1
|
Fujii Y, Maezawa M, Akagami M, Kawakami J, Fujimoto Y, Inokuma H. Infection with bovine leukemia virus belonging to group A or B-1 contributes more strongly to the development of enzootic bovine leukosis in young cattle than the presence of bovine lymphocyte antigen-DRB3 susceptibility alleles. Arch Virol 2024; 169:171. [PMID: 39090322 PMCID: PMC11294373 DOI: 10.1007/s00705-024-06102-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 07/01/2024] [Indexed: 08/04/2024]
Abstract
In this study, we compared the effects of different bovine leukemia virus (BLV) strains and bovine lymphocyte antigen (BoLA)-DRB3 alleles in cattle with enzootic bovine leukosis (EBL) aged either <3 years or ≥3 years. The frequency of infection with BLV belonging to group A or B-1 in cattle aged <3 years with EBL was significantly higher than that in cattle aged ≥3 years, regardless of which BoLA-DRB3 allele was present. This suggests that infection with group A or B-1 BLV contributes more strongly to the development of EBL in young cattle than the presence of early-EBL-onset susceptibility BoLA-DRB3 alleles.
Collapse
Affiliation(s)
- Yuki Fujii
- Livestock Division, Ibaraki Prefecture Government, Mito, Ibaraki, 310-8555, Japan
| | - Masaki Maezawa
- Laboratory of OSG Veterinary Science for Global Disease Management, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan.
| | - Masataka Akagami
- Ibaraki Prefectural Kensei Livestock Hygiene Service Center, Chikusei, Ibaraki, 300-4516, Japan
| | - Junko Kawakami
- Ibaraki Prefectural Kensei Livestock Hygiene Service Center, Chikusei, Ibaraki, 300-4516, Japan
| | - Yuri Fujimoto
- Laboratory of OSG Veterinary Science for Global Disease Management, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Hisashi Inokuma
- Laboratory of OSG Veterinary Science for Global Disease Management, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan
- Laboratory of Farm Animal Medicine, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan
| |
Collapse
|
2
|
Hamada R, Metwally S, Matsuura R, Borjigin L, Lo CW, Ali AO, Mohamed AEA, Wada S, Aida Y. BoLA-DRB3 Polymorphism Associated with Bovine Leukemia Virus Infection and Proviral Load in Holstein Cattle in Egypt. Pathogens 2023; 12:1451. [PMID: 38133334 PMCID: PMC10746042 DOI: 10.3390/pathogens12121451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/12/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023] Open
Abstract
Bovine leukemia virus (BLV) is the etiological agent of enzootic bovine leukosis, the most prevalent neoplastic disease of cattle worldwide. The immune response to BLV and disease susceptibility and resistance in cattle are strongly correlated with the bovine leukocyte antigen (BoLA)-DRB3 allelic polymorphism. BLV infection continues to spread in Egypt, in part because the relationships between BLV infection, proviral load in Egypt, and BoLA-DRB3 polymorphism are unknown. Here, we identified 18 previously reported alleles in 121 Holstein cows using a polymerase chain reaction sequence-based typing method. Furthermore, BoLA-DRB3 gene polymorphisms in these animals were investigated for their influence on viral infection. BoLA-DRB3*015:01 and BoLA-DRB3*010:01 were identified as susceptible and resistant alleles, respectively, for BLV infection in the tested Holsteins. In addition, BoLA-DRB3*012:01 was associated with low PVL in previous reports but high PVL in Holstein cattle in Egypt. This study is the first to demonstrate that the BoLA-DRB3 polymorphism confers resistance and susceptibility to PVL and infections of BLV in Holstein cattle in Egypt. Our results can be useful for the disease control and eradication of BLV through genetic selection.
Collapse
Affiliation(s)
- Rania Hamada
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; (R.H.); (S.M.); (R.M.); (L.B.); (C.-W.L.)
- Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, Damanhour University, Damanhour City 22511, Egypt
| | - Samy Metwally
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; (R.H.); (S.M.); (R.M.); (L.B.); (C.-W.L.)
- Division of Infectious Diseases, Department of Animal Medicine, Faculty of Veterinary Medicine, Damanhour University, Damanhour City 22511, Egypt
| | - Ryosuke Matsuura
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; (R.H.); (S.M.); (R.M.); (L.B.); (C.-W.L.)
- Laboratory of Global Infectious Diseases Control Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Liushiqi Borjigin
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; (R.H.); (S.M.); (R.M.); (L.B.); (C.-W.L.)
| | - Chieh-Wen Lo
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; (R.H.); (S.M.); (R.M.); (L.B.); (C.-W.L.)
