1
|
Yen TY, Hsu C, Lee NC, Wu CS, Wang H, Lee KY, Lin CR, Lu CY, Tsai ML, Liu TY, Lin C, Chen CY, Chang LY, Lai F, Huang LM. Signatures of lower respiratory tract microbiome in children with severe community-acquired pneumonia using shotgun metagenomic sequencing. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2024:S1684-1182(24)00217-2. [PMID: 39643526 DOI: 10.1016/j.jmii.2024.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 11/02/2024] [Accepted: 11/28/2024] [Indexed: 12/09/2024]
Abstract
BACKGROUND Severe community-acquired pneumonia was associated with high morbidity and mortality in children. However, species-level microbiome of lower airway was sparse, and we used shotgun metagenomic next-generation sequencing to explore microbial signatures. METHODS We conducted a prospective cohort study to recruit children under 18 who required admission to an intensive care unit for community-acquired pneumonia between December 2019 and February 2022. Lower respiratory specimens were collected on admission for shotgun metagenomic sequencing. The children were divided into two groups. Critical cases were patients with respiratory failure requiring endotracheal ventilator support, and severe cases did not require intubation. Signatures of lower respiratory tract microbiome were compared between groups using an exact k-mer matching metagenomic analysis pipeline (Kraken 2) and a metagenome-assembled genomes pipeline (MetaWRAP). RESULTS Totally 66 children were enrolled, and 27 children were critical cases, and the rest were severe cases. There were significant differences in microbial community structure between different severity groups, and microbial abundance was negatively correlated with disease severity. The results showed that Haemophilus influenzae was more prominent in children who were critical, accompanied with increased expression of intracellular transport, secretion, and vesicle transport genes. Rothia mucilaginosa, Dolosigranulum pigrum, and Prevotella melaninogenica tended to be present in less severe community-acquired pneumonia group. CONCLUSION This study demonstrated that significantly different microbial community was associated with severity of community-acquired pneumonia requiring intensive care admission. Species-level shotgun metagenomic sequencing facilitates the exploration of potentially pathogenic or protective microbes and shed the light of probiotic development in lower respiratory tract.
Collapse
Affiliation(s)
- Ting-Yu Yen
- Department of Pediatrics, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ching Hsu
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan
| | - Ni-Chung Lee
- Department of Pediatrics, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Medical Genetics, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chao-Szu Wu
- Department of Medical Genetics, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hsin Wang
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan
| | - Kuan-Yi Lee
- Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan
| | - Chia-Ray Lin
- Department of Pediatrics, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chun-Yi Lu
- Department of Pediatrics, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Mo-Li Tsai
- Department of Pediatrics, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Tzu-Yu Liu
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan; Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan; Smart Medicine and Health Informatics Program, National Taiwan University, Taipei, Taiwan
| | - Che Lin
- Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan; Smart Medicine and Health Informatics Program, National Taiwan University, Taipei, Taiwan; Center for Advanced Computing and Imaging in Biomedicine, National Taiwan University, Taipei, Taiwan
| | - Chien-Yu Chen
- Smart Medicine and Health Informatics Program, National Taiwan University, Taipei, Taiwan; Center for Advanced Computing and Imaging in Biomedicine, National Taiwan University, Taipei, Taiwan; Department of Biomechatronics Engineering, National Taiwan University, Taipei, Taiwan
| | - Luan-Yin Chang
- Department of Pediatrics, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan.
