1
|
Bonin JL, Torres SR, Marcinkiewicz AL, Duhamel GE, Yang X, Pal U, DiSpirito JM, Nowak TA, Lin YP, MacNamara KC. Impact of E. muris infection on B. burgdorferi-induced joint pathology in mice. Front Immunol 2024; 15:1430419. [PMID: 39229265 PMCID: PMC11368855 DOI: 10.3389/fimmu.2024.1430419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/30/2024] [Indexed: 09/05/2024] Open
Abstract
Tick-borne infections are increasing in the United States and around the world. The most common tick-borne disease in the United States is Lyme disease caused by infection with the spirochete Borrelia burgdorferi (Bb), and pathogenesis varies from subclinical to severe. Bb infection is transmitted by Ixodes ticks, which can carry multiple other microbial pathogens, including Ehrlichia species. To address how the simultaneous inoculation of a distinct pathogen impacted the course of Bb-induced disease, we used C57BL/6 (B6) mice which are susceptible to Bb infection but develop only mild joint pathology. While infection of B6 mice with Bb alone resulted in minimal inflammatory responses, mice co-infected with both Bb and the obligate intracellular pathogen Ehrlichia muris (Em) displayed hematologic changes, inflammatory cytokine production, and emergency myelopoiesis similar to what was observed in mice infected only with Em. Moreover, infection of B6 mice with Bb alone resulted in no detectable joint inflammation, whereas mice co-infected with both Em and Bb exhibited significant inflammation of the ankle joint. Our findings support the concept that co-infection with Ehrlichia can exacerbate inflammation, resulting in more severe Bb-induced disease.
Collapse
Affiliation(s)
- Jesse L. Bonin
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, United States
| | - Steven R. Torres
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, United States
| | - Ashley L. Marcinkiewicz
- Division of Infectious Disease, Wadsworth Center, New York State Department of Health, Albany, NY, United States
| | - Gerald E. Duhamel
- New York State Animal Health Diagnostic Center and Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Xiuli Yang
- Department of Veterinary Medicine, Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, MD, United States
| | - Utpal Pal
- Department of Veterinary Medicine, Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, MD, United States
| | - Julia M. DiSpirito
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, United States
| | - Tristan A. Nowak
- Division of Infectious Disease, Wadsworth Center, New York State Department of Health, Albany, NY, United States
- Department of Biomedical Sciences, State University of New York at Albany, Albany, NY, United States
| | - Yi-Pin Lin
- Division of Infectious Disease, Wadsworth Center, New York State Department of Health, Albany, NY, United States
- Department of Biomedical Sciences, State University of New York at Albany, Albany, NY, United States
| | - Katherine C. MacNamara
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, United States
| |
Collapse
|
2
|
Martyn C, Hayes BM, Lauko D, Midthun E, Castaneda G, Bosco-Lauth A, Salkeld DJ, Kistler A, Pollard KS, Chou S. Metatranscriptomic investigation of single Ixodes pacificus ticks reveals diverse microbes, viruses, and novel mRNA-like endogenous viral elements. mSystems 2024; 9:e0032124. [PMID: 38742892 PMCID: PMC11237458 DOI: 10.1128/msystems.00321-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 03/27/2024] [Indexed: 05/16/2024] Open
Abstract
Ticks are increasingly important vectors of human and agricultural diseases. While many studies have focused on tick-borne bacteria, far less is known about tick-associated viruses and their roles in public health or tick physiology. To address this, we investigated patterns of bacterial and viral communities across two field populations of western black-legged ticks (Ixodes pacificus). Through metatranscriptomic analysis of 100 individual ticks, we quantified taxon prevalence, abundance, and co-occurrence with other members of the tick microbiome. In addition to commonly found tick-associated microbes, we assembled 11 novel RNA virus genomes from Rhabdoviridae, Chuviridae, Picornaviridae, Phenuiviridae, Reoviridae, Solemovidiae, Narnaviridae and two highly divergent RNA virus genomes lacking sequence similarity to any known viral families. We experimentally verified the presence of these in I. pacificus ticks across several life stages. We also unexpectedly identified numerous virus-like transcripts that are likely encoded by tick genomic DNA, and which are distinct from known endogenous viral element-mediated immunity pathways in invertebrates. Taken together, our work reveals that I. pacificus ticks carry a greater diversity of viruses than previously appreciated, in some cases resulting in evolutionarily acquired virus-like transcripts. Our findings highlight how pervasive and intimate tick-virus interactions are, with major implications for both the fundamental biology and vectorial capacity of I. pacificus ticks. IMPORTANCE Ticks are increasingly important vectors of disease, particularly in the United States where expanding tick ranges and intrusion into previously wild areas has resulted in increasing human exposure to ticks. Emerging human pathogens have been identified in ticks at an increasing rate, and yet little is known about the full community of microbes circulating in various tick species, a crucial first step to understanding how they interact with each and their tick host, as well as their ability to cause disease in humans. We investigated the bacterial and viral communities of the Western blacklegged tick in California and found 11 previously uncharacterized viruses circulating in this population.
