1
|
Yi XM, Lei YL, Li M, Zhong L, Li S. The monkeypox virus-host interplays. CELL INSIGHT 2024; 3:100185. [PMID: 39144256 PMCID: PMC11321328 DOI: 10.1016/j.cellin.2024.100185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 07/11/2024] [Accepted: 07/11/2024] [Indexed: 08/16/2024]
Abstract
Monkeypox virus (MPXV) is a DNA virus belonging to the Orthopoxvirus genus within the Poxviridae family which can cause a zoonotic infection. The unexpected non-endemic outbreak of mpox in 2022 is considered as a new global threat. It is imperative to take proactive measures, including enhancing our understanding of MPXV's biology and pathogenesis, and developing novel antiviral strategies. The host immune responses play critical roles in defensing against MPXV infection while the virus has also evolved multiple strategies for immune escape. This review summarizes the biological features, antiviral immunity, immune evasion mechanisms, pathogenicity, and prevention strategies for MPXV.
Collapse
Affiliation(s)
- Xue-Mei Yi
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Research Unit of Innate Immune and Inflammatory Diseases (2019RU063), Chinese Academy of Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Ya-Li Lei
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Research Unit of Innate Immune and Inflammatory Diseases (2019RU063), Chinese Academy of Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Mi Li
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Research Unit of Innate Immune and Inflammatory Diseases (2019RU063), Chinese Academy of Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Li Zhong
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
| | - Shu Li
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Research Unit of Innate Immune and Inflammatory Diseases (2019RU063), Chinese Academy of Medical Sciences, Wuhan University, Wuhan, 430071, China
| |
Collapse
|
2
|
Hsu J, Kim S, Anandasabapathy N. Vaccinia Virus: Mechanisms Supporting Immune Evasion and Successful Long-Term Protective Immunity. Viruses 2024; 16:870. [PMID: 38932162 PMCID: PMC11209207 DOI: 10.3390/v16060870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/13/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024] Open
Abstract
Vaccinia virus is the most successful vaccine in human history and functions as a protective vaccine against smallpox and monkeypox, highlighting the importance of ongoing research into vaccinia due to its genetic similarity to other emergent poxviruses. Moreover, vaccinia's ability to accommodate large genetic insertions makes it promising for vaccine development and potential therapeutic applications, such as oncolytic agents. Thus, understanding how superior immunity is generated by vaccinia is crucial for designing other effective and safe vaccine strategies. During vaccinia inoculation by scarification, the skin serves as a primary site for the virus-host interaction, with various cell types playing distinct roles. During this process, hematopoietic cells undergo abortive infections, while non-hematopoietic cells support the full viral life cycle. This differential permissiveness to viral replication influences subsequent innate and adaptive immune responses. Dendritic cells (DCs), key immune sentinels in peripheral tissues such as skin, are pivotal in generating T cell memory during vaccinia immunization. DCs residing in the skin capture viral antigens and migrate to the draining lymph nodes (dLN), where they undergo maturation and present processed antigens to T cells. Notably, CD8+ T cells are particularly significant in viral clearance and the establishment of long-term protective immunity. Here, we will discuss vaccinia virus, its continued relevance to public health, and viral strategies permissive to immune escape. We will also discuss key events and populations leading to long-term protective immunity and remaining key gaps.