| | - Feipei Lai
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan; Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan; Department of Computer Science and Information Engineering, National Taiwan University, Taipei, Taiwan
| | - Li-Min Huang
- Department of Pediatrics, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
2
|
Odom AR, Gill CJ, Pieciak R, Ismail A, Thea D, MacLeod WB, Johnson WE, Lapidot R. Characterization of longitudinal nasopharyngeal microbiome patterns in maternally HIV-exposed Zambian infants. Gates Open Res 2024; 6:143. [PMID: 39345284 PMCID: PMC11427455 DOI: 10.12688/gatesopenres.14041.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2024] [Indexed: 10/01/2024] Open
Abstract
Background Previous studies of infants born to HIV-positive mothers have linked HIV exposure to poor outcomes from gastrointestinal and respiratory illnesses, and to overall increased mortality rates. The mechanism behind this is unknown, but it is possible that differences in the nasopharyngeal (NP) microbiome between infants who are HIV-unexposed or HIV-exposed could play a role in perpetuating some outcomes. Methods We conducted a longitudinal analysis of 170 NP swabs of healthy infants who are HIV-exposed (n=10) infants and their HIV(+) mothers, and infants who are HIV-unexposed, uninfected (HUU; n=10) .and their HIV(-) mothers. These swabs were identified from a sample library collected in Lusaka, Zambia between 2015 and 2016. Using 16S rRNA gene sequencing, we characterized the maturation of the microbiome over the first 14 weeks of life to determine what quantifiable differences exist between HIV-exposed and HUU infants, and what patterns are reflected in the mothers' NP microbiomes. Results In both HIV-exposed and HUU infants, Staphylococcus and Corynebacterium began as primary colonizers of the NP microbiome but were in time replaced by Dolosigranulum, Streptococcus, Moraxella and Haemophilus. When evaluating the interaction between HIV exposure status and time of sampling among infants, the microbe Staphylococcus haemolyticus showed a distinctive high association with HIV exposure at birth. When comparing infants to their mothers with paired analyses, HIV-exposed infants' NP microbiome composition was only slightly different from their HIV(+) mothers at birth or 14 weeks, including in their carriage of S. pneumoniae, H. influenzae, and S. haemolyticus. Conclusions Our analyses indicate that the HIV-exposed infants in our study exhibit subtle differences in the NP microbial composition throughout the sampling interval. Given our results and the sampling limitations of our study, we believe that further research must be conducted in order to confidently understand the relationship between HIV exposure and infants' NP microbiomes.
Collapse
Affiliation(s)
- Aubrey R. Odom
- Bioinformatics Program, Boston University, Boston, MA, 02118, USA
| | - Christopher J. Gill
- Department of Global Health, Boston University School of Public Health, Boston, MA, 02118, USA
| | - Rachel Pieciak
- Department of Global Health, Boston University School of Public Health, Boston, MA, 02118, USA
| | - Arshad Ismail
- Sequencing Core Facility, National Institute for Communicable Diseases of the National Health Laboratory Service, 2131 Johannesburg, South Africa
- Department of Biochemistry and Microbiology, University of Venda, Thohoyandou 0950, South Africa
| | - Donald Thea
- Department of Global Health, Boston University School of Public Health, Boston, MA, 02118, USA
| | - William B. MacLeod
- Department of Global Health, Boston University School of Public Health, Boston, MA, 02118, USA
| | - W. Evan Johnson
- Bioinformatics Program, Boston University, Boston, MA, 02118, USA
- Division of Infectious Disease, Center for Data Science, Rutgers New Jersey Medical School, Newark, NJ, 07103, USA
| | - Rotem Lapidot
- Pediatric Infectious Diseases, Boston Medical Center, Boston, MA, 02118, USA
- Department of Pediatrics, Boston University School of Medicine, Boston, MA, 02118, USA
| |
Collapse
|
3
|
van Beveren GJ, de Steenhuijsen Piters WAA, Boeschoten SA, Louman S, Chu ML, Arp K, Fraaij PL, de Hoog M, Buysse C, van Houten MA, Sanders EAM, Merkus PJFM, Boehmer AL, Bogaert D. Nasopharyngeal microbiota in children is associated with severe asthma exacerbations. J Allergy Clin Immunol 2024; 153:1574-1585.e14. [PMID: 38467291 DOI: 10.1016/j.jaci.2024.02.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 02/08/2024] [Accepted: 02/16/2024] [Indexed: 03/13/2024]
Abstract
BACKGROUND The respiratory microbiome has been associated with the etiology and disease course of asthma. OBJECTIVE We sought to assess the nasopharyngeal microbiota in children with a severe asthma exacerbation and their associations with medication, air quality, and viral infection. METHODS A cross-sectional study was performed among children aged 2 to 18 years admitted to the medium care unit (MCU; n = 84) or intensive care unit (ICU; n = 78) with an asthma exacerbation. For case-control analyses, we matched all cases aged 2 to 6 years (n = 87) to controls in a 1:2 ratio. Controls were participants of either a prospective case-control study or a longitudinal birth cohort (n = 182). The nasopharyngeal microbiota was characterized by 16S-rRNA-gene sequencing. RESULTS Cases showed higher Shannon diversity index (ICU and MCU combined; P = .002) and a distinct microbial community composition when compared with controls (permutational multivariate ANOVA R2 = 1.9%; P < .001). We observed significantly higher abundance of Staphylococcus and "oral" taxa, including Neisseria, Veillonella, and Streptococcus spp. and a lower abundance of Dolosigranulum pigrum, Corynebacterium, and Moraxella spp. (MaAsLin2; q < 0.25) in cases versus controls. Furthermore, Neisseria abundance was associated with more severe disease (ICU vs MCU MaAslin2, P = .03; q = 0.30). Neisseria spp. abundance was also related with fine particulate matter exposure, whereas Haemophilus and Streptococcus abundances were related with recent inhaled corticosteroid use. We observed no correlations with viral infection. CONCLUSIONS Our results demonstrate that children admitted with asthma exacerbations harbor a microbiome characterized by overgrowth of Staphylococcus and "oral" microbes and an underrepresentation of beneficial niche-appropriate commensals. Several of these associations may be explained by (environmental or medical) exposures, although cause-consequence relationships remain unclear and require further investigations.
