1
|
Natsuhara D, Kiba Y, Saito R, Okamoto S, Nagai M, Yamauchi Y, Kitamura M, Shibata T. A sequential liquid dispensing method in a centrifugal microfluidic device operating at a constant rotational speed for the multiplexed genetic detection of foodborne pathogens. RSC Adv 2024; 14:22606-22617. [PMID: 39021458 PMCID: PMC11253859 DOI: 10.1039/d4ra04055d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 07/10/2024] [Indexed: 07/20/2024] Open
Abstract
This study proposes a sequential liquid dispensing method using a centrifugal microfluidic device operating at a constant rotational speed for the multiplexed genetic detection of nucleic acid targets across multiple samples in a single operation. A pair of passive valves integrated into each microchamber enabled the liquid to fill towards the center of rotation against the centrifugal force, facilitating the complete removal of air inside the microchamber. Liquid manipulation can be achievable without any surface coating of the device by exploiting the inherent hydrophobicity of the polymer. Furthermore, design guidelines for the optimization of microfluidic devices are clarified. Consequently, our proposed method allows direct liquid dispensing into the reaction chambers without cross-contamination while simultaneously metering the sample/reagent volume for the colorimetric loop-mediated isothermal amplification (LAMP) reaction. In addition, we demonstrated the simultaneous detection of four foodborne pathogens (Salmonella spp., Vibrio parahaemolyticus, Campylobacter spp., and norovirus genogroup II (GII)) across four samples in a centrifugal microfluidic device within 60 min. Furthermore, the device exhibited high quantitation (R 2 > 0.98) of the DNA concentration in the sample. Our proposed method enables a more compact design by eliminating the need for metering chambers and offers a point-of-care testing platform with high simplicity as it operates at a constant rotational speed.
Collapse
Affiliation(s)
- Daigo Natsuhara
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University Nagoya Aichi 464-8603 Japan
| | - Yuka Kiba
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University Sakado Saitama 350-0295 Japan
| | - Ryogo Saito
- Department of Mechanical Engineering, Toyohashi University of Technology Toyohashi Aichi 441-8580 Japan
| | - Shunya Okamoto
- Department of Mechanical Engineering, Toyohashi University of Technology Toyohashi Aichi 441-8580 Japan
| | - Moeto Nagai
- Department of Mechanical Engineering, Toyohashi University of Technology Toyohashi Aichi 441-8580 Japan
- Institute for Research on Next-generation Semiconductor and Sensing Science (IRES2), Toyohashi University of Technology Aichi 441-8580 Japan
| | - Yusuke Yamauchi
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University Nagoya Aichi 464-8603 Japan
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland St. Lucia QLD 4072 Australia
| | - Masashi Kitamura
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University Sakado Saitama 350-0295 Japan
| | - Takayuki Shibata
- Department of Mechanical Engineering, Toyohashi University of Technology Toyohashi Aichi 441-8580 Japan
| |
Collapse
|
2
|
Chen Y, Xu L, Wang J. Characteristics of a Carbapenem-Resistant Acinetobacter baumannii Strain Causing Community-Acquired Pneumonia in a Young Healthy Women. Infect Drug Resist 2023; 16:7819-7826. [PMID: 38152553 PMCID: PMC10752029 DOI: 10.2147/idr.s439614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 12/01/2023] [Indexed: 12/29/2023] Open
Abstract
Background Multidrug-resistant Acinetobacter baumannii rarely causes community-acquired pneumonia. Here, we report the clinical and genomic characteristics of a multidrug-resistant A. baumannii strain responsible for community-acquired pneumonia in a 31-year-old healthy young women. Methods A. baumannii strain W2LL was recovered from the alveolar lavage fluid sample of a hospitalized patient with pulmonary infection. Growth rate studies were conducted under various conditions, and virulence assessments were performed using Galleria Mellonella larvae. Whole Genome Sequencing (WGS) was carried out using Oxford Nanopore MinIon and Illumina HiSeq. In silico multilocus sequence typing (MLST), plasmid replicons, antimicrobial resistance genes, and virulence genes were determined using the BacWGSTdb webserver. Phylogenetic analysis between strain W2LL and other closely related A. baumannii genomes retrieved from NCBI database was performed. Results WGS identified strain W2LL as a rare sporadic lineage sequence type (ST) 1431. In addition to the detection of the β-lactamase gene (blaOXA-98) on the chromosome, blaOXA-58 was found on a 92,034 bp plasmid. Antimicrobial susceptibility testing revealed this strain was resistant to cephalosporins and carbapenems, with initial treatment using cefoxitin proving ineffective. Subsequent treatment with piperacillin-sulbactam combined with levofloxacin led to gradual improvement. Compared to A. baumannii ATCC 17978, W2LL exhibited similar growth rates at 37°C and 42°C, as well as in the presence of zinc. However, strain W2LL exhibited higher virulence phenotype compared to ATCC 17978 in G. mellonella model. The closest relative of A. baumannii W2LL was CAM180_1, another isolate recovered from Cambodia, which differed by 191 SNPs. Conclusion W2LL is a rare ST1431 carbapenem-resistant A. baumannii strain recovered from a patient with no prior hospitalization or typical risk factors. This underscores the growing menace posed by carbapenem-resistant A. baumannii, no longer limited to hospitalized patients, potentially impacting the broader, younger population.