- Laboratory of Global Infectious Diseases Control Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Alsagher O. Ali
- Department of Animal Medicine, Faculty of Veterinary Medicine, South Valley University, Qena City 83523, Egypt; (A.O.A.); (A.E.A.M.)
| | - Adel E. A. Mohamed
- Department of Animal Medicine, Faculty of Veterinary Medicine, South Valley University, Qena City 83523, Egypt; (A.O.A.); (A.E.A.M.)
| | - Satoshi Wada
- Photonics Control Technology Team, RIKEN Center for Advanced Photonics, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan;
| | - Yoko Aida
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; (R.H.); (S.M.); (R.M.); (L.B.); (C.-W.L.)
- Laboratory of Global Infectious Diseases Control Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
3
|
Borjigin L, Watanuki S, Hamada R, Bai L, Hirose T, Sato H, Yoneyama S, Yasui A, Yasuda S, Yamanaka R, Mimura M, Baba M, Inokuma M, Fujita K, Shinozaki Y, Tanaka N, Takeshima SN, Aida Y. Effectiveness of integrated bovine leukemia virus eradication strategies utilizing cattle carrying resistant and susceptible major histocompatibility complex class II DRB3 alleles. J Dairy Sci 2023; 106:9393-9409. [PMID: 37641252 DOI: 10.3168/jds.2023-23524] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 06/26/2023] [Indexed: 08/31/2023]
Abstract
Bovine leukemia virus (BLV) has spread worldwide and causes serious problems in the cattle industry owing to the lack of effective treatments and vaccines. Bovine leukemia virus is transmitted via horizontal and vertical infection, and cattle with high BLV proviral load (PVL), which is a useful index for estimating disease progression and transmission risk, are considered major infectious sources within herds. The PVL strongly correlates with highly polymorphic bovine lymphocyte antigen (BoLA)-DRB3 alleles. The BoLA-DRB3*015:01 and *012:01 alleles are known susceptibility-associated markers related to high PVL, and cattle with susceptible alleles may be at a high risk of BLV transmission via direct contact with healthy cows. In contrast, the BoLA-DRB3*009:02 and *014:01:01 alleles comprise resistant markers associated with the development of low PVL, and cattle with resistant alleles may be low-risk spreaders for BLV transmission and disrupt the BLV transmission chain. However, whether polymorphisms in BoLA-DRB3 are useful for BLV eradication in farms remains unknown. Here, we conducted a validation trial of the integrated BLV eradication strategy to prevent new infection by resistant cattle and actively eliminate susceptible cattle in addition to conventional BLV eradication strategies to maximally reduce the BLV prevalence and PVL using a total of 342 cattle at 4 stall-barn farms in Japan from 2017 to 2019. First, we placed the resistant milking cattle between the BLV-positive and BLV-negative milking cattle in a stall barn for 3 yr. Interestingly, the resistant cattle proved to be an effective biological barrier to successfully block the new BLV infections in the stall-barn system among all 4 farms. Concomitantly, we actively eliminated cattle with high PVL, especially susceptible cattle. Indeed, 39 of the 60 susceptible cattle (65%), 76 of the 140 neutral cattle (54%), and 20 of the 41 resistant cattle (48.8%) were culled on 4 farms for 3 years. Consequently, BLV prevalence and mean PVL decreased in all 4 farms. In particular, one farm achieved BLV-free status in May 2020. By decreasing the number of BLV-positive animals, the revenue-enhancing effect was estimated to be ¥5,839,262 ($39,292.39) for the 4 farms over 3 yr. Our results suggest that an integrated BLV eradication program utilization of resistant cattle as a biological barrier and the preferential elimination of susceptible cattle are useful for BLV infection control.
Collapse
Affiliation(s)
- Liushiqi Borjigin
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; Faculty of Veterinary Medicine, Okayama University of Science, Imabari, Ehime 794-8555, Japan
| | - Sonoko Watanuki
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; Laboratory of Global Infectious Diseases Control Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Rania Hamada
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Lanlan Bai
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Tomoya Hirose
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Hirotaka Sato
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Shuji Yoneyama
- Kenou Livestock Hygiene Service Center, Utsunomiya, Tochigi 321-0905, Japan
| | - Anna Yasui
- Kumagaya Livestock Hygiene Service Center, Kumagaya, Saitama 360-0813, Japan
| | - Sohei Yasuda
- Kumagaya Livestock Hygiene Service Center, Kumagaya, Saitama 360-0813, Japan
| | - Risa Yamanaka
- Kumagaya Livestock Hygiene Service Center, Kumagaya, Saitama 360-0813, Japan
| | - Munehito Mimura
- Kumagaya Livestock Hygiene Service Center, Kumagaya, Saitama 360-0813, Japan
| | - Miho Baba
- Kumagaya Livestock Hygiene Service Center, Kumagaya, Saitama 360-0813, Japan
| | | | - Keisuke Fujita
- Chuo Livestock Hygiene Service Center, Chiba 262-0011, Japan
| | - Yasuo Shinozaki
- Nanbu Livestock Hygiene Service Center, Kamogawa, Chiba 296-0033, Japan
| | - Naoko Tanaka
- Nanbu Livestock Hygiene Service Center, Kamogawa, Chiba 296-0033, Japan
| | - Shin-Nosuke Takeshima
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; Department of Food and Nutrition, Jumonji University, Niiza, Saitama 352-8510, Japan
| | - Yoko Aida
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; Laboratory of Global Infectious Diseases Control Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan..
