1
|
Abudeshesh RM, Aboul-Nasr AM, Khairy HM, Atia MAM, Sabra MA. Differential impacts of interactions between Serendipita indica, Chlorella vulgaris, Ulva lactuca and Padina pavonica on Basil (Ocimum basilicumL.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108218. [PMID: 38029616 DOI: 10.1016/j.plaphy.2023.108218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 12/01/2023]
Abstract
Plant biostimulants (PBs) are used globally to increase crop yield and productivity. PBs such as (Serendipita indica) or algal extracts stimulate and accelerate plant physiological processes. The physiological, ecological, and biochemical effects of (Serendipita indica) or algal extracts individually and in combination on basil plant (Ocimum basilicum L.) were investigated. Macroalgae samples were collected from Abu Qir, Alexandria, Egypt. The growth parameters, chlorophyll index, and biochemical composition of basil were analyzed at 90th day. The (Chlorella vulgaris) + (Serendipita indica) (MI + F) treatment increased chlorophyll index by 61.7% (SPAD) compared to control. (Chlorella vulgaris) had the highest growth hormones, including GA3 at 158.2 ppb, GA4 at 149.1 ppb, GA7 at 142.6 ppb, IAA at 136.6 ppb, and TC at 130.9 ppb, while (Ulva lactuca) had the lowest. The MI + F treatment yielded the highest essential oil and antioxidant values. Treatment with (Chlorella vulgaris) increased S. indica colonization by 66%. In contrast, Ulva lactuca and (Padina Pavonica) inhibited S. indica colonization by 80% and 40%, respectively. (Ulva lactuca) and (Padina Pavonica) inhibited S. indica colonization by 80% and 40%, respectively. Combined treatments had a greater influence on basil performance than the individual treatments. The evidence of synergistic/additive benefits to plants performance due to the interactive effects of (Chlorella vulgaris) and (Serendipita indica) had been studied. Complementary modes of action between (Chlorella vulgaris) and (Serendipita indica), through their components newly emerging properties on basil, may explain observed synergistic effects. This study explores the potential of microbial-algal interactions, particularly (Chlorella vulgaris) and (Serendipita indica), as innovative plant biostimulants. These interactions demonstrate positive effects on basil growth, offering promise for more effective microbial-based formulations to enhance crop productivity and sustainability in agriculture. These novelties will help create a second generation of PBs with integrated and complementary actions.
Collapse
Affiliation(s)
| | - Amal M Aboul-Nasr
- Agricultural Botany Department, (Agricultural Microbiology), Faculty of Agriculture Saba Basha, Alexandria University, Egypt
| | - Hanan M Khairy
- National Institute of Oceanography and Fisheries, NIOF, Egypt
| | - Mohamed A M Atia
- Genome Mapping Department, Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), Giza, Egypt
| | - Mayada A Sabra
- Agricultural Botany Department, (Agricultural Microbiology), Faculty of Agriculture Saba Basha, Alexandria University, Egypt
| |
Collapse
|
2
|
Zheng M, Zhong S, Wang W, Tang Z, Bu T, Li Q. Serendipita indica Promotes the Growth of Tartary Buckwheat by Stimulating Hormone Synthesis, Metabolite Production, and Increasing Systemic Resistance. J Fungi (Basel) 2023; 9:1114. [PMID: 37998919 PMCID: PMC10671858 DOI: 10.3390/jof9111114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 11/25/2023] Open
Abstract
The main objective of this study was to investigate the influence of Serendipita indica on the growth of Tartary buckwheat plants. This study highlighted that the roots of Tartary buckwheat can be colonized by S. indica and that this fungal endophyte improved plants height, fresh weight, dry weight, and grain yield. In the meantime, the colonization of S. indica in Tartary buckwheat leaves resulted in elevated levels of photosynthesis, plant hormone content, antioxidant enzyme activity, proline content, chlorophyll content, soluble sugars, and protein content. Additionally, the introduction of S. indica to Tartary buckwheat roots led to a substantial rise in the levels of flavonoids and phenols found in the leaves and seeds of Tartary buckwheat. In addition, S. indica colonization reduced the content of malondialdehyde and hydrogen peroxide when compared to non-colonized plants. Importantly, the drought tolerance of Tartary buckwheat plants is increased, which benefits from physiology and bio-chemical changes in plants after S. indica colonized. In conclusion, we have shown that S. indica can improve systematic resistance and promote the growth of Tartary buckwheat by enhancing the photosynthetic capacity of Tartary buckwheat, inducing the production of IAA, increasing the content of secondary metabolites such as total phenols and total flavonoids, and improving the antioxidant enzyme activity of the plant.