Collapse
Affiliation(s)
- Joy Hsu
- Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
- Department of Dermatology, Weill Cornell Medicine, New York, NY 10021, USA
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY 10021, USA
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
- Englander Institute of Precision Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Suyon Kim
- Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA;
| | - Niroshana Anandasabapathy
- Department of Dermatology, Weill Cornell Medicine, New York, NY 10021, USA
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY 10021, USA
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
- Englander Institute of Precision Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| |
Collapse
|
3
|
Reiss BT, Bouza L, Thomas S, Suarez CD, Hill ER, Nichols DB. The MC160 protein of the molluscum contagiosum virus dampens cGAS/STING-induced interferon-β activation. Exp Mol Pathol 2023; 134:104876. [PMID: 37890651 DOI: 10.1016/j.yexmp.2023.104876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/21/2023] [Accepted: 10/24/2023] [Indexed: 10/29/2023]
Abstract
Molluscum contagiosum virus (MCV) is a poxvirus that causes benign, persistent skin lesions. MCV encodes a variety of immune evasion molecules to dampen host immune responses. Two of these proteins are the MC159 and MC160 proteins. Both MC159 and MC160 contain two tandem death effector domains and share homology to the cellular FLIPs, FADD, and procaspase-8. MC159 and MC160 dampen several innate immune responses such as NF-κB activation and mitochondrial antiviral signaling (MAVS)-mediated induction of type 1 interferon (IFN). The type 1 IFN response is also activated by the cytosolic DNA sensors cyclic GMP-AMP synthase (cGAS) and stimulator of interferon genes (STING). Both cGAS and STING play a vital role in sensing a poxvirus infection. In this study, we demonstrate that there are nuanced differences between both MC160 and MC159 in terms of how the viral proteins modulate the cGAS/STING and MAVS pathways. Specifically, MC160 expression, but not MC159 expression, dampens cGAS/STING-mediated induction of IFN in HEK 293 T cells. Further, MC160 expression prevented the K63-ubiquitination of both STING and TBK1, a kinase downstream of cGAS/STING. Ectopic expression of the MC160 protein, but not the MC159 protein, resulted in a measurable decrease in the TBK1 protein levels as detected via immunoblotting. Finally, using a panel of MC160 truncation mutants, we report that the MC160 protein requires both DEDs to inhibit cGAS/STING-induced activation of IFN-β. Our model indicates MC160 likely alters the TBK1 signaling complex to decrease IFN-β activation at the molecular intersection of the cGAS/STING and MAVS signaling pathways.
Collapse
Affiliation(s)
- Brian T Reiss
- Department of Biological Sciences, Seton Hall University, South Orange, NJ, USA
| | - Lissette Bouza
- Department of Biological Sciences, Seton Hall University, South Orange, NJ, USA
| | - Swagath Thomas
- Department of Biological Sciences, Seton Hall University, South Orange, NJ, USA
| | - Catherine D Suarez
- Department of Biological Sciences, Seton Hall University, South Orange, NJ, USA
| | - Erik R Hill
- Department of Biological Sciences, Seton Hall University, South Orange, NJ, USA.
| | - Daniel Brian Nichols
- Department of Biological Sciences, Seton Hall University, South Orange, NJ, USA.
| |
Collapse
|
4
|
Godbold GD, Hewitt FC, Kappell AD, Scholz MB, Agar SL, Treangen TJ, Ternus KL, Sandbrink JB, Koblentz GD. Improved understanding of biorisk for research involving microbial modification using annotated sequences of concern. Front Bioeng Biotechnol 2023; 11:1124100. [PMID: 37180048 PMCID: PMC10167326 DOI: 10.3389/fbioe.2023.1124100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 04/11/2023] [Indexed: 05/15/2023] Open
Abstract
Regulation of research on microbes that cause disease in humans has historically been focused on taxonomic lists of 'bad bugs'. However, given our increased knowledge of these pathogens through inexpensive genome sequencing, 5 decades of research in microbial pathogenesis, and the burgeoning capacity of synthetic biologists, the limitations of this approach are apparent. With heightened scientific and public attention focused on biosafety and biosecurity, and an ongoing review by US authorities of dual-use research oversight, this article proposes the incorporation of sequences of concern (SoCs) into the biorisk management regime governing genetic engineering of pathogens. SoCs enable pathogenesis in all microbes infecting hosts that are 'of concern' to human civilization. Here we review the functions of SoCs (FunSoCs) and discuss how they might bring clarity to potentially problematic research outcomes involving infectious agents. We believe that annotation of SoCs with FunSoCs has the potential to improve the likelihood that dual use research of concern is recognized by both scientists and regulators before it occurs.