| |
Collapse
|
4
|
Casa MDS, Giovambattista G, Fonteque GV, Miguel EL, Vogel CIG, Miletti LC, Takeshima SN, Fonteque JH. Identification of Anaplasma marginale, Babesia bovis and Babesia bigemina resistance alleles in Crioulo Lageano cattle using PCR-SBT and BoLA-DRB3 gene sequencing. Front Vet Sci 2023; 10:1256928. [PMID: 37781282 PMCID: PMC10540679 DOI: 10.3389/fvets.2023.1256928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/01/2023] [Indexed: 10/03/2023] Open
Abstract
Introduction The BoLA-DRB3 gene in cattle is associated with tolerance to several infectious diseases, such as neosporosis, dermatophilosis, leukosis, and mastitis. Methods This study used PCR-SBT and BoLA-DRB3 gene sequencing to determine the association between the presence or absence of Anaplasma marginale, Babesia bovis, and Babesia bigemina infections in 208 Crioulo Lageano cattle and alleles present in the population. The chi-square test and odds ratio analysis were employed to establish the association. Results Of the BoLA-DRB3 gene alleles present in the population, two alleles were significantly associated with resistance to A. marginale infections: BoLA-DRB3001:01 (p < 0.001; OR = 0.224), which had a frequency of 7.93%, and BoLA-DRB3024:06 (p = 0.007; OR < 0.00001), which had a frequency of 0.72%. Regarding B. bovis infection, the BoLA-DRB3*011:01 allele (p = 0.002; OR = 0.271) had a frequency of 6% in the population and was associated with resistance to the infection. None of the alleles was associated with resistance to infection by B. bigemina. Discussion The Crioulo Lageano breed has alleles that may confer resistance against infection by A. marginale and B. bovis.
Collapse
Affiliation(s)
- Mariana da Silva Casa
- Graduate Program in Animal Science (PPGCA), State University of Santa Catarina (UDESC), Lages, Brazil
| | - Guillermo Giovambattista
- Facultad de Ciencias Veterinarias UNLP, IGEVET–Institute of Veterinary Genetics, La Plata, Argentina
| | - Graziela Vieira Fonteque
- Graduate Program in Animal Science (PPGCA), State University of Santa Catarina (UDESC), Lages, Brazil
| | - Ellen Lara Miguel
- Scientific Initiation Program, State University of Santa Catarina (UDESC), Lages, Brazil
| | - Carla Ivane Ganz Vogel
- Department of Animal Production and Food, State University of Santa Catarina (UDESC), Lages, Brazil
| | - Luiz Claudio Miletti
- Department of Animal Production and Food, State University of Santa Catarina (UDESC), Lages, Brazil
| | - Shin-Nosuke Takeshima
- Department of Food and Nutrition, Faculty of Human Life, Jumonji University, Niiza, Saitama, Japan
| | | |
Collapse
|
5
|
Andoh K, Nishimori A, Matsuura Y. The bovine leukemia virus-derived long non-coding RNA AS1-S binds to bovine hnRNPM and alters the interaction between hnRNPM and host mRNAs. Microbiol Spectr 2023; 11:e0085523. [PMID: 37671887 PMCID: PMC10581181 DOI: 10.1128/spectrum.00855-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 07/02/2023] [Indexed: 09/07/2023] Open
Abstract
Viruses utilize several strategies to cause latent infection and evade host immune responses. Long non-coding RNA (lncRNA), a class of non-protein-encoding RNA that regulates various cellular functions by interacting with RNA-binding proteins, plays important roles for viral latency in several viruses, such as herpesviruses and retroviruses, due to its lack of antigenicity. Bovine leukemia virus (BLV), which belongs to the family Retroviridae, encodes the BLV-derived lncRNA AS1-S, which is a major transcript expressed in latently infected cells. We herein identified bovine heterogeneous nuclear ribonucleoprotein M (hnRNPM), an RNA-binding protein located in the nucleus, as the binding partner of AS1-S using an RNA-protein pull-down assay. The pull-down assay using recombinant hnRNPM mutants showed that RNA recognition motifs (RRMs) 1 and 2, located in the N-terminal region of bovine hnRNPM, were responsible for the binding to AS1-S. Furthermore, RNA immunoprecipitation (RIP) assay results showed that the expression of AS1-S increased the number of mRNAs that co-immunoprecipitated with bovine hnRNPM in MDBK cells. These results suggested that AS1-S could alter the interaction between hnRNPM and host mRNAs, potentially interfering with cellular functions during the initial phase of mRNA maturation in the nucleus. Since most of the identified mRNAs that exhibited increased binding to hnRNPM were correlated with the KEGG term "Pathways in cancer," AS1-S might affect the proliferation and expansion of BLV-infected cells and contribute to tumor progression. IMPORTANCE BLV infects bovine B cells and causes malignant lymphoma, a disease that greatly affects the livestock industry. Due to its low incidence and long latent period, the molecular mechanisms underlying the progression of lymphoma remain enigmatic. Several non-coding RNAs (ncRNAs), such as miRNA and lncRNA, have recently been discovered in the BLV genome, and the relationship between BLV pathogenesis and these ncRNAs is attracting attention. However, most of the molecular functions of these transcripts remain unidentified. To the best of our knowledge, this is the first report describing a molecular function for the BLV-derived lncRNA AS1-S. The findings reported herein reveal a novel mechanism underlying BLV pathogenesis that could provide important insights for not only BLV research but also comparative studies of retroviruses.