Collapse
Affiliation(s)
| | | | | | | | | | - Qingfeng Li
- College of Life Sciences, Sichuan Agricultural University, Ya’an 625014, China; (M.Z.); (S.Z.); (W.W.); (Z.T.); (T.B.)
| |
Collapse
|
3
|
Li L, Feng Y, Qi F, Hao R. Research Progress of Piriformospora indica in Improving Plant Growth and Stress Resistance to Plant. J Fungi (Basel) 2023; 9:965. [PMID: 37888222 PMCID: PMC10607969 DOI: 10.3390/jof9100965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/14/2023] [Accepted: 09/21/2023] [Indexed: 10/28/2023] Open
Abstract
Piriformospora indica (Serendipita indica), a mycorrhizal fungus, has garnered significant attention in recent decades owing to its distinctive capacity to stimulate plant growth and augment plant resilience against environmental stressors. As an axenically cultivable fungus, P. indica exhibits a remarkable ability to colonize varieties of plants and promote symbiotic processes by directly influencing nutrient acquisition and hormone metabolism. The interaction of plant and P. indica raises hormone production including ethylene (ET), jasmonic acid (JA), gibberellin (GA), salicylic acid (SA), and abscisic acid (ABA), which also promotes root proliferation, facilitating improved nutrient acquisition, and subsequently leading to enhanced plant growth and productivity. Additionally, the plant defense system was employed by P. indica colonization and the defense genes associated with oxidation resistance were activated subsequently. This fungus-mediated defense response elicits an elevation in the enzyme activity of antioxidant enzymes, including superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), and, finally, bolsters plant tolerance. Furthermore, P. indica colonization can initiate local and systemic immune responses against fungal and viral plant diseases through signal transduction mechanisms and RNA interference by regulating defense gene expression and sRNA secretion. Consequently, P. indica can serve diverse roles such as plant promoter, biofertilizer, bioprotectant, bioregulator, and bioactivator. A comprehensive review of recent literature will facilitate the elucidation of the mechanistic foundations underlying P. indica-crop interactions. Such discussions will significantly contribute to an in-depth comprehension of the interaction mechanisms, potential applications, and the consequential effects of P. indica on crop protection, enhancement, and sustainable agricultural practices.
Collapse
Affiliation(s)
- Liang Li
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China; (Y.F.); (F.Q.); (R.H.)
