1
|
Himananto O, Yoohat K, Danwisetkanjana K, Kumpoosiri M, Rukpratanporn S, Theppawong Y, Sukchai N, Siripaitoon S, Areechon N, Unajak S, Gajanandana O. Strep Easy Kit; a bio-enrichment dual ICG-strip test for simultaneous detection of Streptococcus agalactiae serotypes Ia and III in fish samples. JOURNAL OF FISH DISEASES 2024; 47:e14000. [PMID: 39010687 DOI: 10.1111/jfd.14000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/31/2024] [Accepted: 06/06/2024] [Indexed: 07/17/2024]
Abstract
The Strep Easy Kit, a bio-enrichment dual ICG-strip test, is a diagnostic tool designed for the detection of Streptococcus agalactiae, an important pathogenic bacterium in tilapia farming. The kit can simultaneously identify two different serotypes of S. agalactiae, serotype Ia and serotype III. This capability is crucial for the collection of valuable epidemiological data and facilitates strategic planning for effective vaccine development and deployment. The Strep Easy Kit consists of two main steps: pathogen enrichment and pathogen detection. The enrichment step increases the concentration of bacteria so that the bacterial load is raised to the level reliably detectable by the subsequent ICG strip test. This is achieved by incubating the fish samples in a suitable liquid medium under specified temperature and time conditions. The second step involves the use of the dual-ICG strip test. This strip test consists of two monoclonal antibodies and one polyclonal antibody that are specific to S. agalactiae and can distinguish between S. agalactiae serotype Ia and S. agalactiae serotype III. This dual capability enables the ICG strip test to simultaneously detect both serotypes of S. agalactiae in a single test kit. The detection limit of the test kit, which consists of a dual ICG-Strip test combined with an enrichment step, is 100 CFU/mL. The kit can be used to detect S. agalactiae in both live and dead fish samples, making it versatile for various testing scenarios. The test results obtained using the Strep Easy Kit have shown a 94.4% correlation with the standard method (Thai Agricultural Standard; TAS 10453-2010), with 90.2% sensitivity and 100% specificity. Significant advantages of the Strep Easy Kit lie in its simplicity and portability, allowing farmers to perform the test by themselves and on-site. This makes it a practical and accessible tool for the tilapia farming industry.
Collapse
Affiliation(s)
- Orawan Himananto
- Monoclonal and Antibody Production Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Kirana Yoohat
- Monoclonal and Antibody Production Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Kannawat Danwisetkanjana
- Monoclonal and Antibody Production Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Mallika Kumpoosiri
- Monoclonal and Antibody Production Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Sombat Rukpratanporn
- Monoclonal and Antibody Production Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Yada Theppawong
- Monoclonal and Antibody Production Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Nanthita Sukchai
- Monoclonal and Antibody Production Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Sirima Siripaitoon
- Monoclonal and Antibody Production Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Nontawith Areechon
- Department of Aquaculture, Faculty of Fisheries, Kasetsart University, Bangkok, Thailand
| | - Sasimanas Unajak
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok, Thailand
- Kasetsart Vaccines and Bio-Product Innovation Centre, Kasetsart University, Bangkok, Thailand
| | - Oraprapai Gajanandana
- Monoclonal and Antibody Production Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| |
Collapse
|
2
|
Zhang L, Hong Y, Sun K, Zhao S, Bai Y, Yang S, Tao J, Shi F, Zhan F, Lin L, Qin Z. Passive protection of chicken egg yolk immunoglobulin (IgY) against Streptococcus agalactiae infection in Nile tilapia (Oreochromis niloticus). FISH & SHELLFISH IMMUNOLOGY 2024; 154:109923. [PMID: 39326687 DOI: 10.1016/j.fsi.2024.109923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 09/28/2024]
Abstract
IgY is an immunoglobulin primarily found in the serum and egg yolk of birds, amphibians, and reptiles. Recent years, IgY is considered to have a good application prospect in the immunodiagnostics and passive immunotherapy of aquatic diseases. In this study, we prepared a specific IgY against Streptococcus agalactiae in tilapia after immunizing the hens for 4 times. The result of ELISA detection showed that the IgY titers in water-soluble fraction (WSF) after 6 weeks of immunization reached 1:51200 and last for 4 weeks. Western blot (WB) analysis data showed that the specific IgY could recognize the target band, the specific IgY showed a concentration-dependent inhibitory effect on the growth of S. agalactiae, altered cell wall structure and aggluted of S. agalactiae. The quantitative reverse transcription PCR (qRT-PCR) analysis data suggested that the specific IgY downregulated the expression of pro-inflammatory factors (IL-8, TNF-α), upregulated the anti-inflammatory factors (IL-10, TGF-β). In addition, the histopathological results showed that the specific IgY significantly decreased the pathological manifestations, dramatically improved the survival rates of tilapia in injection, feeding, and immersion experiments. Collectively, our findings demonstrated that the broad potential of specific IgY for the prevention and treatment of S. agalactiae infection in tilapia.
Collapse
Affiliation(s)
- Linpeng Zhang
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - Yucong Hong
- Guangdong Provincial Key Laboratory of Aquatic Larvae Feed, Guangdong Yuequn Ocean Biotechnology Co., Ltd, Jieyang, Guangdong, 515500, China
| | - Kaihui Sun
- Guangdong Provincial Key Laboratory of Aquatic Larvae Feed, Guangdong Yuequn Ocean Biotechnology Co., Ltd, Jieyang, Guangdong, 515500, China
| | - Shuyan Zhao
- Guangdong Provincial Key Laboratory of Aquatic Larvae Feed, Guangdong Yuequn Ocean Biotechnology Co., Ltd, Jieyang, Guangdong, 515500, China
| | - Yanhan Bai
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - Shiyi Yang
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - Junjie Tao
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - Fei Shi
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - Fanbin Zhan
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - Li Lin
- Guangdong Provincial Key Laboratory of Aquatic Larvae Feed, Guangdong Yuequn Ocean Biotechnology Co., Ltd, Jieyang, Guangdong, 515500, China; Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China.
| | - Zhendong Qin
- Guangdong Provincial Key Laboratory of Aquatic Larvae Feed, Guangdong Yuequn Ocean Biotechnology Co., Ltd, Jieyang, Guangdong, 515500, China; Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China.
| |
Collapse
|
3
|
Li H, Cao J, Han Q, Li Z, Zhuang J, Wang C, Wang H, Luo Z, Wang B, Li A. Protease SfpB plays an important role in cell membrane stability and immune system evasion in Streptococcus agalactiae. Microb Pathog 2024; 192:106683. [PMID: 38735447 DOI: 10.1016/j.micpath.2024.106683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/14/2024]
Abstract
Bacteria possess the ability to develop diverse and ingenious strategies to outwit the host immune system, and proteases are one of the many weapons employed by bacteria. This study sought to identify S. agalactiae additional serine protease and determine its role in virulence. The S. agalactiae THN0901 genome features one S8 family serine peptidase B (SfpB), acting as a secreted and externally exposed entity. A S8 family serine peptidase mutant strain (ΔsfpB) and complement strain (CΔsfpB) were generated through homologous recombination. Compared to the wild-type strain THN0901, the absorption of EtBr dyes was significantly reduced (P < 0.01) in ΔsfpB, implying an altered cell membrane permeability. In addition, the ΔsfpB strain had a significantly lower survival rate in macrophages (P < 0.01) and a 61.85 % lower adhesion ability to the EPC cells (P < 0.01) compared to THN0901. In the in vivo colonization experiment using tilapia as a model, 210 fish were selected and injected with different bacterial strains at a concentration of 3 × 106 CFU/tail. At 6, 12, 24, 48, 72 and 96 h post-injection, three fish were randomly selected from each group and their brain, liver, spleen, and kidney tissues were isolated. Subsequently, it was demonstrated that the ΔsfpB strain exhibited a markedly diminished capacity for colonization in tilapia. Additionally, the cumulative mortality of ΔsfpB in fish after intraperitoneal injection was reduced by 19.92-23.85 %. In conclusion, the findings in this study have demonstrated that the SfpB plays a significant role in S. agalactiae cell membrane stability and immune evasion. The immune evasion is fundamental for the development and transmission of invasive diseases, the serine protease SfpB may be a promising candidate for the development of antimicrobial agents to reduce the transmission of S. agalactiae.