Collapse
Affiliation(s)
- Gina J van Beveren
- Department of Paediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital/University Medical Center Utrecht, Utrecht, The Netherlands; Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands; Department of Paediatrics, Spaarne Hospital, Haarlem, The Netherlands
| | - Wouter A A de Steenhuijsen Piters
- Department of Paediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital/University Medical Center Utrecht, Utrecht, The Netherlands; Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Shelley A Boeschoten
- Department of Neonatal and Paediatric Intensive Care, Erasmus University Medical Center-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Sam Louman
- Department of Paediatrics, Spaarne Hospital, Haarlem, The Netherlands
| | - Mei Ling Chu
- Department of Paediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital/University Medical Center Utrecht, Utrecht, The Netherlands; Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Kayleigh Arp
- Department of Paediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital/University Medical Center Utrecht, Utrecht, The Netherlands; Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Pieter L Fraaij
- Pediatric Infectious Diseases & Immunology, Erasmus University Medical Center-Sophia Children's Hospital, Rotterdam, The Netherlands; Department of Viroscience, Erasmus University Medical Center-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Matthijs de Hoog
- Department of Neonatal and Paediatric Intensive Care, Erasmus University Medical Center-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Corinne Buysse
- Department of Neonatal and Paediatric Intensive Care, Erasmus University Medical Center-Sophia Children's Hospital, Rotterdam, The Netherlands
| | | | - Elisabeth A M Sanders
- Department of Paediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital/University Medical Center Utrecht, Utrecht, The Netherlands; Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Peter J F M Merkus
- Division of Respiratory Medicine, Department of Paediatrics, Radboudumc Amalia Children's Hospital, Nijmegen, The Netherlands
| | - Annemie L Boehmer
- Department of Paediatrics, Spaarne Hospital, Haarlem, The Netherlands; Department of Paediatrics, Maasstad Hospital, Rotterdam, The Netherlands
| | - Debby Bogaert
- Department of Paediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital/University Medical Center Utrecht, Utrecht, The Netherlands; Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, United Kingdom.
| |
Collapse
|
4
|
Stubbendieck RM, Hurst JH, Kelly MS. Dolosigranulum pigrum: A promising nasal probiotic candidate. PLoS Pathog 2024; 20:e1011955. [PMID: 38300905 PMCID: PMC10833571 DOI: 10.1371/journal.ppat.1011955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024] Open
Affiliation(s)
- Reed M. Stubbendieck
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, United States of America
| | - Jillian H. Hurst
- Department of Pediatrics, Division of Infectious Diseases, Duke University School of Medicine, Durham, North Carolina, United States of America
- Children’s Health and Discovery Institute, Department of Pediatrics, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Matthew S. Kelly
- Department of Pediatrics, Division of Infectious Diseases, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, United States of America
| |
Collapse
|
5
|
Elzayat H, Malik T, Al-Awadhi H, Taha M, Elghazali G, Al-Marzooq F. Deciphering salivary microbiome signature in Crohn's disease patients with different factors contributing to dysbiosis. Sci Rep 2023; 13:19198. [PMID: 37932491 PMCID: PMC10628307 DOI: 10.1038/s41598-023-46714-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 11/03/2023] [Indexed: 11/08/2023] Open
Abstract