Collapse
Affiliation(s)
| | | | | | | | - Stacy L. Agar
- Signature Science, LLC, Charlottesville, VA, United States
| | - Todd J. Treangen
- Department of Computer Science, Rice University, Houston, TX, United States
| | | | - Jonas B. Sandbrink
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Gregory D. Koblentz
- Schar School of Policy and Government, George Mason University, Arlington, VA, United States
| |
Collapse
|
5
|
Dong J, Chen M, Yu L, Rao D, Zhang N, Cong F. Seneca Valley virus induces proinflammatory cytokine and chemokine response in vitro. CANADIAN JOURNAL OF VETERINARY RESEARCH = REVUE CANADIENNE DE RECHERCHE VETERINAIRE 2023; 87:120-126. [PMID: 37020572 PMCID: PMC10069161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 08/09/2022] [Indexed: 04/07/2023]
Abstract
Seneca Valley virus (SVV) is an oncolytic virus, which belongs to the Picornaviridae family, that causes blisters on the nose and hooves, affecting the production performance of pigs. However, the function of proinflammatory cytokines and chemokines in SVV infection is still unclear. In our study, SVV infection could induce a high expression of proinflammatory cytokines interleukin (IL)-1α, IL-1β, and tumor necrosis factor α (TNF-α) and chemokines, including chemokine (C-C motif) ligand 2 (CCL2), chemokine (C-C motif) ligand 5 (CCL5), and chemokine (C-X-C motif) ligand 10 (CXCL10). Interfered genes of IL-1α, IL-1β, and TNF-α inhibited virus replication, but interfered genes of CCL2, CCL5, and CXCL10 promoted virus replication. These results indicate that proinflammatory cytokines and chemokines are involved in SVV infection; this will be beneficial to explore the pathogenesis and cytokine therapy of SVV.
Collapse
Affiliation(s)
- Jianguo Dong
- School of Animal Science and Veterinary Medicine, Xinyang Agriculture and Forestry University, Xinyang 464000, China (Dong, Chen, Rao); College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China (Yu); Laboratory Animals Monitoring Institute and Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou 510633, China (Cong); Henan Fengyuan Hepu Agriculture and Animal Husbandry, Zhumadian 463900, China (Zhang)
| | - Mingrui Chen
- School of Animal Science and Veterinary Medicine, Xinyang Agriculture and Forestry University, Xinyang 464000, China (Dong, Chen, Rao); College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China (Yu); Laboratory Animals Monitoring Institute and Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou 510633, China (Cong); Henan Fengyuan Hepu Agriculture and Animal Husbandry, Zhumadian 463900, China (Zhang)
| | - Linyang Yu
- School of Animal Science and Veterinary Medicine, Xinyang Agriculture and Forestry University, Xinyang 464000, China (Dong, Chen, Rao); College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China (Yu); Laboratory Animals Monitoring Institute and Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou 510633, China (Cong); Henan Fengyuan Hepu Agriculture and Animal Husbandry, Zhumadian 463900, China (Zhang)
| | - Dan Rao
- School of Animal Science and Veterinary Medicine, Xinyang Agriculture and Forestry University, Xinyang 464000, China (Dong, Chen, Rao); College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China (Yu); Laboratory Animals Monitoring Institute and Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou 510633, China (Cong); Henan Fengyuan Hepu Agriculture and Animal Husbandry, Zhumadian 463900, China (Zhang)
| | - Ning Zhang