Collapse
Affiliation(s)
- Han Li
- State Key Laboratory of Biocontrol/Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals and Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Jizhen Cao
- State Key Laboratory of Biocontrol/Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals and Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Qing Han
- State Key Laboratory of Biocontrol/Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals and Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Zhicheng Li
- State Key Laboratory of Biocontrol/Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals and Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Jingyu Zhuang
- State Key Laboratory of Biocontrol/Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals and Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Chenxi Wang
- State Key Laboratory of Biocontrol/Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals and Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Hebing Wang
- State Key Laboratory of Biocontrol/Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals and Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Zhi Luo
- State Key Laboratory of Biocontrol/Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals and Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Baotun Wang
- State Key Laboratory of Biocontrol/Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals and Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Anxing Li
- State Key Laboratory of Biocontrol/Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals and Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China.
| |
Collapse
|
4
|
Liliana PC, Dumitrescu G, McCleery D, Pet I, Iancu T, Stef L, Corcionivoschi N, Balta I. Organic acids mitigate Streptococcus agalactiae virulence in Tilapia fish gut primary cells and in a gut infection model. Ir Vet J 2024; 77:10. [PMID: 38797844 PMCID: PMC11129440 DOI: 10.1186/s13620-024-00272-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/07/2024] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND Streptococcus agalactiae, a Gram-positive bacterium, has emerged as an important pathogen for the aquaculture industry worldwide, due to its increased induced mortality rates in cultured fish. Developing interventions to cure or prevent infections based on natural alternatives to antibiotics has become a priority, however, given the absence of scientific evidence regarding their mode of action progress has been slow. METHODS In this study we aimed to investigate the effect of a mixture of organic acids (natural antimicrobials), AuraAqua (Aq), on the virulence of S. agalactiae using Tilapia gut primary epithelial cells and an in vitro Tilapia gut culture model. Our results show that Aq was able to reduce significantly, in vitro, the S. agalactiae levels of infection in Tilapia gut primary epithelial cells (TGP) when the MIC concentration of 0.125% was tested. RESULTS AND DISCUSSION At bacterial level, Aq was able to downregulate bacterial capsule polysaccharide (CPS) gene expression, capC, resulting in a significant decrease in bacterial surface capsule production. The decrease in CPS production was also associated with a reduction in the pro-inflammatory IFNγ, IL1β, TNFα, SOD and CAT gene expression and H2O2 production in the presence of 0.125% Aq (P < 0.0001). The antimicrobial mixture also reduced the levels of S. agalactiae infection in an in vitro gut culture model and significantly reduced the IFNγ, IL1β, TNFα, SOD, CAT gene expression and H2O2 production in infected tissue. Moreover, genes involved in Tilapia resistance to S. agalactiae induced disease, MCP-8 and Duo-1, were also downregulated by Aq, as a consequence of reduced bacterial levels of infection. CONCLUSION Conclusively, our study shows that mixtures of organic acids can be considered as potential alternative treatments to antibiotics and prevent S. agalactiae infection and inflammation in the Tilapia fish digestive tract.
Collapse
Affiliation(s)
- Petculescu Ciochina Liliana
- Faculty of Bioengineering of Animal Resources, University of Life Sciences King Mihai I from Timisoara, Timisoara, 300645, Romania
| | - Gabi Dumitrescu
- Faculty of Bioengineering of Animal Resources, University of Life Sciences King Mihai I from Timisoara, Timisoara, 300645, Romania
| | - David McCleery
- Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Northern Ireland, Belfast, BT4 3SD, UK
| | - Ioan Pet
- Faculty of Bioengineering of Animal Resources, University of Life Sciences King Mihai I from Timisoara, Timisoara, 300645, Romania
| | - Tiberiu Iancu
- Faculty of Management and Rural Development, University of Life Sciences King Mihai I from Timisoara, Timisoara, 300645, Romania
| | - Lavinia Stef
- Faculty of Bioengineering of Animal Resources, University of Life Sciences King Mihai I from Timisoara, Timisoara, 300645, Romania
| | - Nicolae Corcionivoschi
- Faculty of Bioengineering of Animal Resources, University of Life Sciences King Mihai I from Timisoara, Timisoara, 300645, Romania.
- Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Northern Ireland, Belfast, BT4 3SD, UK.
- Academy of Romanian Scientists, Ilfov Street, No. 3, Bucharest, 050044, Romania.
| | - Igori Balta
- Faculty of Bioengineering of Animal Resources, University of Life Sciences King Mihai I from Timisoara, Timisoara, 300645, Romania.
| |
Collapse
|
5
|
Soto-Rodriguez SA, Marrujo Lopez FI, Aguilar-Rendon KG, Guzmán RH. Pathogenic bacteria prevalence in cultured Nile tilapia in Southwest Mexico: A real-time PCR analysis. JOURNAL OF FISH DISEASES 2024; 47:e13921. [PMID: 38270561 DOI: 10.1111/jfd.13921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/20/2023] [Accepted: 12/23/2023] [Indexed: 01/26/2024]
Abstract
The present study investigates molecular-based PCR techniques to estimate the prevalence of fish pathogens in southwest Mexico where recurrent mortality in the tilapia cultures has been observed. Sample of internal organs and lesions of Nile tilapia were taken and analysed in 2018, 2019, 2020 and 2022 to detect bacterial pathogens using PCR. No samples were taken in 2021 due to the COVID-19 pandemic. The real-time PCR conditions were optimized to allow a qualitative reliable detection of the bacteria from fixed fish tissue. A total of 599 pond- and cage-cultured tilapia from the southwestern Mexican Pacific (Guerrero, Oaxaca and Chiapas states) were analysed. In this tropical region, during 2018 and 2019 water temperatures of the tilapia cultures were generally with the optimal range to grow Nile tilapia, although extreme values were recorded on some farms. Most of the tilapia sampled were apparently healthy. No Francisella sp. was detected in any sample, and Staphylococcus sp. was the most prevalent (from 0% to 64%) bacteria from the three states over time. Low prevalence of Aeromonas sp. was found, from 0% to 4.3%, although the fish pathogen Aeromonas dhakensis was not detected. Sterptococcus iniae was only detected in Chiapas in 2019 at a low prevalence (1.4%), while the major tilapia pathogen S. agalactiae was detected at a high prevalence (from 0% to 59%) in the three Mexican states. This is the first detection of these pathogenic bacteria in rural farms using real-time PCR and constitutes a great risk for tilapia aquaculture in Mexico, as well as a potential dispersion of these pathogens to other aquaculture areas.