Collapse
Affiliation(s)
- Calla Martyn
- Department of Biochemistry & Biophysics, University of California–San Francisco, San Francisco, California, USA
- Gladstone Institute of Data Science & Biotechnology, San Francisco, California, USA
| | - Beth M. Hayes
- Department of Biochemistry & Biophysics, University of California–San Francisco, San Francisco, California, USA
- One Health Institute, Colorado State University–Fort Collins, Fort Collins, Colorado, USA
| | - Domokos Lauko
- Department of Biochemistry & Biophysics, University of California–San Francisco, San Francisco, California, USA
| | - Edward Midthun
- Department of Biomedical Sciences, Colorado State University–Fort Collins, Fort Collins, Colorado, USA
| | - Gloria Castaneda
- Chan Zuckerberg Biohub, San Francisco, San Francisco, California, USA
| | - Angela Bosco-Lauth
- Department of Biomedical Sciences, Colorado State University–Fort Collins, Fort Collins, Colorado, USA
| | - Daniel J. Salkeld
- Department of Biology, Colorado State University–Fort Collins, Fort Collins, Colorado, USA
| | - Amy Kistler
- Chan Zuckerberg Biohub, San Francisco, San Francisco, California, USA
| | - Katherine S. Pollard
- Gladstone Institute of Data Science & Biotechnology, San Francisco, California, USA
- Chan Zuckerberg Biohub, San Francisco, San Francisco, California, USA
- Department of Epidemiology & Biostatistics, University of California San Francisco, San Francisco, California, USA
| | - Seemay Chou
- Department of Biochemistry & Biophysics, University of California–San Francisco, San Francisco, California, USA
- Chan Zuckerberg Biohub, San Francisco, San Francisco, California, USA
| |
Collapse
|
3
|
Eisen L, Saunders MEM, Kramer VL, Eisen RJ. History of the geographic distribution of the western blacklegged tick, Ixodes pacificus, in the United States. Ticks Tick Borne Dis 2024; 15:102325. [PMID: 38387162 PMCID: PMC10960675 DOI: 10.1016/j.ttbdis.2024.102325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/02/2024] [Accepted: 02/15/2024] [Indexed: 02/24/2024]
Abstract
Ixodes pacificus (the western blacklegged tick) occurs in the far western United States (US), where it commonly bites humans. This tick was not considered a species of medical concern until it was implicated in the 1980s as a vector of Lyme disease spirochetes. Later, it was discovered to also be the primary vector to humans in the far western US of agents causing anaplasmosis and hard tick relapsing fever. The core distribution of I. pacificus in the US includes California, western Oregon, and western Washington, with outlier populations reported in Utah and Arizona. In this review, we provide a history of the documented occurrence of I. pacificus in the US from the 1890s to present, and discuss associations of its geographic range with landscape, hosts, and climate. In contrast to Ixodes scapularis (the blacklegged tick) in the eastern US, there is no evidence for a dramatic change in the geographic distribution of I. pacificus over the last half-century. Field surveys in the 1930s and 1940s documented I. pacificus along the Pacific Coast from southern California to northern Washington, in the Sierra Nevada foothills, and in western Utah. County level collection records often included both immatures and adults of I. pacificus, recovered by drag sampling or from humans, domestic animals, and wildlife. The estimated geographic distribution presented for I. pacificus in 1945 by Bishopp and Trembley is similar to that presented