Collapse
Affiliation(s)
- Kiyohiko Andoh
- National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | - Asami Nishimori
- National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | - Yuichi Matsuura
- National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| |
Collapse
|
6
|
Maezawa M, Fujii Y, Akagami M, Kawakami J, Inokuma H. BoLA-DRB3*15:01 allele is associated with susceptibility to early enzootic bovine leukosis onset in Holstein-Friesian and Japanese Black cattle. Vet Microbiol 2023; 284:109829. [PMID: 37451183 DOI: 10.1016/j.vetmic.2023.109829] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 07/18/2023]
Abstract
Enzootic bovine leukosis (EBL) is typically observed in cattle older than 3 years, but some cases of onset in cattle younger than 3 years have been reported in Japan. BoLA-DRB3 polymorphisms are associated with susceptibility to EBL onset. However, little is known about the relationship between the polymorphisms and EBL onset in young cattle. In the present study, we performed BoLA-DRB3 genotyping in 59 EBL cattle younger than 3 years (25 Holstein-Friesian and 34 Japanese Black) and compared the results with those of 69 EBL cattle older than 3 years (38 Holstein-Friesian and 31 Japanese Black). The BoLA-DRB3*15:01 allele was detected at a frequency of 37.3 % (48.0 % and 29.4 % in Holstein-Friesian and Japanese Black, respectively) and was identified as an early EBL onset susceptibility allele. Nine EBL cattle younger than 3 years (5 Holstein-Friesian and 4 Japanese Black), but only 1 EBL cattle older than 3 years (1 Holstein-Friesian), had a BoLA-DRB3*15:01/*15:01 homozygous genotype. The frequency of the BoLA-DRB3*15:01 allele occurring with a different allele (BoLA-DRB3*015:01/other) in cattle younger than 3 years was 44.1 % (56.0 % Holstein-Friesian and 35.3 % Japanese Black) and significantly higher than that in cattle older than 3 years (28.9 % Holstein-Friesian and 9.7 % Japanese Black) (P = 0.0013). These results suggest that BoLA-DRB3*15:01/*15:01 and BoLA-DRB3*15:01/other genotypes are early EBL onset susceptibility genotypes. The present findings may contribute to cattle breeding selection.
Collapse
Affiliation(s)
- Masaki Maezawa
- Laboratory of OSG Veterinary Science for Global Disease Management, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan.
| | - Yuki Fujii
- Ibaraki Prefecture Kenpoku Livestock Hygiene Service Center, Mito, Ibaraki 310-0002, Japan
| | - Masataka Akagami
- Ibaraki Prefecture Kenpoku Livestock Hygiene Service Center, Mito, Ibaraki 310-0002, Japan
| | - Junko Kawakami
- Ibaraki Prefecture Kenpoku Livestock Hygiene Service Center, Mito, Ibaraki 310-0002, Japan
| | - Hisashi Inokuma
- Laboratory of OSG Veterinary Science for Global Disease Management, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan; Laboratory of Farm Animal Medicine, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
7
|
Nakatsuchi A, Matsumoto Y, Aida Y. Influence of BoLA-DRB3 Polymorphism and Bovine Leukemia Virus (BLV) Infection on Dairy Cattle Productivity. Vet Sci 2023; 10:vetsci10040250. [PMID: 37104405 PMCID: PMC10143785 DOI: 10.3390/vetsci10040250] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
Enzootic bovine leukosis caused by the bovine leukemia virus (BLV) results in substantial damage to the livestock industry; however, we lack an effective cure or vaccine. BoLA-DRB3 polymorphism in BLV-infected cattle is associated with the proviral load (PVL), infectivity in the blood, development of lymphoma, and in utero infection of calves. Additionally, it is related to the PVL, infectivity, and anti-BLV antibody levels in milk. However, the effects of the BoLA-DRB3 allele and BLV infection on dairy cattle productivity remain poorly understood. Therefore, we investigated the effect of BLV infection and BoLA-DRB3 allele polymorphism on dairy cattle productivity in 147 Holstein dams raised on Japanese dairy farms. Our findings suggested that BLV infection significantly increased milk yield. Furthermore, the BoLA-DRB3 allele alone, and the combined effect of BLV infection and the BoLA-DRB3 allele had no effect. These results indicate that on-farm breeding and selection of resistant cattle, or the preferential elimination of susceptible cattle, does not affect dairy cattle productivity. Additionally, BLV infection is more likely to affect dairy cattle productivity than BoLA-DRB3 polymorphism.