Collapse
Affiliation(s)
- Sonia A Soto-Rodriguez
- Centro de Investigación en Alimentación y Desarrollo, A.C. Coordinación Mazatlán, Mazatlan, Sinaloa, Mexico
| | - Francis I Marrujo Lopez
- Centro de Investigación en Alimentación y Desarrollo, A.C. Coordinación Mazatlán, Mazatlan, Sinaloa, Mexico
| | - Karla G Aguilar-Rendon
- Centro de Investigación en Alimentación y Desarrollo, A.C. Coordinación Mazatlán, Mazatlan, Sinaloa, Mexico
| | - Rafael Hernández Guzmán
- Investigador por México CONAHCYT, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, Mexico
| |
Collapse
|
6
|
Cai X, Yang S, Peng Y, Tan K, Xu P, Wu Z, Kwan KY, Jian J. Regulation of PhoB on biofilm formation and hemolysin gene hlyA and ciaR of Streptococcus agalactiae. Vet Microbiol 2024; 289:109961. [PMID: 38147806 DOI: 10.1016/j.vetmic.2023.109961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 12/08/2023] [Accepted: 12/19/2023] [Indexed: 12/28/2023]
Abstract
PhoB is a response regulator protein that plays a key role in the PhoBR two-component signal transduction system. In this study, we used transcriptome and proteomics techniques to evaluate the detect the gene network regulated by PhoB of Streptococcus agalactiae. The results showed that expression of biofilm formation and virulence-related genes were changed after phoB deficiency. Crystal violet and CLSM assay confirmed that the deletion of the phoB increased the thickness of S. agalactiae biofilm. The results of lacZ reporter and the bacterial one-hybridization method showed that PhoB could directly bind to the promoter regions of hemolysin A and ciaR genes but not to the promoter regions of cylE and hemolysin III. Through the construction of an 18-base pair deoxyribose nucleic acid (DNA) random fragment library and the bacterial one-hybridization system, it was found that the conservative sequence of PhoB binding was TTGGAGAA(G/T). Our research has uncovered the virulence potential of the PhoBR two-component system of S. agalactiae. The findings of this study provide the theoretical foundation for in-depth research on the pathogenic mechanism of S. agalactiae.
Collapse
Affiliation(s)
- Xiaohui Cai
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Ocean College, Beibu Gulf University, Qinzhou 535011, China
| | - Shaoyu Yang
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Ocean College, Beibu Gulf University, Qinzhou 535011, China
| | - Yinhui Peng
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Ocean College, Beibu Gulf University, Qinzhou 535011, China; College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang 524088, China
| | - Kianann Tan
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Ocean College, Beibu Gulf University, Qinzhou 535011, China
| | - Peng Xu
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Ocean College, Beibu Gulf University, Qinzhou 535011, China
| | - Zaohe Wu
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang 524088, China
| | - Kit Yue Kwan
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Ocean College, Beibu Gulf University, Qinzhou 535011, China.
| | - Jichang Jian
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang 524088, China.
| |
Collapse
|
7
|
Lukman G, Waturangi DE, Julyantoro PGS, Papuangan N. Phyllosphere bacteria with antiquorum sensing and antibiofilm activities against fish pathogenic bacteria. BMC Res Notes 2024; 17:5. [PMID: 38167225 PMCID: PMC10759618 DOI: 10.1186/s13104-023-06657-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 12/07/2023] [Indexed: 01/05/2024] Open
Abstract
OBJECTIVE This research aims to quantify antiquorum sensing and antibiofilm activity of f phyllosphere bacteria against biofilm formed by pathogenic fish bacteria such as Aeromonas hydrophila, Streptococcus agalactiae, and Vibrio harveyi. RESULTS Antiquorum sensing assay using Chromobacter violaceum as indicator bacteria and antibiofilm assay showed six phyllosphere bacteria have antiquorum sensing and antibiofilm activities against tested bacteria. The highest inhibition and destruction activity was showed by metabolite of JB 3B and EJB 5 F against A. hydrophila, respectively. Determination using light microscope and scanning electron microscope performed decreaing in biomass of biofilm observed after treated with metabolite from phyllosphere bacteria.
Collapse
Affiliation(s)
- Griselda Lukman
- Department of Biotechnology, Faculty of Biotechnology, Atma Jaya Catholic University of Indonesia, Jalan Jenderal Sudirman 51, Jakarta, 12930, Indonesia
| | - Diana Elizabeth Waturangi
- Department of Biotechnology, Faculty of Biotechnology, Atma Jaya Catholic University of Indonesia, Jalan Jenderal Sudirman 51, Jakarta, 12930, Indonesia.
| | - Pande Gde Sasmita Julyantoro
- Department of Aquatic Resources Management, Faculty of Marine Science and Fisheries, University of Udayana, Denpasar, Bali, 80361, Indonesia
| | - Nurmaya Papuangan
- Department of Biology Education, Faculty of Teacher Training and Education, Khairun University, Ternate, 97728, Indonesia
| |
Collapse
|
8
|
Zhang S, Zhang S, Wang Y, Zhang Y, Liang S, Fan S, Chen D, Liu G. Discovery of novel phenanthridone derivatives with anti-streptococcal activity. Arch Microbiol 2023; 205:371. [PMID: 37930433 DOI: 10.1007/s00203-023-03705-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/08/2023] [Accepted: 10/11/2023] [Indexed: 11/07/2023]
Abstract
To address the growing health threat posed by drug-resistant pathogenic microorganisms, the development of novel antimicrobial medications with multiple mechanisms of action is in urgent demand. With traditional antibacterial drug resources challenging to push forward, developing new antibacterial drugs has become a hot spot in biomedical research. In this study, we tested the antibacterial activity of 119 phenanthridine derivatives via the antibacterial assay and obtained 5 candidates. The cytotoxicity assay showed one phenanthridine derivative, HCK20, was safe for mammalian cells below 125 µM. HCK20 was verified to possess significant antibacterial activity to Streptococcus spp., such as Streptococcus pneumoniae, Streptococcus agalactiae, Streptococcus suis, Streptococcus dysgalactiae, and Streptococcus equi with MICs ranging from 15 to 60 µM. Furthermore, we found that HCK20 probably achieved its bacterial inhibition by influencing the permeability of bacterial cell walls via interacting with Streptococcal penicillin-binding proteins (PBPs). Our results suggest that this phenanthridine derivative, HCK20, has great potential to become a novel antibacterial agent that can be a potent treatment for streptococcal infections.
Collapse
Affiliation(s)
- Shidan Zhang
- Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Sanya, China
| | - Shiyu Zhang
- OIE Reference Laboratory for Swine Streptococcosis, Nanjing Agricultural University, Nanjing, 210095, China
- Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Sanya, China
| | - Yiting Wang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Yumin Zhang
- School of Agriculture and Biology, Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai Jiao Tong University, Shanghai, 201100, China
| | - Song Liang
- OIE Reference Laboratory for Swine Streptococcosis, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shirui Fan
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Duozhi Chen
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
| | - Guangjin Liu
- OIE Reference Laboratory for Swine Streptococcosis, Nanjing Agricultural University, Nanjing, 210095, China.
- Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Sanya, China.
| |
Collapse
|
9
|
Zhu J, Zou Z, Li D, Xiao W, Yu J, Chen B, Yang H. Comparative transcriptomes reveal different tolerance mechanisms to Streptococcus agalactiae in hybrid tilapia, nile tilapia, and blue tilapia. FISH & SHELLFISH IMMUNOLOGY 2023; 142:109121. [PMID: 37802264 DOI: 10.1016/j.fsi.2023.109121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 10/08/2023]
Abstract
Tilapia is one of the most economically important freshwater fish farmed in China. Streptococcosis outbreaks have been extensively documented in farmed tilapia species. Hybrid tilapia (Oreochromis niloticus ♀ × O. aureus ♂) exhibit greater disease resistance than Nile tilapia (O. niloticus) and blue tilapia (O. aureus). However, the molecular mechanism underlying the enhanced tolerance of hybrid tilapia is still poorly understood. In this study, comparative transcriptome analysis was performed to reveal the different tolerance mechanisms to Streptococcus agalactiae in the three tilapia lines. In total, 1982, 2355, and 2076 differentially expressed genes were identified at 48 h post-infection in hybrid tilapia, Nile tilapia, and blue tilapia, respectively. Functional enrichment analysis indicated that numerous metabolic and immune-related pathways were activated in all three tilapia lines. The differential expression of specific genes associated with phagosome, focal adhesion, cytokine-cytokine receptor interaction, and toll-like receptor signaling pathways contributed to the resistance of hybrid tilapia. Notably, immune response genes in hybrid tilapia, such as P38, TLR5, CXCR3, CXCL12, PSTPIP1, and TFR, were generally suppressed under normal conditions but selectively induced following pathogen challenge. These results expand our knowledge of the molecular mechanisms underlying S. agalactiae tolerance in hybrid tilapia and provide valuable insights for tilapia breeding programs.
Collapse
Affiliation(s)
- Jinglin Zhu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214128, China.
| | - Zhiying Zou
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214128, China.
| | - Dayu Li
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China.
| | - Wei Xiao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214128, China.
| | - Jie Yu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China.
| | - Binglin Chen
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China.
| | - Hong Yang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China.
| |
Collapse
|
10
|
Liang Y, Pan JM, Zhu KC, Xian L, Guo HY, Liu BS, Zhang N, Yang JW, Zhang DC. Genome-Wide Identification of Trachinotus ovatus Antimicrobial Peptides and Their Immune Response against Two Pathogen Challenges. Mar Drugs 2023; 21:505. [PMID: 37888440 PMCID: PMC10608450 DOI: 10.3390/md21100505] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/13/2023] [Accepted: 09/17/2023] [Indexed: 10/28/2023] Open
Abstract
Golden pompano, Trachinotus ovatus, as a highly nutritious commercially valuable marine fish, has become one of the preferred species for many fish farmers due to its rapid growth, wide adaptability, and ease of feeding and management. However, with the expansion of aquaculture scale, bacterial and parasitic diseases have also become major threats to the golden pompano industry. This study, based on comparative genomics, shows the possibility of preferential evolution of freshwater fish over marine fish by analyzing the phylogenetic relationships and divergence times of 14 marine fish and freshwater fish. Furthermore, we identified antimicrobial peptide genes from 14 species at the genomic level and found that the number of putative antimicrobial peptides may be related to species evolution. Subsequently, we classified the 341 identified AMPs from golden pompano into 38 categories based on the classification provided by the APD3. Among them, TCP represented the highest proportion, accounting for 23.2% of the total, followed by scolopendin, lectin, chemokine, BPTI, and histone-derived peptides. At the same time, the distribution of AMPs in chromosomes varied with type, and covariance analysis showed the frequency of its repeat events. Enrichment analysis and PPI indicated that AMP was mainly concentrated in pathways associated with disease immunity. In addition, our transcriptomic data measured the expression of putative AMPs of golden pompano in 12 normal tissues, as well as in the liver, spleen, and kidney infected with Streptococcus agalactiae and skin infected with Cryptocaryon irritans. As the infection with S. agalactiae and C. irritans progressed, we observed tissue specificity in the number and types of responsive AMPs. Positive selection of AMP genes may participate in the immune response through the MAPK signaling pathway. The genome-wide identification of antimicrobial peptides in the golden pompano provided a complete database of potential AMPs that can contribute to further understanding the immune mechanisms in pathogens. AMPs were expected to replace traditional antibiotics and be developed into targeted drugs against specific bacterial and parasitic pathogens for more precise and effective treatment to improve aquaculture production.
Collapse
Affiliation(s)
- Yu Liang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (Y.L.); (J.-M.P.); (K.-C.Z.); (L.X.); (H.-Y.G.); (B.-S.L.); (N.Z.); (J.-W.Y.)
- Guangxi Marine Microbial Resources Industrialization Engineering Technology Research Center, Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning 530008, China
| | - Jin-Min Pan
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (Y.L.); (J.-M.P.); (K.-C.Z.); (L.X.); (H.-Y.G.); (B.-S.L.); (N.Z.); (J.-W.Y.)
| | - Ke-Cheng Zhu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (Y.L.); (J.-M.P.); (K.-C.Z.); (L.X.); (H.-Y.G.); (B.-S.L.); (N.Z.); (J.-W.Y.)
- Sanya Tropical Fisheries Research Institute, Sanya 572018, China
- Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou 510300, China
| | - Lin Xian
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (Y.L.); (J.-M.P.); (K.-C.Z.); (L.X.); (H.-Y.G.); (B.-S.L.); (N.Z.); (J.-W.Y.)
- Sanya Tropical Fisheries Research Institute, Sanya 572018, China
- Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou 510300, China
| | - Hua-Yang Guo
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (Y.L.); (J.-M.P.); (K.-C.Z.); (L.X.); (H.-Y.G.); (B.-S.L.); (N.Z.); (J.-W.Y.)
- Sanya Tropical Fisheries Research Institute, Sanya 572018, China
- Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou 510300, China
| | - Bao-Suo Liu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (Y.L.); (J.-M.P.); (K.-C.Z.); (L.X.); (H.-Y.G.); (B.-S.L.); (N.Z.); (J.-W.Y.)
- Sanya Tropical Fisheries Research Institute, Sanya 572018, China
- Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou 510300, China
| | - Nan Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (Y.L.); (J.-M.P.); (K.-C.Z.); (L.X.); (H.-Y.G.); (B.-S.L.); (N.Z.); (J.-W.Y.)
- Sanya Tropical Fisheries Research Institute, Sanya 572018, China
- Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou 510300, China
| | - Jing-Wen Yang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (Y.L.); (J.-M.P.); (K.-C.Z.); (L.X.); (H.-Y.G.); (B.-S.L.); (N.Z.); (J.-W.Y.)
- Sanya Tropical Fisheries Research Institute, Sanya 572018, China
- Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou 510300, China
| | - Dian-Chang Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (Y.L.); (J.-M.P.); (K.-C.Z.); (L.X.); (H.-Y.G.); (B.-S.L.); (N.Z.); (J.-W.Y.)
- Sanya Tropical Fisheries Research Institute, Sanya 572018, China
- Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou 510300, China
| |
Collapse
|
11
|
Jiang B, Li Q, Zhang Z, Huang Y, Wu Y, Li X, Huang M, Huang Y, Jian J. Involvement of CD27 in innate and adaptive immunities of Nile tilapia (Oreochromis niloticus). FISH & SHELLFISH IMMUNOLOGY 2023; 139:108923. [PMID: 37394017 DOI: 10.1016/j.fsi.2023.108923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/15/2023] [Accepted: 06/29/2023] [Indexed: 07/04/2023]
Abstract
CD27 is a member of the TNF-receptor superfamily and plays various roles in immunities. However, the detailed information and mechanism of CD27 in bony fish immunity remain unclear. Therefore, in this research, certain interesting roles of CD27 in Nile tilapia (On-CD27) were determined. On-CD27 was largely expressed in the immune organs, head kidney, and spleen, and was sharply induced during bacterial infection. The in vitro tests suggested On-CD27 was involved in regulating inflammatory responses, activating immune-related signal pathways, and inducing apoptosis and pyroptosis progress. The scRNA data and in vivo experiments indicated that On-CD27 is mainly expressed in CD4+ T cells and involved in both innate and adaptive immunities. The present data provide a theoretical principle for further research on the mechanisms of CD27 in the innate and adaptive immunities of fish.