in 2022 by the Centers for Disease Control and Prevention. There is no clear evidence of range expansion for I. pacificus, separate from tick records in new areas that could have resulted from newly initiated or intensified surveillance efforts. Moreover, there is no evidence from long-term studies that the density of questing I. pacificus ticks has increased over time in specific areas. It therefore is not surprising that the incidence of Lyme disease has remained stable in the Pacific Coast states from the early 1990s, when it became a notifiable condition, to present. We note that deforestation and deer depredation were less severe in the far western US during the 1800s and early 1900s compared to the eastern US. This likely contributed to I. pacificus maintaining stable, widespread populations across its geographic range in the far western US in the early 1900s, while I. scapularis during the same time period appears to have been restricted to a small number of geographically isolated refugia sites within its present range in the eastern US. The impact that a warming climate may have had on the geographic distribution and local abundance of I. pacificus in recent decades remains unclear.
Collapse
Affiliation(s)
- Lars Eisen
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 3156 Rampart Road, Fort Collins, CO 80521, United States.
| | - Megan E M Saunders
- Vector-Borne Disease Section, California Department of Public Health, 1616 Capitol Ave, Sacramento, CA 95814, United States
| | - Vicki L Kramer
- Vector-Borne Disease Section, California Department of Public Health, 1616 Capitol Ave, Sacramento, CA 95814, United States
| | - Rebecca J Eisen
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 3156 Rampart Road, Fort Collins, CO 80521, United States
| |
Collapse
|
4
|
Chavarría-Bencomo IV, Nevárez-Moorillón GV, Espino-Solís GP, Adame-Gallegos JR. Antibiotic resistance in tick-borne bacteria: A One Health approach perspective. J Infect Public Health 2023; 16 Suppl 1:153-162. [PMID: 37945496 DOI: 10.1016/j.jiph.2023.10.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 11/12/2023] Open
Abstract
The emergence and re-emergence of tick-borne bacteria (TBB) as a public health problem raises the uncertainty of antibiotic resistance in these pathogens, which could be dispersed to other pathogens. The impact of global warming has led to the emergence of pathogenic TBB in areas where they were not previously present and is another risk that must be taken into account under the One Health guides. This review aimed to analyze the existing information regarding antibiotic-resistant TBB and antibiotic-resistance genes (ARG) present in the tick microbiome, considering the potential to be transmitted to pathogenic microorganisms. Several Ehrlichia species have been reported to exhibit natural resistance to fluoroquinolones and typhus group Rickettsiae are naturally susceptible to erythromycin. TBB have a lower risk of acquiring ARG due to their natural habitat, but there is still a probability of acquiring them; furthermore, studies of these pathogens are limited. Pathogenic and commensal bacteria coexist within the tick microbiome along with ARGs for antibiotic deactivation, cellular protection, and efflux pumps; these ARGs confer resistance to antibiotics such as aminoglycosides, beta-lactamase, diaminopyrimidines, fluoroquinolones, glycopeptides, sulfonamides, and tetracyclines. Although with low probability, TBB can be a reservoir of ARGs.