Crohn's disease (CD) is a chronic inflammatory bowel disease. An imbalanced microbiome (dysbiosis) can predispose to many diseases including CD. The role of oral dysbiosis in CD is poorly understood. We aimed to explore microbiome signature and dysbiosis of the salivary microbiome in CD patients, and correlate microbiota changes to the level of inflammation. Saliva samples were collected from healthy controls (HC) and CD patients (n = 40 per group). Salivary microbiome was analyzed by sequencing the entire 16S rRNA gene. Inflammatory biomarkers (C-reactive protein and calprotectin) were measured and correlated with microbiome diversity. Five dominant species were significantly enriched in CD, namely Veillonella dispar, Megasphaera stantonii, Prevotella jejuni, Dolosigranulum pigrum and Lactobacillus backii. Oral health had a significant impact on the microbiome since various significant features were cariogenic as Streptococcus mutans or periopathogenic such as Fusobacterium periodonticum. Furthermore, disease activity, duration and frequency of relapses impacted the oral microbiota. Treatment with monoclonal antibodies led to the emergence of a unique species called Simonsiella muelleri. Combining immunomodulatory agents with monoclonal antibodies significantly increased multiple pathogenic species such as Salmonella enterica, Escherichia coli, Klebsiella pneumoniae and Pseudomonas aeruginosa. Loss of diversity in CD was shown by multiple diversity indices. There was a significant negative correlation between gut inflammatory biomarkers (particularly calprotectin) and α-diversity, suggesting more inflammation associated with diversity loss in CD. Salivary dysbiosis was evident in CD patients, with unique microbiota signatures and perturbed species that can serve as disease biomarkers or potential targets for microbiota modulation. The interplay of various factors collectively contributed to dysbiosis, although each factor probably had a unique effect on the microbiome. The emergence of pathogenic bacteria in the oral cavity of CD patients is alarming since they can disturb gut homeostasis and induce inflammation by swallowing, or hematogenous spread of microbiota, their metabolites, or generated inflammatory mediators.
Collapse
Affiliation(s)
- Hala Elzayat
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 15551, Al Ain, UAE
| | - Talha Malik
- Department of Medicine, Sheikh Shakhbout Medical City, Abu Dhabi, UAE
| | - Haifa Al-Awadhi
- Department of Pediatric Gastroenterology, Tawam Hospital, Al Ain, UAE
| | - Mazen Taha
- Department of Internal Medicine, Tawam Hospital, Al Ain, UAE
| | - Gehad Elghazali
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 15551, Al Ain, UAE
- Department of Immunology, Sheikh Khalifa Medical City, Union71-Purehealth, Abu Dhabi, UAE
| | - Farah Al-Marzooq
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 15551, Al Ain, UAE.
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, UAE.
| |
Collapse
|
6
|
Gershater E, Liu Y, Xue B, Shin MK, Koo H, Zheng Z, Li C. Characterizing the microbiota of cleft lip and palate patients: a comprehensive review. Front Cell Infect Microbiol 2023; 13:1159455. [PMID: 37143743 PMCID: PMC10152472 DOI: 10.3389/fcimb.2023.1159455] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/31/2023] [Indexed: 05/06/2023] Open
Abstract
Orofacial cleft disorders, including cleft lip and/or palate (CL/P), are one of the most frequently-occurring congenital disorders worldwide. The health issues of patients with CL/P encompass far more than just their anatomic anomaly, as patients with CL/P are prone to having a high incidence of infectious diseases. While it has been previously established that the oral microbiome of patients with CL/P differs from that of unaffected patients, the exact nature of this variance, including the relevant bacterial species, has not been fully elucidated; likewise, examination of anatomic locations besides the cleft site has been neglected. Here, we intended to provide a comprehensive review to highlight the significant microbiota differences between CL/P patients and healthy subjects in various anatomic locations, including the teeth inside and adjacent to the cleft, oral cavity, nasal cavity, pharynx, and ear, as well as bodily fluids, secretions, and excretions. A number of bacterial and fungal species that have been proven to be pathogenic were found to be prevalently and/or specifically detected in CL/P patients, which can benefit the development of CL/P-specific microbiota management strategies.