| | | | | | | |
Collapse
|
4
|
Roylawar P, Khandagale K, Nanda S, Soumia PS, Jadhav S, Mahajan V, Gawande S. Colonization of Serendipita indica promotes resistance against Spodoptera exigua in onion ( Allium cepa L.). Front Microbiol 2023; 14:1190942. [PMID: 37564284 PMCID: PMC10410256 DOI: 10.3389/fmicb.2023.1190942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/13/2023] [Indexed: 08/12/2023] Open
Abstract
Plant-endophyte symbiosis influences plant defense and growth. Serendipita indica is a root endophyte that promotes growth and induces tolerance against biotic and abiotic stress in plants. In this study, we examined the effect of S. indica colonization on herbivore (Spodoptera exigua) resistance of onion (Allium cepa L.). We found that colonization of S. indica in the roots of onion significantly reduced the feeding damage of leaves by S. exigua larvae, and also resulted in a reduction in weight gain of the larvae when fed on S. indica plants. This enhanced resistance is a result of modulation of antioxidant and defense enzymes/genes in the host by S. indica mutualism. Specifically, the activities of enzymes such as Superoxide dismutase, peroxidase, polyphenol oxidase, phenylalanine ammonia-lyase, and H2O2 content were significantly higher in the early stages of S. exigua feeding in the S. indica colonized plants compared to the non-colonized counterparts. Similarly, defense genes also showed modulation in response to this tripartite interaction of onion -S. indica mutualism and S. exigua herbivory. The hierarchical cluster analysis and principal component analysis indicated a clear difference in the onion biochemical responses, which is due to the S. indica symbiosis. Our investigation demonstrates that onion-S. indica symbiosis significantly decreases chewing injury by efficiently modulating antioxidant and defense enzyme activities and gene expression in response to S. exigua herbivory. Therefore, S. indica can be used as a potential biocontrol agent for sustainable management of this important pest of Alliums.
Collapse
Affiliation(s)
- Praveen Roylawar
- ICAR-Directorate of Onion and Garlic Research, Pune, India
- Department of Botany, S.N. Arts, D.J.M. Commerce and B.N.S. Science College, Sangamner, Maharashtra, India
| | | | - Satyabrata Nanda
- Department of Biotechnology, Centurion University of Technology and Management, Paralakhemundi, India
| | | | - Sangita Jadhav
- Department of Botany, S.N. Arts, D.J.M. Commerce and B.N.S. Science College, Sangamner, Maharashtra, India
| | - Vijay Mahajan
- ICAR-Directorate of Onion and Garlic Research, Pune, India
| | - Suresh Gawande
- ICAR-Directorate of Onion and Garlic Research, Pune, India
| |
Collapse
|
5
|
Wang JY, Jayasinghe H, Cho YT, Tsai YC, Chen CY, Doan HK, Ariyawansa HA. Diversity and Biocontrol Potential of Endophytic Fungi and Bacteria Associated with Healthy Welsh Onion Leaves in Taiwan. Microorganisms 2023; 11:1801. [PMID: 37512973 PMCID: PMC10386586 DOI: 10.3390/microorganisms11071801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/07/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Foliar diseases caused by Stemphylium and Colletotrichum species are among the major biotic factors limiting Welsh onion production in Taiwan. Owing to concerns about the environment and the development of pathogen resistance to existing fungicides, biological control using endophytes is emerging as an eco-friendly alternative to chemical control. The aim of the present study was to isolate endophytes from healthy Welsh onion leaves and investigate their antagonistic potential against the major phytopathogenic fungi associated with Welsh onion plants in Taiwan. A total of 109 bacterial and 31 fungal strains were isolated from healthy Welsh onion leaves and assigned to 16 bacterial and nine fungal genera using morphological and molecular characterization based on DNA sequence data obtained from nuclear internal transcribed spacer (nrITS) (fungi) and 16S rRNA (bacteria). Evaluation of these endophytic isolates for biocontrol activity against leaf blight pathogens Colletotrichum spaethianum strain SX15-2 and Stemphylium vesicarium strain SX20-2 by dual culture assay and greenhouse experiments resulted in the identification of two bacterial isolates (GFB08 and LFB28) and two fungal isolates (GFF06 and GFF08) as promising antagonists to leaf blight pathogens. Among the four selected isolates, Bacillus strain GFB08 exhibited the highest disease control in the greenhouse study. Therefore, Bacillus strain GFB08 was further evaluated to understand the mechanism underlying its biocontrol efficacy. A phylogenetic analysis based on six genes identified Bacillus strain GFB08 as B. velezensis. The presence of antimicrobial peptide genes (baer, bamC, bmyB, dfnA, fenD, ituC, mlna, and srfAA) and the secretion of several cell wall degrading enzymes (CWDEs), including cellulase and protease, confirmed the antifungal nature of B. velezensis strain GFB08. Leaf blight disease suppression by preventive and curative assays indicated that B. velezensis strain GFB08 has preventive efficacy on C. spaethianum strain SX15-2 and both preventive and curative efficacy on S. vesicarium strain SX20-2. Overall, the current study revealed that healthy Welsh onion leaves harbour diverse bacterial and fungal endophytes, among which the endophytic bacterial strain, B. velezensis strain GFB08, could potentially be used as a biocontrol agent to manage the leaf blight diseases of Welsh onion in Taiwan.