- School of Animal Science and Veterinary Medicine, Xinyang Agriculture and Forestry University, Xinyang 464000, China (Dong, Chen, Rao); College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China (Yu); Laboratory Animals Monitoring Institute and Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou 510633, China (Cong); Henan Fengyuan Hepu Agriculture and Animal Husbandry, Zhumadian 463900, China (Zhang)
| | - Feng Cong
- School of Animal Science and Veterinary Medicine, Xinyang Agriculture and Forestry University, Xinyang 464000, China (Dong, Chen, Rao); College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China (Yu); Laboratory Animals Monitoring Institute and Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou 510633, China (Cong); Henan Fengyuan Hepu Agriculture and Animal Husbandry, Zhumadian 463900, China (Zhang)
| |
Collapse
|
6
|
Gharban HAJ, AL-Shaeli SJJ, Hussen TJ. Molecular genotyping, histopathological and immunohistochemical studies of bovine papillomatosis. Open Vet J 2023; 13:26-41. [PMID: 36777440 PMCID: PMC9897500 DOI: 10.5455/ovj.2023.v13.i1.4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 12/10/2022] [Indexed: 02/05/2023] Open
Abstract
Background Bovine papillomatosis (BP) is considered the most common health problem in large cattle farms. Aim This study attempts to confirm clinically suspected BP in cattle by polymerase chain reaction (PCR) assay, histopathology, immunohistochemistry (IHC), and genotyping analysis of local isolates. Methods According to morphological appearance and lesion features, a cross sectional study of 54 clinically diagnosed BP cattle was assigned to this current investigation from May to August (2021) in Al-Kut district (Wasit Province, Iraq) private veterinary clinics using purposive sampling technique based on set criteria. The cattle were diagnosed clinically, and the tissues were collected and some fixed in 10% neutral buffered formalin and other stored frozen and examined by histopathological technique, IHC, and PCR assays. Results Using PCR assay, all cattle were positive for the BPV L1 gene. According to detect the L1 gene, analysis of the phylogenetic tree showed that local BPV cattle isolates were closely related to the NCBI-BLAST BPV type-1 and type-2 of the Polish equine isolate (KF284133.1) and BPV Brazilian Bostaurus isolate (MH187961.1), respectively. Histological detection showed there were acanthosis, hyperkeratosis, epidermal thickening, severe infiltration of mononuclear cells, massive hemorrhage, dermal fibroplasias, multifocal spongiosis, moderate neovascularization, moderate to severe elongation of the retention ridge towards the dermis, parakeratosis, rings of calcification, and necrosis with nuclear pyknosis of some spinosum cells. Immunohistochemical findings of tumor necrosis factor-alpha, epidermal growth factor receptor and Fascin showed a significant variation in values of immunoreaction in the dermis and epidermis. These results ranged from negative (0) to mild positive (+1) to moderate positive (+2) reactions. Conclusion The study provided essential molecular and genotyping data to improve our knowledge by emphasizing the crucial of IHC as an elegant diagnostic method to detect cellular alterations.
Collapse
Affiliation(s)
- Hasanain A. J. Gharban
- Department of Internal and Preventive Veterinary Medicine, College of Veterinary Medicine, University of Wasit, Kut, Iraq
| | - Sattar J. J. AL-Shaeli
- Department of Medical Basic Sciences, College of Dentistry, University of Wasit, Kut, Iraq,Corresponding Author: Sattar J. J. AL-Shaeli. Department of Medical Basic Sciences, College of Dentistry, University of Wasit, Kut, Iraq.