Collapse
Affiliation(s)
- Yan Chen
- Department of General Practice, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang Province, People’s Republic of China
| | - Liqun Xu
- Department of Emergency Department, Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, People’s Republic of China
| | - Jianfeng Wang
- Department of Respiratory Diseases, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang Province, People’s Republic of China
- Institute of Respiratory Diseases of Traditional Chinese Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, People’s Republic of China
| |
Collapse
|
3
|
Breulmann M, Kallies R, Bernhard K, Gasch A, Müller RA, Harms H, Chatzinotas A, van Afferden M. A long-term passive sampling approach for wastewater-based monitoring of SARS-CoV-2 in Leipzig, Germany. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 887:164143. [PMID: 37182773 PMCID: PMC10181866 DOI: 10.1016/j.scitotenv.2023.164143] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/04/2023] [Accepted: 05/09/2023] [Indexed: 05/16/2023]
Abstract
Wastewater-based monitoring of SARS-CoV-2 has become a promising and useful tool in tracking the potential spread or dynamics of the virus. Its recording can be used to predict how the potential number of infections in a population will develop. Recent studies have shown that the use of passive samplers is also suitable for the detection of SARS-CoV-2 genome copies (GC) in wastewater. They can be used at any site, provide timely data and may collect SARS-CoV-2 GC missed by traditional sampling methods. Therefore, the aim of this study was to evaluate the suitability of passive samplers for the detection of SARS-CoV-2 GC in wastewater in the long-term at two different scales. Polyethylene-based plastic passive samplers were deployed at the city-scale level of Leipzig at 13 different locations, with samples being taken from March 2021 to August 2022. At the smaller city district level, three types of passive samplers (cotton-cloth, unravelled polypropylene plastic rope and polyethylene-based plastic strips) were used and sampled on a weekly basis from March to August 2022. The results are discussed in relation to wastewater samples taken at the individual passive sampling point. Our results show that passive samplers can indicate at a city-scale level an accurate level of positive infections in the population (positive-rate: 86 %). On a small-scale level, the use of passive samplers was also feasible and effective to detect SARS-CoV-2 GC easily and cost-effectively, mirroring a similar trend to that at a city-scale level. Thus, this study demonstrated that passive samplers provide reproducible SARS-CoV-2 GC signals from wastewater and a time-integrated measurement of the sampled matrix with greater sensitivity compared to wastewater. We thus recommend the use of passive samplers as an alternative method for wastewater-based epidemiology. Passive samplers can in particular be considered for a better estimation of infections compared to incidence levels.
Collapse
Affiliation(s)
- Marc Breulmann
- Centre for Environmental Biotechnology, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318 Leipzig, Germany.
| | - René Kallies
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - Katy Bernhard
- Centre for Environmental Biotechnology, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - Andrea Gasch
- Wastewater Monitoring Department, Kommunale Wasserwerke Leipzig GmbH, Johannisgasse 7-9, 04103 Leipzig, Germany
| | - Roland Arno Müller
- Centre for Environmental Biotechnology, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - Hauke Harms
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - Antonis Chatzinotas
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318 Leipzig, Germany; Institute of Biology, Leipzig University, 04103 Leipzig, Germany; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany
| | - Manfred van Afferden
- Centre for Environmental Biotechnology, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| |
Collapse
|
4
|
Li D, Zhao J, Lan W, Zhao Y, Sun X. Effect of food matrix on rapid detection of Vibrio parahaemolyticus in aquatic products based on toxR gene. World J Microbiol Biotechnol 2023; 39:188. [PMID: 37156898 DOI: 10.1007/s11274-023-03640-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/04/2023] [Indexed: 05/10/2023]
Abstract
Vibrio parahaemolyticus has become an important public threat to human health. Rapid and robust pathogen diagnostics are necessary for monitoring its outbreak and spreading. Herein, we report an assay for the detection of V. parahaemolyticus based on recombinase aided amplification (RAA) combined with lateral flow dipstick (LFD), namely RAA-LFD. The RAA-LFD took 20 min at 36~38 ℃, and showed excellent specificity. It detected as low as 6.4 fg/µL of V. parahaemolyticus in genomic DNA, or 7.4 CFU/g spiked food samples with 4 h of enrichment. The limit of detection in shrimp (Litopenaeus Vannamei), fish (Carassius auratus), clam (Ruditapes philippinarum) evidenced that sensitivity was considerably affected by the food matrix. The presence of food matrix reduced the sensitivity of spiked food samples by 10 ~ 100 times. In the filed samples detection, RAA-LFD method showed good coincidence with GB4789.7-2013 method and PCR method at rates of 90.6% and 94.1%, respectively. RAA-LFD has high accuracy and sensitivity for the detection of V. parahaemolyticus, which can serve as a model tool to meet the growing need for point-of-care diagnosis of V. parahaemolyticus.