Collapse
Affiliation(s)
- Jian-Yuan Wang
- Department of Plant Pathology and Microbiology, College of Bio-Resources and Agriculture, National Taiwan University, Taipei 106319, Taiwan
| | - Himanshi Jayasinghe
- Department of Plant Pathology and Microbiology, College of Bio-Resources and Agriculture, National Taiwan University, Taipei 106319, Taiwan
| | - Yi-Tun Cho
- Department of Plant Pathology and Microbiology, College of Bio-Resources and Agriculture, National Taiwan University, Taipei 106319, Taiwan
| | - Yi-Chen Tsai
- Hualien District Agricultural Research and Extension Station, Hualien 973044, Taiwan
| | - Chao-Ying Chen
- Department of Plant Pathology and Microbiology, College of Bio-Resources and Agriculture, National Taiwan University, Taipei 106319, Taiwan
| | - Hung Kim Doan
- Small Farms & Specialty Crops Advisor, University of California Cooperative Extension, 2980 Washington Street, Riverside, CA 92504, USA
| | - Hiran A Ariyawansa
- Department of Plant Pathology and Microbiology, College of Bio-Resources and Agriculture, National Taiwan University, Taipei 106319, Taiwan
| |
Collapse
|
6
|
Hartmann A, Proença DN. Biological Control of Phytopathogens: Mechanisms and Applications. Pathogens 2023; 12:783. [PMID: 37375473 DOI: 10.3390/pathogens12060783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/16/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
According to the inherent ecological mechanisms within community structures, organismic interactions are mediated by chemical structures and signaling molecules as well as enzymatic activities targeting the vital activities of microbial competitors [...].
Collapse
Affiliation(s)
- Anton Hartmann
- Department of Biology, Microbe-Host Interactions, Ludwig-Maximilian-University München (LMU), Großhaderner Str. 2, 82152 Munich, Germany
| | - Diogo Neves Proença
- Department of Life Sciences, ARISE, CEMMPRE, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| |
Collapse
|
7
|
Saleem S, Sekara A, Pokluda R. Serendipita indica-A Review from Agricultural Point of View. PLANTS (BASEL, SWITZERLAND) 2022; 11:3417. [PMID: 36559533 PMCID: PMC9787873 DOI: 10.3390/plants11243417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Fulfilling the food demand of a fast-growing population is a global concern, resulting in increased dependence of the agricultural sector on various chemical formulations for enhancing crop production. This leads to an overuse of chemicals, which is not only harmful to human and animal health, but also to the environment and the global economy. Environmental safety and sustainable production are major responsibilities of the agricultural sector, which is inherently linked to the conservation of the biodiversity, the economy, and human and animal health. Scientists, therefore, across the globe are seeking to develop eco-friendly and cost-effective strategies to mitigate these issues by putting more emphasis on the use of beneficial microorganisms. Here, we review the literature on Serendipita indica, a beneficial endophytic fungus, to bring to the fore its properties of cultivation, the ability to enhance plant growth, improve the quality of produced crops, mitigate various plant stresses, as well as protect the environment. The major points in this review are as follows: (1) Although various plant growth promoting microorganisms are available, the distinguishing character of S. indica being axenically cultivable with a wide range of hosts makes it more interesting for research. (2) S. indica has numerous functions, ranging from promoting plant growth and quality to alleviating abiotic and biotic stresses, suggesting the use of this fungus as a biofertiliser. It also improves the soil quality by limiting the movement of heavy metals in the soil, thus, protecting the environment. (3) S. indica's modes of action are due to interactions with phytohormones, metabolites, photosynthates, and gene regulation, in addition to enhancing nutrient and water absorption. (4) Combined application of S. indica and nanoparticles showed synergistic promotion in crop growth, but the beneficial effects of these interactions require further investigation. This review concluded that S. indica has a great potential to be used as a plant growth promoter or biofertiliser, ensuring sustainable crop production and a healthy environment.