Collapse
Affiliation(s)
- Baijian Jiang
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, China; Guangdong Provincial Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China
| | - Qi Li
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, China; Guangdong Provincial Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China
| | - Zhiqiang Zhang
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, China; Guangdong Provincial Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China
| | - Yongxiong Huang
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, China; Guangdong Provincial Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China
| | - Yiqin Wu
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, China; Guangdong Provincial Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China
| | - Xing Li
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, China; Guangdong Provincial Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China
| | - Meiling Huang
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, China; Guangdong Provincial Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China
| | - Yu Huang
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, China; Guangdong Provincial Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, China.
| | - Jichang Jian
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, China; Guangdong Provincial Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, China.
| |
Collapse
|
12
|
Van Doan H, Wangkahart E, Thaimuangphol W, Panase P, Sutthi N. Effects of Bacillus spp. Mixture on Growth, Immune Responses, Expression of Immune-Related Genes, and Resistance of Nile Tilapia Against Streptococcus agalactiae Infection. Probiotics Antimicrob Proteins 2023; 15:363-378. [PMID: 34596882 DOI: 10.1007/s12602-021-09845-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2021] [Indexed: 12/16/2022]
Abstract
The purpose of this study was to evaluate the effect of Bacillus spp. mixture (Bacillus subtilis TISTR001, Bacillus megaterium TISTR067, and Bacillus licheniformis DF001) (1 × 106 CFU/g) on growth, immune parameters, immune-related gene expression, and resistance of Nile tilapia against Streptococcus agalactiae AAHM04. Fish were fed different concentrations of Bacillus spp. 0 (control; T1), 1 (T2), 3 (T3), and 5 (T4) g/kg diets for 120 days. The results showed that weight gain, average daily gain, specific growth rate, feed conversion ratio in T3 diet were significantly higher than the control group and other tested diets (p < 0.05). Immune parameters, such as myeloperoxidase and lysozyme, were significantly higher in the T3 and T4 diets compared to the control group (p < 0.05). Similarly, IL-1β and TNF-α gene expressions in the spleen of fish fed T2, T3, and T4 diets were significantly higher than the control group (p < 0.05). However, no significant differences in survival rate, hematology, blood chemical indices, malondialdehyde (MDA) levels, body chemical composition, and organosomatic indices (p > 0.05) were noticed in all treatments. No significant differences in survival rate after the challenge test with S. agalactiae AAHM04 were found in fish fed Bacillus spp. mixture diets, except for the T3 diet. These results suggest that Bacillus spp. mixture diet at 3 g/kg diet (T3) could improve growth, immune response, and disease resistance of Nile tilapia.
Collapse
Affiliation(s)
- Hien Van Doan
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
- Science and Technology Research Institute, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Eakapol Wangkahart
- Department of Agricultural Technology, Faculty of Technology, Mahasarakham University, Maha Sarakham, 44150, Thailand
- Research Unit of Excellence for Tropical Fisheries and Technology, Faculty of Technology, Mahasarakham University, Maha Sarakham, 44150, Thailand
| | - Wipavee Thaimuangphol
- Department of Agricultural Technology, Faculty of Technology, Mahasarakham University, Maha Sarakham, 44150, Thailand
- Research Unit of Excellence for Tropical Fisheries and Technology, Faculty of Technology, Mahasarakham University, Maha Sarakham, 44150, Thailand
| | - Paiboon Panase
- Fisheries Division, School of Agriculture and Natural Resources, University of Phayao, Phayao, 56000, Thailand
- Unit of Excellence 2022 on Biodiversity and Natural Resources Management (FF65-UoE003), University of Phayao, Phayao, 56000, Thailand
| | - Nantaporn Sutthi
- Department of Agricultural Technology, Faculty of Technology, Mahasarakham University, Maha Sarakham, 44150, Thailand.
- Research Unit of Excellence for Tropical Fisheries and Technology, Faculty of Technology, Mahasarakham University, Maha Sarakham, 44150, Thailand.
| |
Collapse
|
13
|
Zhao Z, Zou Q, Han S, Shi J, Yan H, Hu D, Yi Y. Omics analysis revealed the possible mechanism of streptococcus disease outbreak in tilapia under high temperature. FISH & SHELLFISH IMMUNOLOGY 2023; 134:108639. [PMID: 36841518 DOI: 10.1016/j.fsi.2023.108639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 02/05/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
High temperature is a main cause to result in the outbreak of tilapia streptococcal disease. However, the underlying mechanisms are not well understood. In this study, we first confirmed that tilapia infected with Streptococcus agalactiae (S. agalactiae) had a higher mortality at high temperature (35 °C) than that at normal temperature (28 °C). Subsequently, the effects of high temperature on gene expression pattern of S. agalactiae and intestinal microbiota of tilapia were respectively detected by RNA-seq and 16S rDNA sequencing. RNA-seq identified 357 differentially expressed genes (DEGs) in S. agalactiae cultured at 28 °C and 35 °C. GO and KEGG analysis showed that these DEGs were highly involved in metabolic processes, including glucose, lipid and amino acid metabolisms, which indicates that S. agalactiae have stronger vitality and are likely to be more infectious under high temperature. Microbiota analysis revealed that high temperature could influence the bacterial community composition of tilapia intestine, accompanied by changes in intestinal structure. Compared to feed at 28 °C, the total bacterial species as well as pathogens, such as norank_f__Rhizobiales_Incertae_Sedis, Pseudorhodoplanes, Ancylobacter, in tilapia intestine were significantly increased at 35 °C, which may weaken the immune resistance of tilapia. Taken together, our results suggest that high temperature evoked tilapia susceptible to S. agalactiae should be the combined effect of enhanced S. agalactiae metabolism and dysregulated tilapia intestinal microbiota.
Collapse
Affiliation(s)
- Zaoya Zhao
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, 545006, China.
| | - Qianxing Zou
- Department of Reproductive Medicine, Liuzhou People's Hospital, Liuzhou, 545006, China.
| | - Shuyu Han
- Guangxi Fishery Technical Extension Station, Nanning, 530022, China.
| | - Jingu Shi
- Guangxi Fishery Technical Extension Station, Nanning, 530022, China.
| | - Haijun Yan
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, South China Sea Bio-Resource Exploitation and Collaborative Innovation Center, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510006, China.
| | - Dasheng Hu
- Guangxi Fishery Technical Extension Station, Nanning, 530022, China.
| | - Yi Yi
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, 545006, China.
| |
Collapse
|
14
|
Li Q, Jiang B, Zhang Z, Huang Y, Xu Z, Chen X, Huang Y, Jian J, Yan Q. α-MSH is partially involved in the immunomodulation of Nile tilapia (Oreochromis niloticus) antibacterial immunity. FISH & SHELLFISH IMMUNOLOGY 2022; 131:929-938. [PMID: 36343851 DOI: 10.1016/j.fsi.2022.11.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
α-Melanocyte-stimulating hormone (α-MSH) is a well-studied neuropeptide controlling skin and hair color. Besides, numerous immunomodulation roles of α-MSH were recorded in humans and mice. However, the regulatory effects of α-MSH in teleost immunity haven't been well elucidated. In this study, several precursor molecules of α-MSH (POMCs) and its receptors (MCRs) in Nile tilapia (Oreochromis niloticus) were characterized, and their expression characteristics and specific functions on antibacterial immunity were determined. Overall, POMCs and MCRs were principally detected in the brain, skin, and liver, and were remarkably promoted post Streptococcus agalactiae infection. However, tiny POMCs and MCRs were observed in tilapia immune organs (head kidney and spleen) or lymphocytes, and no evident immunomodulation effect was detected in vitro. Moreover, the in vivo challenge experiments revealed that α-MSH protects tilapia from bacterial infection by regulating responses in the brain and intestine. This study lays theoretical data for a deeper comprehension of the immunomodulation mechanisms of teleost α-MSH and the evolutional process of the vertebrate melanocortin system.