Collapse
Affiliation(s)
- Darong Li
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, People's Republic of China
| | - Jiayi Zhao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, People's Republic of China
| | - Weiqing Lan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, People's Republic of China
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai, 201306, People's Republic of China
| | - Yong Zhao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, People's Republic of China
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai, 201306, People's Republic of China
- Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai, 201306, People's Republic of China
| | - Xiaohong Sun
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, People's Republic of China.
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai, 201306, People's Republic of China.
- Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai, 201306, People's Republic of China.
| |
Collapse
|
5
|
Zhou L, Wu H, Du M, Song H, Huo N, Chen X, Su X, Li W, Wang L, Wang J, Huang B, Tan F, Tian K. A canine-derived chimeric antibody with high neutralizing activity against canine parvovirus-2. AMB Express 2022; 12:76. [PMID: 35705721 PMCID: PMC9200918 DOI: 10.1186/s13568-022-01416-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 06/08/2022] [Indexed: 12/02/2022] Open
Abstract
Canine parvovirus-2 (CPV-2) infection causes serious multisystemic disease in dogs and many animal species worldwide. Previously, a monoclonal antibody (MAb) of CPV-2, 10H4, showed high neutralizing activity and therapeutic effect against CPV-2 in dogs. However, the application of mouse MAb is limited in other animals due to immune rejection. Here, the variable regions of the heavy and light chains of 10H4 were cloned and ligated with constant canine antibody regions to produce a canine-derived chimeric MAb 11D9, in a CHO-S cell expression system. The cell supernatant of the CHO cell line 11D9 exhibited a HI titer of 1:2560 against all the variants of CPV-2 (new CPV-2a, new CPV-2b, and CPV-2c), and had the same average neutralization titer as the new CPV-2a (1:11,046.5) and new CPV-2b (1:11,046.5) variants, which was slightly higher than that of CPV-2c variants (1:10,615.7). In animal experiment, the treatment of chimeric MAb 11D9 had a high therapeutic effect in beagles infected with the new CPV-2a. Overall, the canine-derived chimeric MAb 11D9 produced by CHO-S cells showed a high HI and neutralization titer against CPV-2 and the therapeutic effects against the new CPV-2a in beagles, providing potential for the prevention or treatment of CPV-2 infections in dogs. A canine-derived chimeric MAb 11D9 was produced by CHO cell lines. The MAb 11D9 exhibited high HI and neutralization titers against new CPV-2 variants. The MAb 11D9 had a high therapeutic effect in beagles infected with the new CPV-2a variant.
Collapse
Affiliation(s)
- Lixuan Zhou
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Hongchao Wu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China.,National Research Center for Veterinary Medicine, Luoyang, China
| | - Mengmeng Du
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Huanhuan Song
- National Research Center for Veterinary Medicine, Luoyang, China
| | - Ningning Huo
- National Research Center for Veterinary Medicine, Luoyang, China.,Luoyang Huizhong Biotech Co., Ltd., Luoyang, China
| | - Xiao Chen
- National Research Center for Veterinary Medicine, Luoyang, China
| | - Xiaorui Su
- National Research Center for Veterinary Medicine, Luoyang, China
| | - Weiguo Li
- National Research Center for Veterinary Medicine, Luoyang, China
| | - Lulu Wang
- National Research Center for Veterinary Medicine, Luoyang, China
| | - Jie Wang
- National Research Center for Veterinary Medicine, Luoyang, China.,Luoyang Huizhong Biotech Co., Ltd., Luoyang, China
| | - Baicheng Huang
- National Research Center for Veterinary Medicine, Luoyang, China.
| | - Feifei Tan
- National Research Center for Veterinary Medicine, Luoyang, China.
| | - Kegong Tian
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China. .,National Research Center for Veterinary Medicine, Luoyang, China.
| |
Collapse
|
6
|
Mahwish, Saeed F, Afzaal M, Hussain M, Imran M, Nawaz T, Siddeeg A. Dietary guidelines to boost immunity during pre and post covid-19 conditions. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2022. [DOI: 10.1080/10942912.2022.2071287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Mahwish
- Institute of Home Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Farhan Saeed
- Department of Food Sciences, Government College University Faisalabad, Pakistan
| | - Muhammad Afzaal
- Department of Food Sciences, Government College University Faisalabad, Pakistan
| | - Muzzamal Hussain
- Department of Food Sciences, Government College University Faisalabad, Pakistan
| | - Muhammad Imran
- Food, nutrition and lifestyle Unit, King Fahed Medical Research Center, Clinical Biochemistry Department, Faculty of Medicine, King Abdulaziz University
- Department of food science and technology, University of Narowal, Pakistan
| | - Taufiq Nawaz
- Department of Food Science and Technology, The University of Agriculture, Peshawar, Pakistan
| | - Azhari Siddeeg
- Department of Food Engineering and Technology, Faculty of Engineering and Technology, University of Gezira, Wad Medani, Sudan
| |
Collapse
|