Collapse
Affiliation(s)
- Ayumi Nakatsuchi
- Research and Development Section, Institute of Animal Health, JA Zen-Noh (National Federation of Agricultural Cooperative Associations), 7 Ohja-machi Sakura-shi, Chiba 285-0043, Japan
- Laboratory of Global Infectious Diseases Control Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
- Laboratory of Global Animal Resource Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yasunobu Matsumoto
- Laboratory of Global Infectious Diseases Control Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
- Laboratory of Global Animal Resource Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yoko Aida
- Laboratory of Global Infectious Diseases Control Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
- Laboratory of Global Animal Resource Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
- Correspondence: ; Tel.: +81-3-5841-5383
| |
Collapse
|
8
|
Kohara J, Bai L, Takeshima SN, Matsumoto Y, Hirai T, Aida Y. Correlation between the Biodistribution of Bovine Leukemia Virus in the Organs and the Proviral Load in the Peripheral Blood during Early Stages of Experimentally Infected Cattle. Pathogens 2023; 12:130. [PMID: 36678478 PMCID: PMC9867250 DOI: 10.3390/pathogens12010130] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/27/2022] [Accepted: 01/11/2023] [Indexed: 01/15/2023] Open
Abstract
Bovine leukemia virus (BLV) is the etiological agent of enzootic bovine leukosis. However, the propagation and distribution of BLV after primary infection still need to be fully elucidated. Here, we experimentally infected seven cattle with BLV and analyzed the BLV proviral load (PVL) in the blood and various organs. BLV was first detected in the blood of the cattle after one week, and the blood PVL increased for three weeks after infection. The PVL was maintained at a high level in five cattle, while it decreased to a low or medium level in two cattle. BLV was distributed in various organs, such as the heart, lung, liver, kidney, abomasum, and thymus, and, notably, in the spleen and lymph nodes. In cattle with a high blood PVL, BLV was detected in organs other than the spleen and lymph nodes, whereas in those with a low blood PVL, BLV was only detected in the spleen and lymph nodes. The amount of BLV in the organs was comparable to that in the blood. Our findings point to the possibility of estimating the distribution of BLV provirus in organs, lymph nodes, and body fluids by measuring the blood PVL, as it was positively correlated with the biodistribution of BLV provirus in the body of BLV infection during early stages.
Collapse
Affiliation(s)
- Junko Kohara
- Animal Health Group, Animal Research Center, Hokkaido Research Organization, Shintoku 081-0038, Japan
| | - Lanlan Bai
- Virus Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan
- Graduate School of Science and Engineering, Iwate University, Morioka 020-8551, Japan
| | - Shin-nosuke Takeshima
- Virus Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan
- Department of Food and Nutrition, Jumonji University, 2-1-28 Sugasawa, Niiza 352-8510, Japan
| | - Yuki Matsumoto
- Virus Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan
| | - Tsunao Hirai
- Animal Health Group, Animal Research Center, Hokkaido Research Organization, Shintoku 081-0038, Japan
| | - Yoko Aida
- Virus Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan
- Laboratory of Global Infectious Diseases Control Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
9
|
Nikbakht Brujeni G, Houshmand P, Soufizadeh P. Bovine leukemia virus: a perspective insight into the infection and immunity. IRANIAN JOURNAL OF VETERINARY RESEARCH 2023; 24:290-300. [PMID: 38799292 PMCID: PMC11127729 DOI: 10.22099/ijvr.2023.48236.7023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/30/2023] [Accepted: 10/21/2023] [Indexed: 05/29/2024]
Abstract
Bovine leukemia virus (BLV) is a member of the Retroviridae family and belongs to the Deltaretrovirus genus. It has a close relationship with human T-cell leukemia virus type I. BLV is responsible for causing enzootic bovine leukosis (EBL), a contagious disease that affects the bovine lymphatic system. This virus poses challenges for the global cattle industry, as it impacts cattle populations all over the world. Despite being widespread and impactful, BLV often goes unnoticed, with many researchers unaware of its presence and the potential consequences it carries. BLV demonstrates varying levels of pathogenicity. The majority of cattle (around 70%) become seropositive asymptomatic carriers, displaying no noticeable clinical symptoms. However, a smaller proportion of infected animals experience persistent lymphocytosis, characterized by an elevated number of lymphocytes in the bloodstream. If not monitored and managed, a subset of these persistently infected cattle may advance to lymphosarcoma. This condition typically presents as tumors in different lymphoid tissues, impacting various organs and overall health and productivity. Furthermore, recent research has highlighted the potential association between the occurrence of breast and lung cancer in humans and the presence of BLV. This review will delve into the recent discoveries concerning BLV, specifically exploring its epidemiology, the economic impact it has on the global cattle industry, its implications for human medicine, and the association between different alleles of the major histocompatibility complex (MHC) and susceptibility or resistance to BLV. Bovine leukemia virus, Enzootic bovine leukosis, Major histocompatibility complex, Retroviridae.