Collapse
Affiliation(s)
- Qi Li
- Fisheries College, Jimei University, Xiamen, China; College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang, China
| | - Baijian Jiang
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang, China
| | - Zhiqiang Zhang
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang, China
| | - Yongxiong Huang
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang, China
| | - Zhou Xu
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang, China
| | - Xinjin Chen
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang, China
| | - Yu Huang
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, China
| | - Jichang Jian
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, China.
| | - Qingpi Yan
- Fisheries College, Jimei University, Xiamen, China.
| |
Collapse
|
15
|
Ali SE, Mahana O, Mohan CV, Delamare-Deboutteville J, Elgendy MY. Genetic characterization and antimicrobial profiling of bacterial isolates collected from Nile tilapia (Oreochromis niloticus) affected by summer mortality syndrome. JOURNAL OF FISH DISEASES 2022; 45:1857-1871. [PMID: 36057979 DOI: 10.1111/jfd.13710] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 08/07/2022] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Abstract
In recent years, Egyptian tilapia aquaculture has experienced mortality episodes during the summer months. The causative agents responsible for such mortalities have not been clearly identified. A total of 400 fish specimens were collected from affected tilapia farms within five Egyptian governorates. A total of 344 bacterial isolates were identified from the examined fish specimens. Bacterial isolates were grouped into seven genera based on API 20E results. The most prevalent pathogens were Aeromonas spp. (42%), Vibrio spp. (21%), and Streptococcus agalactiae (14.5%). Other emerging infections like, Plesiomonas shigelloides (10%), Staphyloccocus spp. (8%), Pseudomonas oryzihabitans, and Acinetobacter lwoffii (2.3%) were also detected. Sequence analysis of the 16S ribosomal RNA bacterial gene of some isolates, confirmed the phenotypic identification results. The analysis of antibiotic resistance genes revealed the presence of aac(6')-Ib-cr (35.7%), blaCTX gene (23.8%), qnrS (19%), ampC (16.7%), floR (14.3%), sul1, tetA, and van.C1 (2.4%) genes in some isolates. The antimicrobia resistance gene, qac was reported in 46% of screened isolates. Bacterial strains showed variable virulence genes profiles. Aeromonas spp. harboured (act, gcat, aerA, lip, fla, and ser) genes. All Vibrio spp. possessed the hlyA gene, while cylE, hylB, and lmb genes, were detected in S. agalactiae strains. Our findings point to the possible role of the identified bacterial pathogens in tilapia summer mortality syndrome and highlight the risk of the irresponsible use of antibiotics on antimicrobial resistance in aquaculture.
Collapse
Affiliation(s)
- Shimaa E Ali
- WorldFish, Abbassa, Sharqia, Egypt
- Department of Hydrobiology, Veterinary Research Institute, National Research Centre, Giza, Egypt
| | - Osama Mahana
- Animal Health Research Institute, Agricultural Research Center, Giza, Egypt
| | | | | | - Mamdouh Y Elgendy
- Department of Hydrobiology, Veterinary Research Institute, National Research Centre, Giza, Egypt
| |
Collapse
|
16
|
Gao S, Han C, Ye H, Chen Q, Huang J. Transcriptome analysis of the spleen provides insight into the immunoregulation of Scortum barcoo under Streptococcus agalactiae infection. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 245:114095. [PMID: 36116237 DOI: 10.1016/j.ecoenv.2022.114095] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 09/01/2022] [Accepted: 09/14/2022] [Indexed: 06/15/2023]
Abstract
Jade perch (Scortum barcoo) is a freshwater fish with substantial economic value, which has been widely cultivated all over the world. However, with the intensification and expansion of farming, several bacterial and viral diseases have occurred in jade perch. To understand the immune response of jade perch against Streptococcus agalactiae (Group B Streptococcus, GBS), we performed a histopathological examination and transcriptome sequencing of jade perch spleen after artificial bacterial infection. GBS infection can cause structural changes and even necrosis of the jade perch spleen, which may affect the survival of infected individuals. A total of 144,458 unigenes were obtained through de novo assembly of spleen transcriptome. Among them, 1821 unigenes were identified as DEGs, including 1415 up-regulated and 406 down-regulated unigenes in the infection group. Moreover, the analysis of GO and KEGG revealed that many GO terms and pathways were involved in the host immune response, such as Toll-like receptor signaling pathway, Cytokine-cytokine receptor interaction, and TNF signaling pathway. In addition, according to transcriptome data and qRT-PCR analysis, the expression levels of many cytokines that participate in the inflammatory response changed a lot after GBS infection. Overall, this transcriptomic analysis provided valuable information for studying the immune response of jade perch against bacterial infection.
Collapse
Affiliation(s)
- Songze Gao
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, PR China
| | - Chong Han
- School of Life Sciences, Guangzhou University, Guangzhou 51006, PR China.
| | - Hangyu Ye
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, PR China
| | - Qinghua Chen
- South China Institute of Environmental Science, MEE, Guangzhou 510610, PR China
| | - Jianrong Huang
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, PR China.
| |
Collapse
|
17
|
Kannika K, Sirisuay S, Kondo H, Hirono I, Areechon N, Unajak S. Trial Evaluation of Protection and Immunogenicity of Piscine Bivalent Streptococcal Vaccine: From the Lab to the Farms. Vaccines (Basel) 2022; 10:1625. [PMID: 36298490 PMCID: PMC9610196 DOI: 10.3390/vaccines10101625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 11/29/2022] Open
Abstract
Streptococcosis is one of the major diseases that causes devastation to farmed fish, leading to significant economic losses all around the world. Currently, two serotypes of Streptococcus agalactiae, serotype Ia and III, have been identified as virulent strains and major causative agents of the disease in farmed Nile tilapia (Oreochromis niloticus Linn.) in Thailand. Upon inactivated vaccine development, monovalent inactivated whole-cell vaccines demonstrated high specific antibody production against homologous serotypes and limited production with heterologous serotypes. However, for higher efficacy, a bivalent streptococcal vaccine was designed to maximize protective immunity to both serotypes. Interestingly, our bivalent vaccine could successfully induce specific antibody production against both serotypes with similar levels, and the response could extend over the 8 weeks of the experimental period. Evaluation of vaccines in the laboratory scale revealed relative percent survival (RPS) of vaccinated tilapia to serotype Ia (81.2 ± 9.4%) and serotype III (72.2 ± 4.8%), respectively. The efficacy of the bivalent vaccine showed significant RPS higher than the monovalent vaccine (p < 0.05) at 30 days, and the protection of all those vaccines was reduced thereafter. Evaluation of the vaccine in a farm trial in different locations in Thailand revealed the efficacy of the bivalent vaccine in increasing the production yield by greater than 80% in all tested farms in 2015 and 2021. Taken together, this study affirms the efficacy of the bivalent streptococcal vaccine in the prevention of streptococcus disease in Nile tilapia, which could be used in different areas. This vaccine development could be effectively applied in the tilapia culture industry.