| | - Talal Jabal Hussen
- Department of Medical Basic Sciences, College of Dentistry, University of Wasit, Kut, Iraq
| |
Collapse
|
7
|
Garrigues JM, Hemarajata P, Lucero B, Alarcón J, Ransohoff H, Marutani AN, Kim M, Marlowe EM, Realegeno SE, Kagan RM, Montero CI, Chen NFG, Grubaugh ND, Vogels CBF, Green NM. Identification of Human Monkeypox Virus Genome Deletions That Impact Diagnostic Assays. J Clin Microbiol 2022; 60:e0165522. [PMID: 36445125 PMCID: PMC9769645 DOI: 10.1128/jcm.01655-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Affiliation(s)
| | - Peera Hemarajata
- Los Angeles County Department of Public Health, Downey, California, USA
| | - Briar Lucero
- Los Angeles County Department of Public Health, Downey, California, USA
| | - Jemma Alarcón
- Los Angeles County Department of Public Health, Downey, California, USA
- Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Heidi Ransohoff
- Los Angeles County Department of Public Health, Downey, California, USA
| | - Amy N. Marutani
- Los Angeles County Department of Public Health, Downey, California, USA
| | - Moon Kim
- Los Angeles County Department of Public Health, Downey, California, USA
| | | | - Susan E. Realegeno
- Infectious Diseases, Quest Diagnostics, San Juan Capistrano, California, USA
| | - Ron M. Kagan
- Infectious Diseases, Quest Diagnostics, San Juan Capistrano, California, USA
| | - Clemente I. Montero
- Infectious Diseases, Quest Diagnostics, San Juan Capistrano, California, USA
| | - Nicholas F. G. Chen
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - Nathan D. Grubaugh
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - Chantal B. F. Vogels
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - Nicole M. Green
- Los Angeles County Department of Public Health, Downey, California, USA
| |
Collapse
|
8
|
Rahman MM, McFadden G. Role of cytokines in poxvirus host tropism and adaptation. Curr Opin Virol 2022; 57:101286. [PMID: 36427482 PMCID: PMC9704024 DOI: 10.1016/j.coviro.2022.101286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/19/2022] [Accepted: 10/26/2022] [Indexed: 11/23/2022]
Abstract
Poxviruses are a diverse family of double-stranded DNA viruses that cause mild-to-severe disease in selective hosts, including humans. Although most poxviruses are restricted to their hosts, some members can leap host species and cause zoonotic diseases and, therefore, are genuine threats to human and animal health. The recent global spread of monkeypox in humans suggests that zoonotic poxviruses can adapt to a new host, spread rapidly in the new host, and evolve to better evade host innate barriers. Unlike many other viruses, poxviruses express an extensive repertoire of self-defense proteins that play a vital role in the evasion of host innate and adaptive immune responses in their newest host species. The function of these viral immune modulators and host-specific cytokine responses can result in different host tropism and poxvirus disease progression. Here, we review the role of different cytokines that control poxvirus host tropism and adaptation.
Collapse
|
9
|
Kovačić D, Salihović A. Multi-epitope mRNA Vaccine Design that Exploits Variola Virus and Monkeypox Virus Proteins for Elicitation of Long-lasting Humoral and Cellular Protection Against Severe Disease. JOURNAL OF MEDICAL SCIENCE 2022. [DOI: 10.20883/medical.e750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Human monkeypox represents a relatively underexplored infection that has received increased attention since the reported outbreak in May 2022. Due to its clinical similarities with human smallpox, this virus represents a potentially tremendous health problem demanding further research in the context of host-pathogen interactions and vaccine development. Furthermore, the cross-continental spread of monkeypox has reaffirmed the need for devoting attention to human poxviruses in general, as they represent potential bioterrorism agents. Currently, smallpox vaccines are utilized in immunization efforts against monkeypox, an unsurprising fact considering their genomic and phenotypic similarities. Though it offers long-lasting protection against smallpox, its protective effects against human monkeypox continue to be explored, with encouraging results. Taking this into account, this works aims at utilizing in silico tools to identify potent peptide-based epitopes stemming from the variola virus and monkeypox virus proteomes, to devise a vaccine that would offer significant protection against smallpox and monkeypox. In theory, a vaccine that offers cross-protection against variola and monkeypox would also protect against related viruses, at least in severe clinical manifestation. Herein, we introduce a novel multi-epitope mRNA vaccine design that exploits these two viral proteomes to elicit long-lasting humoral and cellular immunity. Special consideration was taken in ensuring that the vaccine candidate elicits a Th1 immune response, correlated with protection against clinically severe disease for both viruses. Immune system simulations and physicochemical and safety analyses characterize our vaccine candidate as antigenically potent, safe, and overall stable. The protein product displays high binding affinity towards relevant immune receptors. Furthermore, the vaccine candidate is to elicit a protective, humoral and Th1-dominated cellular immune response that lasts over five years. Lastly, we build a case about the rapidity and convenience of circumventing the live attenuated vaccine platform using mRNA vaccine technology.