Collapse
Affiliation(s)
| | - Yuan Liu
- Biofilm Research Laboratories, Levy Center for Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Preventive and Restorative Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Binglan Xue
- School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Min Kyung Shin
- Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Hyun Koo
- Biofilm Research Laboratories, Levy Center for Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Innovation & Precision Dentistry, School of Dental Medicine and School of Engineering & Applied Sciences, University of Pennsylvania, Philadelphia, PA, United States
| | - Zhong Zheng
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- *Correspondence: Zhong Zheng, ; Chenshuang Li,
| | - Chenshuang Li
- Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
- *Correspondence: Zhong Zheng, ; Chenshuang Li,
| |
Collapse
|
7
|
Odom-Mabey AR, Gill CJ, Pieciak R, Ismail A, Thea D, MacLeod WB, Johnson WE, Lapidot R. Characterization of longitudinal nasopharyngeal microbiome patterns in maternally HIV-exposed Zambian infants. Gates Open Res 2022. [DOI: 10.12688/gatesopenres.14041.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background: Previous studies of infants born to HIV-positive mothers have linked HIV exposure to poor outcomes from gastrointestinal and respiratory illnesses, and to overall increased mortality rates. The mechanism behind this is unknown, but it is possible that differences in the nasopharyngeal (NP) microbiome between HIV-unexposed and HIV-exposed infants could play a role in perpetuating some outcomes. Methods: We conducted a longitudinal analysis of 170 NP swabs of healthy HIV-exposed, uninfected (HEU; n=10) infants and their HIV(+) mothers and HIV-unexposed, uninfected (HUU; n=10) infants and their HIV(-) mothers. These swabs were identified from a sample library collected in Lusaka, Zambia between 2015 and 2016. Using 16S rRNA gene sequencing, we characterized the maturation of the microbiome over the first 14 weeks of life to determine what quantifiable differences exist between HEU and HUU infants, and what patterns are reflected in the mothers' NP microbiomes. Results: In both HEU and HUU infants, Staphylococcus and Corynebacterium began as primary colonizers of the NP microbiome but were in time replaced by Dolosigranulum, Streptococcus, Moraxella and Haemophilus. When studying differences between infants, the microbe Staphylococcus haemolyticus indicated a distinctive high association with HIV exposure at birth, even when accounting for the interaction between HIV exposure status and time of sampling. When comparing infants to their mothers with paired analyses, HEU infants’ NP microbiome composition was only slightly different from their HIV(+) mothers at birth or 14 weeks, including in their carriage of S. pneumoniae, H. influenzae, and S. haemolyticus. Conclusions: Our analyses indicate that the HEU infants in our study exhibit subtle differences in the NP microbial composition throughout the sampling interval. Given our results and the sampling limitations of our study, we believe that further research must be conducted in order to confidently understand the relationship between HIV exposure and infants’ NP microbiomes.
Collapse
|
8
|
Andrade BGN, Cuadrat RRC, Tonetti FR, Kitazawa H, Villena J. The role of respiratory microbiota in the protection against viral diseases: respiratory commensal bacteria as next-generation probiotics for COVID-19. BIOSCIENCE OF MICROBIOTA, FOOD AND HEALTH 2022; 41:94-102. [PMID: 35846832 PMCID: PMC9246420 DOI: 10.12938/bmfh.2022-009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 03/05/2022] [Indexed: 12/21/2022]
Abstract
On March 11, 2020, the World Health Organization declared a pandemic of coronavirus infectious disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and imposed the biggest public health challenge for our civilization, with unforeseen impacts in the subsequent years. Similar to other respiratory infections, COVID-19 is associated with significant changes in the composition of the upper respiratory tract microbiome. Studies have pointed to a significant reduction of diversity and richness of the respiratory microbiota in COVID-19 patients. Furthermore, it has been suggested that Prevotella, Staphylococcus, and Streptococcus are associated with severe COVID-19 cases, while Dolosigranulum and Corynebacterium are significantly more abundant in asymptomatic subjects or with mild disease. These results have stimulated the search for new microorganisms from the respiratory microbiota with probiotic properties that could alleviate symptoms and even help in the fight against COVID-19. To date, the potential positive effects of probiotics in the context of SARS-CoV-2 infection and COVID-19 pandemics have been extrapolated from studies carried out with other viral pathogens, such as influenza virus and respiratory syncytial virus. However, scientific evidence has started to emerge demonstrating the capacity of immunomodulatory bacteria to beneficially influence the resistance against SARS-CoV-2 infection. Here we review the scientific knowledge regarding the role of the respiratory microbiota in viral infections in general and in the infection caused by SARS-CoV-2 in particular. In addition, the scientific work that supports the use of immunomodulatory probiotic microorganisms as beneficial tools to reduce the severity of respiratory viral infections is also reviewed. In particular, our recent studies that evaluated the role of immunomodulatory Dolosigranulum pigrum strains in the context of SARS-CoV-2 infection are highlighted.