Collapse
Affiliation(s)
- Sana Saleem
- Department of Vegetable Sciences and Floriculture, Faculty of Horticulture, Mendel University in Brno, Valticka 337, 691 44 Lednice, Czech Republic
| | - Agnieszka Sekara
- Department of Horticulture, Faculty of Biotechnology and Horticulture, University of Agriculture, 31-120 Krakow, Poland
| | - Robert Pokluda
- Department of Vegetable Sciences and Floriculture, Faculty of Horticulture, Mendel University in Brno, Valticka 337, 691 44 Lednice, Czech Republic
| |
Collapse
|
8
|
Li L, Guo N, Feng Y, Duan M, Li C. Effect of Piriformospora indica-Induced Systemic Resistance and Basal Immunity Against Rhizoctonia cerealis and Fusarium graminearum in Wheat. FRONTIERS IN PLANT SCIENCE 2022; 13:836940. [PMID: 35498704 PMCID: PMC9047502 DOI: 10.3389/fpls.2022.836940] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/15/2022] [Indexed: 06/01/2023]
Abstract
Wheat is among the top 10 and most widely grown crops in the world. However, wheat is often infected with many soil-borne diseases, including sharp eyespot, mainly caused by the necrotrophic fungus Rhizoctonia cerealis, and Fusarium head blight (FHB), caused by Fusarium graminearum, resulting in reduced production. Piriformospora indica is a root endophytic fungus with a wide range of host plants, which increases their growth and tolerance to biotic and abiotic stresses. In this study, the capability of P. indica to protect wheat seedlings against R. cerealis and F. graminearum was investigated at the physiological, biochemical, and molecular levels. Our results showed that P. indica significantly reduced the disease progress on wheat caused by F. graminearum and R. cerealis in vivo, but not showed any antagonistic effect on F. graminearum and R. cerealis in vitro. Additionally, P. indica can induce systemic resistance by elevating H2O2 content, antioxidase activity, relative water content (RWC), and membrane stability index (MSI) compared to the plants only inoculated with F. graminearum or R. cerealis and control. RNA-seq suggested that transcriptome changes caused by F. graminearum were more severe than those caused by R. cerealis. The number of differentially expressed genes (DEGs) in the transcriptome can be reduced by the addition of P. indica: for F. graminearum reduced by 18% and for R. cerealis reduced 58%. The DEGs related to disease resistance, such as WRKY and MAPK, were upregulated by P. indica colonization. The data further revealed that the transcriptional resistance to F. graminearum and R. cerealis mediated by P. indica is quite different.
