V of TMEM154, R447Q, A462S and G520R in TLR9 gene, H176H* and K190K* in MYD88 genes, while no statistical association was observed for the 4-bp deletion of the CCR5 gene. Since no vaccines or treatments have been developed, a genetically based approach could be an innovative strategy to prevent and to control SRLVs infection. Our findings are an important starting point in order to define the genetic resistance profile towards SRLVs infection.
Collapse
|
11
|
A DNA Regulatory Element Haplotype at Zinc Finger Genes Is Associated with Host Resilience to Small Ruminant Lentivirus in Two Sheep Populations. Animals (Basel) 2021; 11:ani11071907. [PMID: 34206933 PMCID: PMC8300134 DOI: 10.3390/ani11071907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/22/2021] [Accepted: 06/22/2021] [Indexed: 12/13/2022] Open
Abstract
Small ruminant lentivirus (SRLV) causes Maedi-Visna or Ovine Progressive Pneumonia in sheep and creates insidious livestock production losses. This retrovirus is closely related to human immunodeficiency virus and currently has no vaccines or cure. Genetic marker assisted selection for sheep disease resiliency presents an attractive management solution. Previously, we identified a region containing a cluster of zinc finger genes that had association with ovine SRLV proviral concentration. Trait-association analysis validated a small insertion/deletion variant near ZNF389 (rs397514112) in multiple sheep breeds. In the current study, 543 sheep from two distinct populations were genotyped at 34 additional variants for fine mapping of the regulatory elements within this locus. Variants were selected based on ChIP-seq annotation data from sheep alveolar macrophages that defined active cis-regulatory elements predicted to influence zinc finger gene expression. We present a haplotype block of variants within regulatory elements that have improved associations and larger effect sizes (up to 4.7-fold genotypic difference in proviral concentration) than the previously validated ZNF389 deletion marker. Hypotheses for the underlying causal mutation or mutations are presented based on changes to in silico transcription factor binding sites. These variants offer alternative markers for selective breeding and are targets for future functional mutation assays.
Collapse
|
12
|
de Miguel R, Arrieta M, Rodríguez-Largo A, Echeverría I, Resendiz R, Pérez E, Ruiz H, Pérez M, de Andrés D, Reina R, de Blas I, Luján L. Worldwide Prevalence of Small Ruminant Lentiviruses in Sheep: A Systematic Review and Meta-Analysis. Animals (Basel) 2021; 11:784. [PMID: 33799908 PMCID: PMC8000744 DOI: 10.3390/ani11030784] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/04/2021] [Accepted: 03/08/2021] [Indexed: 11/16/2022] Open
Abstract
Small Ruminant Lentiviruses (SRLV) are highly prevalent retroviruses with significant genetic diversity and antigenic heterogeneity that cause a progressive wasting disease of sheep called Maedi-visna. This work provides a systematic review and meta-analysis of the last 40 years (1981-2020) of scientific publications on SRLV individual and flock prevalence. Fifty-eight publications and 314 studies were included. Most articles used a single diagnostic test to estimate prevalence (77.6%), whereas articles using three or more tests were scarce (6.9%). Serological tests are more frequently used than direct methods and ELISA has progressively replaced AGID over the last decades. SRLV infection in sheep is widespread across the world, with Europe showing the highest individual prevalence (40.9%) and being the geographical area in which most studies have been performed. Africa, Asia, and North America show values between 16.7% to 21.8% at the individual level. South and Central America show the lowest individual SRLV prevalence (1.7%). There was a strong positive correlation between individual and flock prevalence (ρ = 0.728; p ≤ 0.001). Despite the global importance of small ruminants, the coverage of knowledge on SRLV prevalence is patchy and inconsistent. There is a lack of a gold standard method and a defined sampling strategy among countries and continents.
Collapse
Affiliation(s)
- Ricardo de Miguel
- Department of Animal Pathology, University of Zaragoza, 50013 Zaragoza, Spain; (R.d.M.); (M.A.); (A.R.-L.); (R.R.); (E.P.); (H.R.); (I.d.B.)
| | - Marta Arrieta
- Department of Animal Pathology, University of Zaragoza, 50013 Zaragoza, Spain; (R.d.M.); (M.A.); (A.R.-L.); (R.R.); (E.P.); (H.R.); (I.d.B.)
| | - Ana Rodríguez-Largo
- Department of Animal Pathology, University of Zaragoza, 50013 Zaragoza, Spain; (R.d.M.); (M.A.); (A.R.-L.); (R.R.); (E.P.); (H.R.); (I.d.B.)
| | - Irache Echeverría
- Institute of Agrobiotechnology, CSIC-Government of Navarra, 31192 Mutilva, Spain; (I.E.); (D.d.A.); (R.R.)
| | - Raúl Resendiz
- Department of Animal Pathology, University of Zaragoza, 50013 Zaragoza, Spain; (R.d.M.); (M.A.); (A.R.-L.); (R.R.); (E.P.); (H.R.); (I.d.B.)
| | - Estela Pérez
- Department of Animal Pathology, University of Zaragoza, 50013 Zaragoza, Spain; (R.d.M.); (M.A.); (A.R.-L.); (R.R.); (E.P.); (H.R.); (I.d.B.)
| | - Héctor Ruiz
- Department of Animal Pathology, University of Zaragoza, 50013 Zaragoza, Spain; (R.d.M.); (M.A.); (A.R.-L.); (R.R.); (E.P.); (H.R.); (I.d.B.)
| | - Marta Pérez
- Department of Anatomy, Embriology and Genetics, University of Zaragoza, 50013 Zaragoza, Spain;
- Instituto Universitario de Investigación Mixto Agroalimentario de Aragón, University of Zaragoza, 50013 Zaragoza, Spain
| | - Damián de Andrés
- Institute of Agrobiotechnology, CSIC-Government of Navarra, 31192 Mutilva, Spain; (I.E.); (D.d.A.); (R.R.)
| | - Ramsés Reina
- Institute of Agrobiotechnology, CSIC-Government of Navarra, 31192 Mutilva, Spain; (I.E.); (D.d.A.); (R.R.)
| | - Ignacio de Blas
- Department of Animal Pathology, University of Zaragoza, 50013 Zaragoza, Spain; (R.d.M.); (M.A.); (A.R.-L.); (R.R.); (E.P.); (H.R.); (I.d.B.)
- Instituto Universitario de Investigación Mixto Agroalimentario de Aragón, University of Zaragoza, 50013 Zaragoza, Spain
| | - Lluís Luján
- Department of Animal Pathology, University of Zaragoza, 50013 Zaragoza, Spain; (R.d.M.); (M.A.); (A.R.-L.); (R.R.); (E.P.); (H.R.); (I.d.B.)
- Instituto Universitario de Investigación Mixto Agroalimentario de Aragón, University of Zaragoza, 50013 Zaragoza, Spain
| |
Collapse
|