Collapse
Affiliation(s)
- Gh. Nikbakht Brujeni
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - P. Houshmand
- Ph.D. Student in Immunology, Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - P. Soufizadeh
- Graduated from Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| |
Collapse
|
10
|
Maezawa M, Sakaguchi K, Tagaino Y, Fujii Y, Akagami M, Kawakami J, Watanabe KI, Kobayashi Y, Ogawa H, Inokuma H. Enzootic bovine leukosis in a 21-month-old Japanese Black cow with high susceptibility. J Vet Diagn Invest 2022; 34:733-737. [PMID: 35686385 DOI: 10.1177/10406387221102123] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A 21-mo-old Japanese Black beef cow had swollen mandibular and superficial cervical lymph nodes. Fine-needle aspiration cytology of the superficial cervical lymph node revealed large lymphoblasts with mitoses present. The bovine leukemia virus (BLV) proviral load was relatively high, and phylogenetic analysis of the whole BLV genome classified the BLV strain as one with high viral replication activity. Genotyping of bovine leukocyte antigen genes indicated that the cow was susceptible to enzootic bovine leukosis (EBL). The bone morphogenetic protein 6 (BMP6) gene promoter region was hypermethylated. Monoclonal proliferation of B cells and monoclonal integration of the BLV provirus in the bovine genome were detected by a clonality test of B cells and an inverse PCR assay, respectively. At autopsy, generalized swelling of lymph nodes and spinal canal invasion by tumor tissue at vertebrae L5-6 were observed. Histologic analysis revealed diffuse proliferation of large round neoplastic cells that were positive for BLA36 and negative for CD3. The cow was definitively diagnosed with EBL based on these findings. Infection with a highly pathogenic strain of BLV, susceptibility of the BoLA-DRB3 alleles, and hypermethylation of the BMP6 gene may have contributed to the development of EBL in our case.
Collapse
Affiliation(s)
- Masaki Maezawa
- Laboratory of OSG Veterinary Science for Global Disease Management, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Kana Sakaguchi
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Yuka Tagaino
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Yuki Fujii
- Ibaraki Prefecture Kenpoku Livestock Hygiene Service Center, Mito, Ibaraki, Japan
| | - Masataka Akagami
- Ibaraki Prefecture Kenpoku Livestock Hygiene Service Center, Mito, Ibaraki, Japan
| | - Junko Kawakami
- Ibaraki Prefecture Kenpoku Livestock Hygiene Service Center, Mito, Ibaraki, Japan
| | - Ken-Ichi Watanabe
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Yoshiyasu Kobayashi
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Haruko Ogawa
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Hisashi Inokuma
- Laboratory of OSG Veterinary Science for Global Disease Management, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.,Laboratory of Farm Animal Medicine, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
11
|
Single-Nucleotide Polymorphism on Spermatogenesis Associated 16 Gene-Coding Region Affecting Bovine Leukemia Virus Proviral Load. Vet Sci 2022; 9:vetsci9060275. [PMID: 35737328 PMCID: PMC9227911 DOI: 10.3390/vetsci9060275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 05/31/2022] [Accepted: 06/02/2022] [Indexed: 12/04/2022] Open
Abstract
Bovine leukemia virus (BLV) is an etiological agent of malignant lymphoma in cattle and is endemic in many cattle-breeding countries. Thus, the development of cattle genetically resistant to BLV is desirable. The purpose of this study was to identify novel single-nucleotide polymorphisms (SNPs) related to resistance to BLV. A total of 146 DNA samples from cattle with high BLV proviral loads (PVLs) and 142 samples from cattle with low PVLs were used for a genome-wide association study (GWAS). For the verification of the GWAS results, an additional 1342 and 456 DNA samples from BLV-infected Japanese Black and Holstein cattle, respectively, were used for an SNP genotyping PCR to compare the genotypes for the identified SNPs and PVLs. An SNP located on the spermatogenesis associated 16 (SPATA16)-coding region on bovine chromosome 1 was found to exceed the moderate threshold (p < 1.0 × 10−5) in the Additive and Dominant models of the GWAS. The SNP genotyping PCR revealed that the median values of the PVL were 1278 copies/50 ng of genomic DNA for the major homozygous, 843 for the heterozygous, and 621 for the minor homozygous genotypes in the Japanese Black cattle (p < 0.0001). A similar tendency was also observed in the Holstein cattle. We found that cattle with the minor allele for this SNP showed 20−25% lower PVLs. Although the mechanisms through which this SNP impacts the PVL remain unknown, we found a novel SNP related to BLV resistance located on the SPATA16 gene-coding region on bovine chromosome 1.