Collapse
Affiliation(s)
- Bruno G N Andrade
- Adapt Centre, Munster Technological University (MTU), T12 P928 Cork, Ireland
| | - Rafael R C Cuadrat
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), 13125 Berlin, Germany.,Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbrücke, 14558 Nuthetal, Germany
| | - Fernanda Raya Tonetti
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), 4000 Tucumán, Argentina
| | - Haruki Kitazawa
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, 1-1 Amamiya-machi, Tsutsumidori, Aoba-ku, Sendai, Miyagi 981-8555, Japan.,Livestock Immunology Unit, International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, 1-1 Amamiya-machi, Tsutsumidori, Aoba-ku, Sendai, Miyagi 981-8555, Japan
| | - Julio Villena
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), 4000 Tucumán, Argentina.,Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, 1-1 Amamiya-machi, Tsutsumidori, Aoba-ku, Sendai, Miyagi 981-8555, Japan
| |
Collapse
|
9
|
Hurst JH, McCumber AW, Aquino JN, Rodriguez J, Heston SM, Lugo DJ, Rotta AT, Turner NA, Pfeiffer TS, Gurley TC, Moody MA, Denny TN, Rawls JF, Clark JS, Woods CW, Kelly MS. Age-Related Changes in the Nasopharyngeal Microbiome Are Associated With Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Infection and Symptoms Among Children, Adolescents, and Young Adults. Clin Infect Dis 2022; 75:e928-e937. [PMID: 35247047 PMCID: PMC8903463 DOI: 10.1093/cid/ciac184] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Children are less susceptible to SARS-CoV-2 infection and typically have milder illness courses than adults, but the factors underlying these age-associated differences are not well understood. The upper respiratory microbiome undergoes substantial shifts during childhood and is increasingly recognized to influence host defense against respiratory pathogens. Thus, we sought to identify upper respiratory microbiome features associated with SARS-CoV-2 infection susceptibility and illness severity. METHODS We collected clinical data and nasopharyngeal swabs from 285 children, adolescents, and young adults (<21 years) with documented SARS-CoV-2 exposure. We used 16S ribosomal RNA gene sequencing to characterize the nasopharyngeal microbiome and evaluated for age-adjusted associations between microbiome characteristics and SARS-CoV-2 infection status and respiratory symptoms. RESULTS Nasopharyngeal microbiome composition varied with age (PERMANOVA, P < .001; R2 = 0.06) and between SARS-CoV-2-infected individuals with and without respiratory symptoms (PERMANOVA, P = .002; R2 = 0.009). SARS-CoV-2-infected participants with Corynebacterium/Dolosigranulum-dominant microbiome profiles were less likely to have respiratory symptoms than infected participants with other nasopharyngeal microbiome profiles (OR: .38; 95% CI: .18-.81). Using generalized joint attributed modeling, we identified 9 bacterial taxa associated with SARS-CoV-2 infection and 6 taxa differentially abundant among SARS-CoV-2-infected participants with respiratory symptoms; the magnitude of these associations was strongly influenced by age. CONCLUSIONS We identified interactive relationships between age and specific nasopharyngeal microbiome features that are associated with SARS-CoV-2 infection susceptibility and symptoms in children, adolescents, and young adults. Our data suggest that the upper respiratory microbiome may be a mechanism by which age influences SARS-CoV-2 susceptibility and illness severity.