Collapse
Affiliation(s)
- Inés Valeria Chavarría-Bencomo
- Facultad de Ciencias Químicas. Universidad Autónoma de Chihuahua, Circuito Universitario s/n. Campus Universitario II., 31125 Chihuahua, Mexico
| | - Guadalupe Virginia Nevárez-Moorillón
- Facultad de Ciencias Químicas. Universidad Autónoma de Chihuahua, Circuito Universitario s/n. Campus Universitario II., 31125 Chihuahua, Mexico.
| | - Gerardo Pavel Espino-Solís
- Laboratorio Nacional de Citometría de Flujo. Facultad de Medicina y Ciencias Biomédicas, Universidad Autónoma de Chihuahua, Circuito Universitario s/n. Campus Universitario II., 31125 Chihuahua, Mexico
| | - Jaime Raúl Adame-Gallegos
- Facultad de Ciencias Químicas. Universidad Autónoma de Chihuahua, Circuito Universitario s/n. Campus Universitario II., 31125 Chihuahua, Mexico
| |
Collapse
|
5
|
Narasimhan S, Fish D, Pedra JHF, Pal U, Fikrig E. A ticking time bomb hidden in plain sight. Sci Transl Med 2023; 15:eadi7829. [PMID: 37851823 DOI: 10.1126/scitranslmed.adi7829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
The deer tick transmits nearly half of the known tick-borne pathogens in the United States, and its expanding geographic range increases the risk of human infection. To decrease the abundance of and infection risk from deer ticks, approaches that include vaccines for human use and for animal hosts are desired.
Collapse
Affiliation(s)
- Sukanya Narasimhan
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06520, USA
| | - Durland Fish
- Yale School of Public Health, New Haven, CT 06420, USA
- American Lyme Disease Foundation, Inc., New Haven, CT 06510, USA
| | - Joao H F Pedra
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Utpal Pal
- Department of Veterinary Medicine, University of Maryland, College Park, MD 20742, USA
| | - Erol Fikrig
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
6
|
Freifeld AG, Todd AI, Khan AS. The climate crisis and healthcare: What do infection prevention and stewardship professionals need to know? ANTIMICROBIAL STEWARDSHIP & HEALTHCARE EPIDEMIOLOGY : ASHE 2023; 3:e136. [PMID: 37592967 PMCID: PMC10428152 DOI: 10.1017/ash.2023.170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 08/19/2023]
Abstract
The climate crisis calls for urgent action from every level of the US healthcare sector, starting with an acknowledgment of our own outsized contribution to greenhouse gas emissions (at least 8.5% of carbon emissions). As the climate continues to become warmer and wetter, the medical establishment must deal with increasing rates of pulmonary and cardiovascular diseases, heat-related illness, and emerging infectious diseases among many other health harms. Additionally, extreme weather events are causing healthcare delivery breakdown due to physical infrastructure damage, slowed supply chains, and workforce burden. Pathways for healthcare systems to meet these challenges are emerging. They entail significant measures to mitigate our carbon footprint, embrace shared and equity-driven governance, develop new metrics of accountability, and build more resilience into our care delivery processes. We call upon SHEA to play a unique leadership role in the fight for sustainable, equitable, and efficient health care in a rapidly changing climate that immediately threatens human well-being.
Collapse
Affiliation(s)
- Alison G. Freifeld
- Department of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Alexandra I. Todd
- University of Nebraska Medical Center, College of Public Health, Omaha, Nebraska
| | - Ali S. Khan
- University of Nebraska Medical Center, College of Public Health, Omaha, Nebraska
| |
Collapse
|
7
|
Long J, Maskell K, Gries R, Nayani S, Gooding C, Gries G. Synergistic attraction of Western black-legged ticks, Ixodes pacificus, to CO 2 and odorant emissions from deer-associated microbes. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230084. [PMID: 37206969 PMCID: PMC10189596 DOI: 10.1098/rsos.230084] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 04/26/2023] [Indexed: 05/21/2023]
Abstract
Foraging ticks reportedly exploit diverse cues to locate their hosts. Here, we tested the hypothesis that host-seeking Western black-legged ticks, Ixodes pacificus, and black-legged ticks, I. scapularis, respond to microbes dwelling in sebaceous gland secretions of white-tailed deer, Odocoileus virginianus, the ticks' preferred host. Using sterile wet cotton swabs, microbes were collected from the pelage of a sedated deer near forehead, preorbital, tarsal, metatarsal and interdigital glands. Swabs were plated on agar, and isolated microbes were identified by 16S rRNA amplicon sequencing. Of 31 microbial isolates tested in still-air olfactometers, 10 microbes induced positive arrestment responses by ticks, whereas 10 others were deterrent. Of the 10 microbes prompting arrestment by ticks, four microbes-including Bacillus aryabhattai (isolates A4)-also attracted ticks in moving-air Y-tube olfactometers. All four of these microbes emitted carbon dioxide and ammonia as well as volatile blends with overlapping blend constituents. The headspace volatile extract (HVE) of B. aryabhattai (HVE-A4) synergistically enhanced the attraction of I. pacificus to CO2. A synthetic blend of HVE-A4 headspace volatiles in combination with CO2 synergistically attracted more ticks than CO2 alone. Future research should aim to develop a least complex host volatile blend that is attractive to diverse tick taxa.