Collapse
|
12
|
Comprehensive Comparison of Novel Bovine Leukemia Virus (BLV) Integration Sites between B-Cell Lymphoma Lines BLSC-KU1 and BLSC-KU17 Using the Viral DNA Capture High-Throughput Sequencing Method. Viruses 2022; 14:v14050995. [PMID: 35632737 PMCID: PMC9143949 DOI: 10.3390/v14050995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/28/2022] [Accepted: 05/06/2022] [Indexed: 02/01/2023] Open
Abstract
Bovine leukemia virus (BLV) infects cattle and integrates into host DNA, causing enzootic bovine leukosis (EBL), an aggressive B-cell lymphoma. Here, we developed a novel proviral DNA-capture sequencing (proviral DNA-capture-seq) method investigating BLV proviral integration in two B-cell lymphoma lines, BLSC-KU1 and BLSC-KU17, derived from BLV-infected cattle with EBL. We designed BLV-specific biotinylated probes to capture the provirus genome and enrich libraries for next-generation sequencing. Validation showed high specificity and efficient enrichment of target sequence reads as well as identification of three BLV proviral integration sites on BLV persistently infected FLK-BLV cells as a positive control. We successfully detected a single BLV proviral integration site on chromosome 19 of BLSC-KU1 and chromosome 9 of BLSC-KU17, which were confirmed by standard PCR and Sanger sequencing. Further, a defective provirus in BLSC-KU1 and complete BLV proviral sequence in BLSC-KU17 were confirmed using long PCR and sequencing. This is the first study to provide comprehensive information on BLV proviral structure and viral integration in BLSC-KU1 and BLSC-KU17. Moreover, the proposed method can facilitate understanding of the detailed mechanisms underlying BLV-induced leukemogenesis and may be used as an innovative tool to screen BLV-infected cattle at risk at an earlier stage than those that have already developed lymphoma.
Collapse
|
13
|
BoLA-DRB3 Polymorphism Controls Proviral Load and Infectivity of Bovine Leukemia Virus (BLV) in Milk. Pathogens 2022; 11:pathogens11020210. [PMID: 35215153 PMCID: PMC8879029 DOI: 10.3390/pathogens11020210] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/31/2022] [Accepted: 02/03/2022] [Indexed: 11/16/2022] Open
Abstract
Bovine leukemia virus (BLV), which causes enzootic bovine leukosis, is transmitted to calves through the milk of BLV-infected dams. Bovine leukocyte antigen (BoLA)-DRB3 is a polymorphic gene associated with BLV infectivity and proviral load (PVL). However, the effect of BoLA-DRB3 polymorphism on the infectivity and PVL of milk from BLV-infected dams remains unknown. This study examined milk from 259 BLV-infected dams, including susceptible dams carrying at least one BoLA-DRB3*012:01 or *015:01 allele with high PVL, resistant dams carrying at least one BoLA-DRB3*002:01, *009:02, or *014:01:01 allele with low PVL, and neutral dams carrying other alleles. The detection rate of BLV provirus and PVL were significantly higher in milk from susceptible dams than in that from resistant dams. This result was confirmed in a three-year follow-up study in which milk from susceptible dams showed a higher BLV provirus detection rate over a longer period than that from resistant dams. The visualization of infectivity of milk cells using a luminescence syncytium induction assay showed that the infectious risk of milk from BLV-infected dams was markedly high for susceptible dams compared to resistant ones. This is the first report confirming that BoLA-DRB3 polymorphism affects the PVL and infectivity of milk from BLV-infected dams.
Collapse
|
14
|
Molecular Characterization of Bovine Leukemia Virus with the Evidence of a New Genotype Circulating in Cattle from Kazakhstan. Pathogens 2022; 11:pathogens11020180. [PMID: 35215125 PMCID: PMC8875264 DOI: 10.3390/pathogens11020180] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/15/2022] [Accepted: 01/19/2022] [Indexed: 01/27/2023] Open
Abstract
Bovine leukemia virus (BLV) is a retrovirus that causes enzootic bovine leukosis (EBL) and has worldwide distribution. Infections with BLV have been reported in cattle from Kazakhstan but the virus has not yet been thoroughly characterized. In this study, we detect and estimate the level of BLV proviral DNA by qPCR in DNA samples from 119 cattle naturally infected with BLV, from 18 farms located in four different geographical regions of Kazakhstan. Furthermore, we conducted the phylogenetic and molecular analysis of 41 BLV env-gp51 gene sequences from BLV infected cattle. Phylogenetic analysis showed the affiliation of sequences to two already known genotypes G4 and G7 and also to a new genotype, classified as genotype G12. In addition, a multivariate method was employed for analysis of the association between proviral load and different variables such as the geographical location of the herd, cattle breeds, age of animals, and the presence of particular BLV genotypes. In summary, the results of this study provide the first evidence on molecular characterization of BLV circulating in cattle from Kazakhstan.