Collapse
Affiliation(s)
| | | | - Jhoanna N Aquino
- Division of Infectious Diseases, Department of Pediatrics, Duke University School of Medicine, Durham, North Carolina, USA
| | - Javier Rodriguez
- Children’s Clinical Research Unit, Department of Pediatrics, Duke University School of Medicine, Durham, North Carolina, USA
| | - Sarah M Heston
- Division of Infectious Diseases, Department of Pediatrics, Duke University School of Medicine, Durham, North Carolina, USA
| | - Debra J Lugo
- Division of Infectious Diseases, Department of Pediatrics, Duke University School of Medicine, Durham, North Carolina, USA
| | - Alexandre T Rotta
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, Duke University School of Medicine, Durham, North Carolina, USA
| | - Nicholas A Turner
- Division of Infectious Diseases, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Trevor S Pfeiffer
- Division of Infectious Diseases, Department of Pediatrics, Duke University School of Medicine, Durham, North Carolina, USA
| | - Thaddeus C Gurley
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA
| | - M Anthony Moody
- Division of Infectious Diseases, Department of Pediatrics, Duke University School of Medicine, Durham, North Carolina, USA,Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA
| | - Thomas N Denny
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA
| | - John F Rawls
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA,Duke Microbiome Center, Duke University School of Medicine, Durham, North Carolina, USAand
| | - James S Clark
- Nicholas School of the Environment, Duke University, Durham, North Carolina, USA
| | - Christopher W Woods
- Division of Infectious Diseases, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA,Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA
| | - Matthew S Kelly
- Correspondence: M. S. Kelly, 2301 Erwin Road, Durham, NC 27710 USA ()
| |
Collapse
|
10
|
Papies J, Emanuel J, Heinemann N, Kulić Ž, Schroeder S, Tenner B, Lehner MD, Seifert G, Müller MA. Antiviral and Immunomodulatory Effects of Pelargonium sidoides DC. Root Extract EPs® 7630 in SARS-CoV-2-Infected Human Lung Cells. Front Pharmacol 2021; 12:757666. [PMID: 34759825 PMCID: PMC8573200 DOI: 10.3389/fphar.2021.757666] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 10/04/2021] [Indexed: 12/15/2022] Open
Abstract
Treatment options for COVID-19 are currently limited. Drugs reducing both viral loads and SARS-CoV-2-induced inflammatory responses would be ideal candidates for COVID-19 therapeutics. Previous in vitro and clinical studies suggest that the proprietary Pelargonium sidoides DC. root extract EPs 7630 has antiviral and immunomodulatory properties, limiting symptom severity and disease duration of infections with several upper respiratory viruses. Here we assessed if EPs 7630 affects SARS-CoV-2 propagation and the innate immune response in the human lung cell line Calu-3. In direct comparison to other highly pathogenic CoV (SARS-CoV, MERS-CoV), SARS-CoV-2 growth was most efficiently inhibited at a non-toxic concentration with an IC50 of 1.61 μg/ml. Particularly, the cellular entry step of SARS-CoV-2 was significantly reduced by EPs 7630 pretreatment (10-100 μg/ml) as shown by spike protein-carrying pseudovirus particles and infectious SARS-CoV-2. Using sequential ultrafiltration, EPs 7630 was separated into fractions containing either prodelphinidins of different oligomerization degrees or small molecule constituents like benzopyranones and purine derivatives. Prodelphinidins with a low oligomerization degree and small molecule constituents were most efficient in inhibiting SARS-CoV-2 entry already at 10 μg/ml and had comparable effects on immune gene regulation as EPs 7630. Downregulation of multiple pro-inflammatory genes (CCL5, IL6, IL1B) was accompanied by upregulation of anti-inflammatory TNFAIP3 at 48 h post-infection. At high concentrations (100 μg/ml) moderately oligomerized prodelphinidins reduced SARS-CoV-2 propagation most efficiently and exhibited pronounced immune gene modulation. Assessment of cytokine secretion in EPs 7630-treated and SARS-CoV-2-coinfected Calu-3 cells showed that pro-inflammatory cytokines IL-1β and IL-6 were elevated whereas multiple other COVID-19-associated cytokines (IL-8, IL-13, TNF-α), chemokines (CXCL9, CXCL10), and growth factors (PDGF, VEGF-A, CD40L) were significantly reduced by EPs 7630. SARS-CoV-2 entry inhibition and the differential immunomodulatory functions of EPs 7630 against SARS-CoV-2 encourage further in vivo studies.