Collapse
|
9
|
Khandagale K, Roylawar P, Kulkarni O, Khambalkar P, Ade A, Kulkarni A, Singh M, Gawande S. Comparative Transcriptome Analysis of Onion in Response to Infection by Alternaria porri (Ellis) Cifferi. FRONTIERS IN PLANT SCIENCE 2022; 13:857306. [PMID: 35481153 PMCID: PMC9036366 DOI: 10.3389/fpls.2022.857306] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/08/2022] [Indexed: 06/14/2023]
Abstract
Purple blotch (PB) is one of the most destructive foliar diseases of onion and other alliums, caused by a necrotrophic fungal pathogen Alternaria porri. There are no reports on the molecular response of onion to PB infection. To elucidate the response of onion to A. porri infection, we consequently carried out an RNAseq analysis of the resistant (Arka Kalyan; AK) and susceptible (Agrifound rose; AFR) genotype after an artificial infection. Through differential expression analyses between control and pathogen-treated plants, we identified 8,064 upregulated and 248 downregulated genes in AFR, while 832 upregulated and 564 downregulated genes were identified in AK. A further significant reprogramming in the gene expression profile was also demonstrated by a functional annotation analysis. Gene ontology (GO) terms, which are particularly involved in defense responses and signaling, are overrepresented in current analyses such as "oxidoreductase activity," "chitin catabolic processes," and "defense response." Several key plant defense genes were differentially expressed on A. porri infection, which includes pathogenesis-related (PR) proteins, receptor-like kinases, phytohormone signaling, cell-wall integrity, cytochrome P450 monooxygenases, and transcription factors. Some of the genes were exclusively overexpressed in resistant genotype, namely, GABA transporter1, ankyrin repeat domain-containing protein, xyloglucan endotransglucosylase/hydrolase, and PR-5 (thaumatin-like). Antioxidant enzyme activities were observed to be increased after infection in both genotypes but higher activity was found in the resistant genotype, AK. This is the first report of transcriptome profiling in onion in response to PB infection and will serve as a resource for future studies to elucidate the molecular mechanism of onion-A. porri interaction and to improve PB resistance in onions.
Collapse
Affiliation(s)
- Kiran Khandagale
- Department of Botany, Savitribai Phule Pune University, Pune, India
| | - Praveen Roylawar
- Department of Botany, Sangamner Nagarpalika Arts, D. J. Malpani Commerce, B. N. Sarda Science College, Sangamner, India
| | - Onkar Kulkarni
- Bioinformatics Centre, Savitribai Phule Pune University, Pune, India
| | | | - Avinash Ade
- Department of Botany, Savitribai Phule Pune University, Pune, India
| | - Abhijeet Kulkarni
- Bioinformatics Centre, Savitribai Phule Pune University, Pune, India
| | - Major Singh
- ICAR-Directorate of Onion and Garlic Research (DOGR), Pune, India
| | - Suresh Gawande
- ICAR-Directorate of Onion and Garlic Research (DOGR), Pune, India
| |
Collapse
|
10
|
Loss of Gramicidin Biosynthesis in Gram-Positive Biocontrol Bacterium Aneurinibacillus migulanus (Takagi et al., 1993) Shida et al. 1996 Emend Heyndrickx et al., 1997 Nagano Impairs Its Biological Control Ability of Phytophthora. FORESTS 2022. [DOI: 10.3390/f13040535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The soil-borne species Aneurinibacillus migulanus (A. migulanus) strains Nagano and NCTC 7096 were shown to be potent biocontrol agents active against several plant diseases in agricultural and forest ecosystems. Both strains produce the cyclic peptide gramicidin S (GS) that was described as the main weapon inhibiting some gram-negative and gram-positive bacteria and fungus-like organisms along with the production of biosurfactant and hemolysis activities. However, the contribution of the cyclic peptide gramicidin S (GS) to the biocontrol ability of A. migulanus has never been studied experimentally. In this paper, using a mutant of the A. migulanus Nagano strain (E1 mutant) impaired in GS biosynthesis we evaluated the contribution of GS in the biocontrol potential of A. migulanus against Phytophthora spp. The two strains of A. migulanus, Nagano and NCTC 7096, were tested in a pilot study for the inhibition of the growth of 13 Phytophthora species in dual culture assays. A. migulanus Nagano was significantly more inhibitory than NCTC 7096 to all species. Additionally, using apple infection assays, P. rosacearum MKDF-148 and P. cryptogea E2 were shown to be the most aggressive on apple fruits displaying clear infection halos. Therefore, the three A. migulanus strains, Nagano, NCTC 7096, and E1, were used in apple infection experiments to check their effect on infection ability of these two Phytophthora species. Treatment with A. migulanus Nagano significantly reduced the severity of symptoms in apple fruits compared with NCTC 7096. A. migulanus E1 mutant showed total loss of biocontrol ability suggesting that GS is a major actor in the biocontrol ability of A. migulanus Nagano strain.