Collapse
|
15
|
Thi DL, Vu SN, Lo CW, Dao TD, Bui VN, Ogawa H, Imai K, Sugiura K, Aida Y, Haga T. Association between BoLA-DRB3 polymorphism and bovine leukemia virus proviral load in Vietnamese Holstein Friesian cattle. HLA 2021; 99:105-112. [PMID: 34854239 DOI: 10.1111/tan.14503] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 11/11/2021] [Accepted: 11/29/2021] [Indexed: 11/29/2022]
Abstract
Bovine leukemia virus (BLV) is the causative agent of enzootic bovine leukosis. Polymorphism in bovine leukocyte antigen (BoLA)-DRB3 allele can influence the host immune response to pathogens, including BLV. However, association between specific BoLA-DRB3 alleles and BLV proviral load (PVL), which is a useful index for estimating disease progression and transmission risk, in Vietnamese cattle are unknown. Here, association study of BoLA-DRB3 allele frequency between cattle with high or low PVL demonstrated BoLA-DRB3*12:01 associates with high PVL in Vietnamese Holstein-Friesian (HF) crossbred cattle. This is the first study to demonstrate that BoLA-DRB3 polymorphism confers susceptibility to BLV high PVL in HF crossbred kept in Vietnam. Our results may be useful in disease control and eradiation for BLV through genetic selection. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Dung Le Thi
- Division of Infection Control and Disease Prevention, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Son Nguyen Vu
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi, Vietnam.,Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Chieh-Wen Lo
- Laboratory of Global Infectious Diseases Control Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Tung Duy Dao
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Hokkaido, Japan.,National Institute of Veterinary Research, Hanoi, Vietnam
| | - Vuong Nghia Bui
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Hokkaido, Japan.,National Institute of Veterinary Research, Hanoi, Vietnam
| | - Haruko Ogawa
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Hokkaido, Japan
| | - Kunitoshi Imai
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Hokkaido, Japan
| | - Katsuaki Sugiura
- Laboratory of Environment Science for Sustainable Development, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan.,Nippon Institute for Biological Science, Tokyo, Japan
| | - Yoko Aida
- Laboratory of Global Infectious Diseases Control Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Takeshi Haga
- Division of Infection Control and Disease Prevention, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
16
|
Lo CW, Takeshima SN, Wada S, Matsumoto Y, Aida Y. Bovine major histocompatibility complex (BoLA) heterozygote advantage against the outcome of bovine leukemia virus infection. HLA 2021; 98:132-139. [PMID: 33896123 DOI: 10.1111/tan.14285] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 12/31/2022]
Abstract
Bovine leukemia virus (BLV) causes enzootic bovine leucosis. Host genetic heterozygosity at the major histocompatibility complex can enhance the ability to combat infectious diseases. However, heterozygote advantage is loci specific and depends on disease type. Bovine leukocyte antigen (BoLA)-DRB3 polymorphisms are related with BLV-infection outcome; however, whether BoLA-DRB3 heterozygotes have an advantage against BLV-induced lymphoma and proviral load (PVL) remains unclear. By analyzing 1567 BLV-infected individuals, we found that BoLA-DRB3 heterozygous status was significantly associated with lymphoma resistance irrespective of cattle breeds (p < 0.0001). Similarly, decreased PVL was observed in BoLA-DRB3 heterozygotes (p = 0.0407 for Holstein cows; p = 0.0889 for Japanese Black cattle). Our report provides first evidence of BoLA-DRB3 heterozygote advantage against BLV infection outcome.
Collapse
Affiliation(s)
- Chieh-Wen Lo
- Laboratory of Global Infectious Diseases Control Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan.,Laboratory of Global Animal Resource Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Shin-Nosuke Takeshima
- Department of Food and Nutrition, Jumonji University, Saitama, Japan.,Viral Infectious Diseases Unit, RIKEN, Saitama, Japan
| | - Satoshi Wada
- Photonics Control Technology Team, RIKEN Center for Advanced Photonics, Wako, Japan
| | - Yasunobu Matsumoto
- Laboratory of Global Infectious Diseases Control Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan.,Laboratory of Global Animal Resource Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Yoko Aida
- Laboratory of Global Infectious Diseases Control Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan.,Laboratory of Global Animal Resource Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan.,Viral Infectious Diseases Unit, RIKEN, Saitama, Japan
| |
Collapse
|