Collapse
|
10
|
Forni D, Cagliani R, Molteni C, Clerici M, Sironi M. Monkeypox virus: The changing facets of a zoonotic pathogen. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 105:105372. [PMID: 36202208 PMCID: PMC9534092 DOI: 10.1016/j.meegid.2022.105372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/28/2022] [Accepted: 10/02/2022] [Indexed: 11/07/2022]
Abstract
In the last five years, the prevalence of monkeypox has been increasing both in the regions considered endemic for the disease (West and Central Africa) and worldwide. Indeed, in July 2022, the World Health Organization declared the ongoing global outbreak of monkeypox a public health emergency of international concern. The disease is caused by monkeypox virus (MPXV), a member of the Orthopoxvirus genus, which also includes variola virus (the causative agent of smallpox) and vaccinia virus (used in the smallpox eradication campaign). Here, we review aspects of MPXV genetic diversity and epidemiology, with an emphasis on its genome structure, host range, and relationship with other orthopoxviruses. We also summarize the most recent findings deriving from the sequencing of outbreak MPXV genomes, and we discuss the apparent changing of MPXV evolutionary trajectory, which is characterized by the accumulation of point mutations rather than by gene gains/losses. Whereas the availability of a vaccine, the relatively mild presentation of the disease, and its relatively low transmissibility speak in favor of an efficient control of the global outbreak, the wide host range of MPXV raises concerns about the possible establishment of novel reservoirs. We also call for the deployment of field surveys and genomic surveillance programs to identify and control the MPXV reservoirs in West and Central Africa.
Collapse
Affiliation(s)
- Diego Forni
- IRCCS E. MEDEA, Bioinformatics, Bosisio Parini, Italy
| | | | | | - Mario Clerici
- University of Milan, Milan, Italy; Don C. Gnocchi Foundation ONLUS, IRCCS, Milan, Italy
| | | |
Collapse
|
11
|
Lum FM, Torres-Ruesta A, Tay MZ, Lin RTP, Lye DC, Rénia L, Ng LFP. Monkeypox: disease epidemiology, host immunity and clinical interventions. Nat Rev Immunol 2022; 22:597-613. [PMID: 36064780 PMCID: PMC9443635 DOI: 10.1038/s41577-022-00775-4] [Citation(s) in RCA: 212] [Impact Index Per Article: 106.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2022] [Indexed: 12/11/2022]
Abstract
Monkeypox virus (MPXV), which causes disease in humans, has for many years been restricted to the African continent, with only a handful of sporadic cases in other parts of the world. However, unprecedented outbreaks of monkeypox in non-endemic regions have recently taken the world by surprise. In less than 4 months, the number of detected MPXV infections has soared to more than 48,000 cases, recording a total of 13 deaths. In this Review, we discuss the clinical, epidemiological and immunological features of MPXV infections. We also highlight important research questions and new opportunities to tackle the ongoing monkeypox outbreak.
Collapse
Affiliation(s)
- Fok-Moon Lum
- A*STAR Infectious Diseases Labs, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Anthony Torres-Ruesta
- A*STAR Infectious Diseases Labs, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Matthew Z Tay
- A*STAR Infectious Diseases Labs, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Raymond T P Lin
- National Public Health Laboratory, Singapore, Singapore
- National Centre for Infectious Diseases, Singapore, Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - David C Lye
- National Centre for Infectious Diseases, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Tan Tock Seng Hospital, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Laurent Rénia
- A*STAR Infectious Diseases Labs, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Lisa F P Ng
- A*STAR Infectious Diseases Labs, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.
- National Institute of Health Research, Health Protection Research Unit in Emerging and Zoonotic Infections, University of Liverpool, Liverpool, UK.
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK.
| |
Collapse
|