Collapse
|
11
|
Cheng C, Liu F, Wang B, Qu P, Liu J, Zhang Y, Liu W, Tong Z, Deng G. Influences of Serendipita indica and Dictyophorae echinovolvata on the Growth and Fusarium Wilt Disease Resistance of Banana. BIOLOGY 2022; 11:biology11030393. [PMID: 35336767 PMCID: PMC8945148 DOI: 10.3390/biology11030393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/23/2022] [Accepted: 03/01/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary By using ‘Zhongjiao No.3’ and ‘Zhongjiao No.4’ banana seedlings as plant materials, we investigated the influences of Serendipita indica and bamboo fungus (Dictyophorae echinovolvata) culture substrates on the growth and wilt disease resistance of banana. S. indica colonization significantly enhanced the growth of the two banana cultivars, while banana seedlings grown in nutrient soil containing bamboo fungus culture substrates inoculated with D. echinovolvata showed suppressed growth. Moreover, both S. indica colonization and D. echinovolvata culture substrates addition can alleviate the disease symptoms caused by Fusarium oxysporum f. sp. cubense tropical race 4 (FocTR4), and their combined application showed the best disease resistance enhancement effect. The results obtained in this study can provide a basis for the application of S. indica and bamboo fungus in the prevention and control of banana Fusarium wilt disease in the future. Abstract Recently, many control methods have been tried and applied in the Fusarium wilt disease control of banana and have achieved definite progresses. In this study, by using ‘Zhongjiao No.3’ and ‘Zhongjiao No.4’ banana seedlings as materials, the effects of Serendipita indica and bamboo fungus (Dictyophorae echinovolvata) culture substrates on the growth and Fusarium wilt disease resistance of banana were investigated. Results showed that the plant height, leaf length, leaf width, root length and root thickness, aboveground part fresh weight, root fresh weight, and relative chlorophyll content and nitrogen content in leaves of banana seedlings colonized with S. indica were all greater than those of non-colonized controls, while these parameters of banana seedlings grown in nutrient soil containing D. echinovolvata culture substrates were significantly suppressed. Both S. indica non-colonized and colonized seedlings cultivated in nutrient containing 1/4 D. echinovolvata culture substrates showed much milder symptoms compared with those cultivated in normal nutrient soil, indicating that the addition of bamboo fungus substrates to the soil can enhance the Fusarium wilt resistance of banana. The results obtained in this study can provide a basis for the application of S. indica and bamboo fungus in the prevention and control of banana Fusarium wilt disease.
Collapse
Affiliation(s)
- Chunzhen Cheng
- College of Horticulture, Shanxi Agricultural University, Jinzhong 030801, China; (P.Q.); (Y.Z.); (W.L.)
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (F.L.); (B.W.); (J.L.)
- Correspondence: (C.C.); (G.D.)
| | - Fan Liu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (F.L.); (B.W.); (J.L.)
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences/Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (Ministry of Agriculture and Rural Affairs)/Guangdong Province Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou 510640, China
| | - Bin Wang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (F.L.); (B.W.); (J.L.)
| | - Pengyan Qu
- College of Horticulture, Shanxi Agricultural University, Jinzhong 030801, China; (P.Q.); (Y.Z.); (W.L.)
| | - Jiapeng Liu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (F.L.); (B.W.); (J.L.)
| | - Yongyan Zhang
- College of Horticulture, Shanxi Agricultural University, Jinzhong 030801, China; (P.Q.); (Y.Z.); (W.L.)
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (F.L.); (B.W.); (J.L.)
| | - Wei Liu
- College of Horticulture, Shanxi Agricultural University, Jinzhong 030801, China; (P.Q.); (Y.Z.); (W.L.)
| | - Zheng Tong
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China;
| | - Guiming Deng
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences/Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (Ministry of Agriculture and Rural Affairs)/Guangdong Province Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou 510640, China
- Correspondence: (C.C.); (G.D.)
| |
Collapse
|