Collapse
Affiliation(s)
- Korntip Kannika
- Department of Aquaculture, Faculty of Fisheries, Kasetsart University, 50 NgamWong Wan Road, Lat Yao, Chatuchak, Bangkok 10900, Thailand
| | - Soranut Sirisuay
- Department of Aquaculture, Faculty of Fisheries, Kasetsart University, 50 NgamWong Wan Road, Lat Yao, Chatuchak, Bangkok 10900, Thailand
| | - Hidehiro Kondo
- Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato-Ku, Tokyo 108-8477, Japan
| | - Ikuo Hirono
- Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato-Ku, Tokyo 108-8477, Japan
| | - Nontawith Areechon
- Department of Aquaculture, Faculty of Fisheries, Kasetsart University, 50 NgamWong Wan Road, Lat Yao, Chatuchak, Bangkok 10900, Thailand
| | - Sasimanas Unajak
- Department of Biochemistry, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan Road, Lat Yao, Chatuchak, Bangkok 10900, Thailand
- Kasetsart Vaccines and Bio-Product Innovation Centre, Kasetsart University, 50 Ngam Wong Wan Road, Chatuchak, Bangkok 10900, Thailand
| |
Collapse
|
18
|
Dietary Supplementation with Eucommia ulmoides Leaf Extract Improved the Intestinal Antioxidant Capacity, Immune Response, and Disease Resistance against Streptococcus agalactiae in Genetically Improved Farmed Tilapia (GIFT; Oreochromis niloticus). Antioxidants (Basel) 2022; 11:antiox11091800. [PMID: 36139874 PMCID: PMC9495437 DOI: 10.3390/antiox11091800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/04/2022] [Accepted: 09/08/2022] [Indexed: 11/17/2022] Open
Abstract
A 7-week rearing trial was designed to investigate the effects of Eucommia ulmoides leaf extract (ELE) on growth performance, body composition, antioxidant capacity, immune response, and disease susceptibility of diet-fed GIFT. The results showed that dietary ELE did not affect growth performance or whole-body composition (p > 0.05). Compared with the control group, plasma ALB contents increased in the 0.06% dietary ELE group (p < 0.05), and plasma ALT and AST activities decreased in the 0.08% dietary ELE group (p < 0.05). In terms of antioxidants, compared with GIFT fed the control diet, 0.06% dietary ELE upregulated the mRNA expression levels of Nrf2 pathway-related antioxidant genes, including CAT and SOD (p < 0.05), and 0.06% and 0.08% dietary ELE upregulated the mRNA levels of Hsp70 (p < 0.05). In terms of immunity, 0.06% dietary ELE suppressed intestinal TLR2, MyD88, and NF-κB mRNA levels (p < 0.05). Moreover, the mRNA levels of the anti-inflammatory cytokines TGF-β and IL-10 were upregulated by supplementation with 0.04% and 0.06% dietary ELE (p < 0.05). In terms of apoptosis, 0.06% and 0.08% ELE significantly downregulated the expression levels of FADD mRNA (p < 0.05). Finally, the challenge experiment with S. agalactiae showed that 0.06% dietary ELE could inhibit bacterial infection, and significantly improve the survival rate of GIFT (p < 0.05). This study demonstrated that the supplementation of 0.04−0.06% ELE in diet could promote intestinal antioxidant capacity, enhance the immune response and ultimately improve the disease resistance of GIFT against Streptococcus agalactiae.
Collapse
|
19
|
Xu JR, Zheng PH, Zhang XX, Li JT, Chen HQ, Zhang ZL, Hao CG, Cao YL, Xian JA, Lu YP, Dai HF. Effects of Elephantopus scaber extract on growth, proximate composition, immunity, intestinal microbiota and resistance of the GIFT strain of Nile tilapia Oreochromis niloticus to Streptococcus agalactiae. FISH & SHELLFISH IMMUNOLOGY 2022; 127:280-294. [PMID: 35752371 DOI: 10.1016/j.fsi.2022.06.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 06/05/2022] [Accepted: 06/19/2022] [Indexed: 06/15/2023]
Abstract
This study aimed to investigate the effects of Elephantopus scaber extract on the GIFT (genetic improvement of farmed tilapia) strain of Nile tilapia Oreochromis niloticus. A total of 800 tilapia with an initial body weight of 1.34 ± 0.09 g each were randomly divided into five groups. The tilapia in the control group (E0 group) were fed on a basal diet only. Meanwhile, tilapia in the four experimental groups were fed on a basal diet supplemented with 1 g/kg (E1 group), 3 g/kg (E2 group), 5 g/kg (E3 group), and 7 g/kg (E4 group) of E. scaber extract for 10 weeks. Results showed that the survival rate was higher in the experimental groups than in the control group. Compared with the control group, some growth parameters (FW, WGR, SGR, VSI, and HSI) were significantly improved in the E1 group and E2 group. The crude lipid content in the dorsal muscle and liver was lower in the E1 group than in the control group. After E. scaber extract supplementation, activities of immunity-related enzymes (ACP, AKP, T-AOC, SOD, CAT, GSH-Px and LZM) in plasma, liver, spleen and head kidney, and expressions of immunity-related genes (IL-1β, IFN-γ, TNF-α, and CCL-3) in liver, spleen and head kidney showed various degrees of improvement, while MDA content and Hsp70 expression level were decreased. The survival rate of tilapia increased in all the supplementation groups after Streptococcus agalactiae treatment. E. scaber extract addition changed the species composition, abundance, and diversity of intestinal microbiota in tilapia. These results demonstrate that E. scaber extract supplementation in diet can improve the growth, immunity, and disease resistance of GIFT against S. agalactiae. E. scaber extract supplementation can also change intestinal microbiota and reduce crude lipid content in dorsal muscle and liver. The above indicators show that the optimal dose of E. scaber extract for GIFT is 1 g/kg.
Collapse
Affiliation(s)
- Jia-Rui Xu
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Science & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute of Tropical Agricultural Resources, Haikou 571101, China; Ocean College of Hebei Agricultural University, Qinhuangdao, 066003, China
| | - Pei-Hua Zheng
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Science & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute of Tropical Agricultural Resources, Haikou 571101, China
| | - Xiu-Xia Zhang
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Science & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute of Tropical Agricultural Resources, Haikou 571101, China
| | - Jun-Tao Li
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Science & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute of Tropical Agricultural Resources, Haikou 571101, China
| | - Hui-Qin Chen
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Science & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute of Tropical Agricultural Resources, Haikou 571101, China
| | - Ze-Long Zhang
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Science & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute of Tropical Agricultural Resources, Haikou 571101, China
| | - Chen-Guang Hao
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Science & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute of Tropical Agricultural Resources, Haikou 571101, China
| | - Yan-Lei Cao
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Science & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute of Tropical Agricultural Resources, Haikou 571101, China; Ocean College of Hebei Agricultural University, Qinhuangdao, 066003, China
| | - Jian-An Xian
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Science & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute of Tropical Agricultural Resources, Haikou 571101, China; Ocean College of Hebei Agricultural University, Qinhuangdao, 066003, China; Zhanjiang Experimental Station of Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, 524013, China.
| | - Yao-Peng Lu
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Science & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute of Tropical Agricultural Resources, Haikou 571101, China.
| | - Hao-Fu Dai
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Science & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute of Tropical Agricultural Resources, Haikou 571101, China.