Collapse
Affiliation(s)
- Justin Long
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
| | - Keiran Maskell
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
| | - Regine Gries
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
| | - Saif Nayani
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
| | - Claire Gooding
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
| | - Gerhard Gries
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
| |
Collapse
|
8
|
Panteleienko OV, Makovska IF, Tsarenko TM. Influence of ecological and climatic conditions on the spread of Borrelia burgdorferi in domestic dogs in Ukraine. REGULATORY MECHANISMS IN BIOSYSTEMS 2022. [DOI: 10.15421/022257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023] Open
Abstract
Lyme-borreliosis is a zoonotic, infectious disease that has a complex chain of transmission of the pathogen Borrelia burgdorferi sensu lato and includes the relationship between ixodid ticks, vertebrate hosts, humans and companion animals in the environment. The article shows general trends in the prevalence of canine Lyme-borreliosis in Ukraine depending on environmental, climatic and physiographic factors. The results of a comparative cartographic analysis of the prevalence of Lyme borreliosis among domestic dogs in Ukraine are presented by systematizing, mathematical and statistical processing of the data obtained by surveying veterinarians engaged in clinical veterinary practice. The paper includes generalized data on the clinical manifestations, methods of diagnosis and treatment of Lyme borreliosis in dogs. We determined the dependence of the prevalence of Lyme borreliosis in dogs on the types of physical and geographical territories – natural zones of Ukraine. Each of the natural zones differs in types of relief, climatic conditions, soil types, composition of fauna and flora, which affect the epizootic chain of Lyme disease. There is a clear correlation between the incidence of Lyme borreliosis in dogs and the types of natural areas. The highest incidence of Lyme borreliosis in dogs was observed in the forest-steppe zone and the zone of broad-leaved forests. A sharp decrease in the incidence of dogs was recorded in areas of mixed forests, the Ukrainian Carpathians and in the South of Ukraine in the steppe zone. The study also confirmed that the prevalence of Lyme disease among domestic dogs was influenced by the climatic factors, in particular: gross moisture of territories, average annual air temperature and soil temperature. In Ukraine, veterinarians in the vast majority of cases use serological diagnostic methods: immunochromatographic analysis, immunoenzymatic assay, and western blot, which are insufficient, since the presence of antibodies to the Lyme borreliosis pathogen is only a confirmation of the animal's contact with the antigen and may not indicate the presence of the disease in the clinical form. The generalized data on the use of antimicrobial drugs in the treatment of Lyme borreliosis in dogs indicate the predominant use of tetracycline antibiotics and cephalosporins. The majority of veterinarians reported symptoms of Lyme arthritis, somewhat fewer reported Lyme nephritis, neuroborreliosis, Lyme carditis and in rare cases, veterinarians observed erythema at the site of tick bite. About half of the veterinarians in Ukraine observed an increase in the incidence of Lyme disease in dogs, indicating a probable deterioration of the epizootic and epidemiological situation regarding Lyme borreliosis, especially in areas with favourable conditions for the circulation of Lyme borreliosis pathogens in natural and urban ecotopes. The results substantiate the need for the further study of the circulation of Borrelia burgdorferi sensu lato and their ability to cause disease in humans and animals, as well as the need to implement the principles of the One Health concept for the control and management of Lyme borreliosis.
Collapse
|