Collapse
Affiliation(s)
- Jan Papies
- Institute of Virology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Infection Research (DZIF), Partner Site Charité, Berlin, Germany
| | - Jackson Emanuel
- Institute of Virology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Infection Research (DZIF), Partner Site Charité, Berlin, Germany
| | - Nicolas Heinemann
- Institute of Virology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Infection Research (DZIF), Partner Site Charité, Berlin, Germany
| | - Žarko Kulić
- Preclinical R & D, Dr. Willmar Schwabe GmbH & Co. KG, Karlsruhe, Germany
| | - Simon Schroeder
- Institute of Virology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Infection Research (DZIF), Partner Site Charité, Berlin, Germany
| | - Beate Tenner
- Institute of Virology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Martin D. Lehner
- Preclinical R & D, Dr. Willmar Schwabe GmbH & Co. KG, Karlsruhe, Germany
| | - Georg Seifert
- Department of Paediatric Oncology/Haematology, Otto-Heubner Centre for Paediatric and Adolescent Medicine (OHC), Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Department of Paediatrics, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Marcel A. Müller
- Institute of Virology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Infection Research (DZIF), Partner Site Charité, Berlin, Germany
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov University, Moscow, Russia
| |
Collapse
|
11
|
Immunobiotic Lactobacilli Improve Resistance of Respiratory Epithelial Cells to SARS-CoV-2 Infection. Pathogens 2021; 10:pathogens10091197. [PMID: 34578229 PMCID: PMC8472143 DOI: 10.3390/pathogens10091197] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/02/2021] [Accepted: 09/14/2021] [Indexed: 12/18/2022] Open
Abstract
Previously, we reported that immunomodulatory lactobacilli, nasally administered, beneficially regulated the lung antiviral innate immune response induced by Toll-like receptor 3 (TLR3) activation and improved protection against the respiratory pathogens, influenza virus and respiratory syncytial virus in mice. Here, we assessed the immunomodulatory effects of viable and non-viable Lactiplantibacillus plantarum strains in human respiratory epithelial cells (Calu-3 cells) and the capacity of these immunobiotic lactobacilli to reduce their susceptibility to the acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Immunobiotic L. plantarum MPL16 and CRL1506 differentially modulated IFN-β, IL-6, CXCL8, CCL5 and CXCL10 production and IFNAR2, DDX58, Mx1 and OAS1 expression in Calu-3 cells stimulated with the TLR3 agonist poly(I:C). Furthermore, the MPL16 and CRL1506 strains increased the resistance of Calu-3 cells to the challenge with SARS-CoV-2. L. plantarum MPL16 induced these beneficial effects more efficiently than the CRL1506 strain. Of note, neither non-viable MPL16 and CRL1506 strains nor the non-immunomodulatory strains L. plantarum CRL1905 and MPL18 could modify the resistance of Calu-3 cells to SARS-CoV-2 infection or the immune response to poly(I:C) challenge. To date, the potential beneficial effects of immunomodulatory probiotics on SARS-CoV-2 infection and COVID-19 outcome have been extrapolated from studies carried out in the context of other viral pathogens. To the best of our knowledge, this is the first demonstration of the ability of immunomodulatory lactobacilli to positively influence the replication of the new coronavirus. Further mechanistic studies and in vivo experiments in animal models of SARS-CoV-2 infection are necessary to identify specific strains of beneficial immunobiotic lactobacilli like L. plantarum MPL16 or CRL1506 for the prevention or treatment of the COVID-19.
Collapse
|
12
|
Nesbitt H, Burke C, Haghi M. Manipulation of the Upper Respiratory Microbiota to Reduce Incidence and Severity of Upper Respiratory Viral Infections: A Literature Review. Front Microbiol 2021; 12:713703. [PMID: 34512591 PMCID: PMC8432964 DOI: 10.3389/fmicb.2021.713703] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 08/06/2021] [Indexed: 12/12/2022] Open
Abstract
There is a high incidence of upper respiratory viral infections in the human population, with infection severity being unique to each individual. Upper respiratory viruses have been associated previously with secondary bacterial infection, however, several cross-sectional studies analyzed in the literature indicate that an inverse relationship can also occur. Pathobiont abundance and/or bacterial dysbiosis can impair epithelial integrity and predispose an individual to viral infection. In this review we describe common commensal microorganisms that have the capacity to reduce the abundance of pathobionts and maintain bacterial symbiosis in the upper respiratory tract and discuss the potential and limitations of localized probiotic formulations of commensal bacteria to reduce the incidence and severity of viral infections.
Collapse
Affiliation(s)
- Henry Nesbitt
- Discipline of Pharmacy, Graduate School Health, University of Technology Sydney, Sydney, NSW, Australia
| | - Catherine Burke
- School of Life Sciences, University of Technology Sydney, Sydney, NSW, Australia
| | - Mehra Haghi
- Discipline of Pharmacy, Graduate School Health, University of Technology Sydney, Sydney, NSW, Australia
| |
Collapse
|