| |
Collapse
|
20
|
Pumchan A, Sae-Ueng U, Prasittichai C, Sirisuay S, Areechon N, Unajak S. A Novel Efficient Piscine Oral Nano-Vaccine Delivery System: Modified Halloysite Nanotubes (HNTs) Preventing Streptococcosis Disease in Tilapia ( Oreochromis sp.). Vaccines (Basel) 2022; 10:1180. [PMID: 35893829 PMCID: PMC9331641 DOI: 10.3390/vaccines10081180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 11/17/2022] Open
Abstract
Generally, the injection method is recommended as the best efficient method for vaccine applications in fish. However, labor-intensive and difficult injection for certain fish sizes is always considered as a limitation to aquatic animals. To demonstrate the effectiveness of a novel oral delivery system for the piscine vaccine with nano-delivery made from nano clay, halloysite nanotubes (HNTs) and their modified forms were loaded with killed vaccines, and we determined the ability of the system in releasing vaccines in a mimic digestive system. The efficaciousness of the oral piscine vaccine nano-delivery system was evaluated for its level of antibody production and for the level of disease prevention in tilapia. Herein, unmodified HNTs (H) and modified HNTs [HNT-Chitosan (HC), HNT-APTES (HA) and HNT-APTES-Chitosan (HAC)] successfully harbored streptococcal bivalent vaccine with inactivated S. agalactiae, designated as HF, HAF, HCF and HACF. The releasing of the loading antigens in the mimic digestive tract demonstrated a diverse pattern of protein releasing depending on the types of HNTs. Remarkably, HCF could properly release loading antigens with relevance to the increasing pH buffer. The oral vaccines revealed the greatest elevation of specific antibodies to S. agalactiae serotype Ia in HCF orally administered fish and to some extent in serotype III. The efficacy of streptococcal disease protection was determined by continually feeding with HF-, HAF-, HCF- and HACF-coated feed pellets for 7 days in the 1st and 3rd week. HCF showed significant RPS (75.00 ± 10.83%) among the other tested groups. Interestingly, the HCF-treated group exhibited noticeable efficacy similar to the bivalent-vaccine-injected group (RPS 81.25 ± 0.00%). This novel nano-delivery system for the fish vaccine was successfully developed and exhibited appropriated immune stimulation and promised disease prevention through oral administration. This delivery system can greatly support animals' immune stimulation, which conquers the limitation in vaccine applications in aquaculture systems. Moreover, this delivery system can be applied to carrying diverse types of biologics, including DNA, RNA and subunit protein vaccines.
Collapse
Affiliation(s)
- Ansaya Pumchan
- Department of Biochemistry, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan, Chatuchak, Bangkok 10900, Thailand;
- Kasetsart Vaccines and Bio-Product Innovation Centre, Kasetsart University, 50 Ngam Wong Wan, Chatuchak, Bangkok 10900, Thailand
| | - Udom Sae-Ueng
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand;
| | - Chaiya Prasittichai
- Department of Chemistry, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan, Chatuchak, Bangkok 10900, Thailand;
| | - Soranuth Sirisuay
- Department of Aquaculture, Faculty of Fisheries, Kasetsart University, 50 Ngam Wong Wan Road, Chatuchak, Bangkok 10900, Thailand; (S.S.); (N.A.)
| | - Nontawith Areechon
- Department of Aquaculture, Faculty of Fisheries, Kasetsart University, 50 Ngam Wong Wan Road, Chatuchak, Bangkok 10900, Thailand; (S.S.); (N.A.)
| | - Sasimanas Unajak
- Department of Biochemistry, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan, Chatuchak, Bangkok 10900, Thailand;
- Kasetsart Vaccines and Bio-Product Innovation Centre, Kasetsart University, 50 Ngam Wong Wan, Chatuchak, Bangkok 10900, Thailand
| |
Collapse
|
21
|
Huang AG, Su LJ, He WH, Zhang FL, Wei CS, Wang YH. Natural component plumbagin as a potential antibacterial agent against Streptococcus agalactiae infection. JOURNAL OF FISH DISEASES 2022; 45:815-823. [PMID: 35315084 DOI: 10.1111/jfd.13606] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 06/14/2023]
Abstract
Streptococcus agalactiae, also known as Group B Streptococcus (GBS), can infect humans, terrestrial animals and fish. The emergence of bacterial resistance of S. agalactiae to antibiotics leads to an urgent need of exploration of new antimicrobial agents. In the study, the antibacterial activity of natural component plumbagin (PLB) against S. agalactiae was investigated in vitro and in vivo. The results showed that the minimal inhibitory concentration (MIC) of PLB against S. agalactiae was 8 mg/L. The growth curve assay revealed that PLB could inhibit the growth of S. agalactiae. In addition, the time-killing curve showed that S. agalactiae was killed almost completely by 2-fold MIC of PLB within 12 h. Transmission electron microscopy results showed obvious severe morphological destruction and abnormal cells of S. agalactiae after treated with PLB. The pathogenicity of S. agalactiae to zebrafish was significantly decreased after preincubation with PLB for 2 h in vitro, further indicating the bactericidal activity of PLB. Interestingly, PLB could kill S. agalactiae without inducing resistance development. Furthermore, pretreatment and post-treatment assays suggested that PLB also exhibited the antibacterial activity against S. agalactiae infection in vivo by effectively reducing the bacterial load and improving the survival rate of S. agalactiae-infected zebrafish. In summary, PLB had potent antibacterial activity against S. agalactiae in vitro and in vivo, and it could be an excellent antimicrobial candidate to prevent and control S. agalactiae infection.
Collapse
Affiliation(s)
- Ai-Guo Huang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, China
- School of Marine Sciences, Guangxi University, Nanning, China
- College of Life Science and Technology, Guangxi University, Nanning, China
| | - Lin-Jun Su
- China-ASEAN College of Marine Sciences, Xiamen University Malaysia, Sepang, Malaysia
| | - Wei-Hao He
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, China
- School of Marine Sciences, Guangxi University, Nanning, China
| | - Fa-Li Zhang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, China
- School of Marine Sciences, Guangxi University, Nanning, China
| | - Chao-Shuai Wei
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, China
- School of Marine Sciences, Guangxi University, Nanning, China
| | - Ying-Hui Wang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, China
- School of Marine Sciences, Guangxi University, Nanning, China
| |
Collapse
|
22
|
Dobrut A, Brzychczy-Włoch M. Immunogenic Proteins of Group B Streptococcus-Potential Antigens in Immunodiagnostic Assay for GBS Detection. Pathogens 2021; 11:43. [PMID: 35055991 PMCID: PMC8778278 DOI: 10.3390/pathogens11010043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/29/2021] [Accepted: 12/29/2021] [Indexed: 12/21/2022] Open
Abstract
Streptococcus agalactiae (Group B Streptococcus, GBS) is an opportunistic pathogen, which asymptomatically colonizes the gastrointestinal and genitourinary tract of up to one third of healthy adults. Nevertheless, GBS carriage in pregnant women may lead to several health issues in newborns causing life threatening infection, such as sepsis, pneumonia or meningitis. Recommended GBS screening in pregnant women significantly reduced morbidity and mortality in infants. Nevertheless, intrapartum antibiotic prophylaxis, recommended following the detection of carriage or in case of lack of a carriage test result for pregnant women who demonstrate certain risk factors, led to the expansion of the adverse phenomenon of bacterial resistance to antibiotics. In our paper, we reviewed some immunogenic GBS proteins, i.e., Alp family proteins, β protein, Lmb, Sip, BibA, FsbA, ScpB, enolase, elongation factor Tu, IMPDH, and GroEL, which possess features characteristic of good candidates for immunodiagnostic assays for GBS carriage detection, such as immunoreactivity and specificity. We assume that they can be used as an alternative diagnostic method to the presently recommended bacteriological cultivation and MALDI.
Collapse
Affiliation(s)
| | - Monika Brzychczy-Włoch
- Department of Molecular Medical Microbiology, Faculty of Medicine, Medical College, Jagiellonian University, 31-121 Krakow, Poland;
| |
Collapse
|