1
|
Stewart RD, Oluwalana-Sanusi AE, Munzeiwa WA, Magoswana L, Chaukura N. Profiling the bacterial microbiome diversity and assessing the potential to detect antimicrobial resistance bacteria in wastewater in Kimberley, South Africa. Sci Rep 2024; 14:26867. [PMID: 39500921 PMCID: PMC11538266 DOI: 10.1038/s41598-024-76466-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 10/14/2024] [Indexed: 11/08/2024] Open
Abstract
Wastewater treatment plants (WWTPs) are hotspots for pathogens, and can facilitate horizontal gene transfer, potentially releasing harmful genetic material and antimicrobial resistance genes into the environment. Little information exists on the composition and behavior of microbes in WWTPs, especially in developing countries. This study used environmental DNA (eDNA) techniques to examine the microbiome load of wastewater from WWTPs. The DNA was isolated from wastewater samples collected from the treatment trains of three WWTPs in Kimberley, South Africa, and the microbial diversity and composition was compared through 16 S rRNA gene sequencing. The microbes detected were of the Kingdom Bacteria, and of these, 48.27% were successfully identified to genus level. The majority of reads from the combined bacterial data fall within the class Gammaproteobacteria, which is known to adversely impact ecological and human health. Arcobacteraceae constituted 19% of the bacterial reads, which is expected as this family is widespread in aquatic environments. Interestingly, the most abundant bacterial group was Bacteroides, which contain a variety of antibiotic-resistant members. Overall, various antibiotic-resistant taxa were detected in the wastewater, indicating a concerning level of antibiotic resistance within the bacterial community. Therefore, eDNA analysis can be a valuable tool in monitoring and assessing the bacterial microbiome in wastewater, thus providing important information for the optimization and improvement of wastewater treatment systems and mitigate public health risks.
Collapse
Affiliation(s)
- Ross D Stewart
- Department of Biological and Agricultural Sciences, Sol Plaatje University, Kimberley, 8301, South Africa
| | - Abimbola E Oluwalana-Sanusi
- Department of Physical and Earth Sciences, Sol Plaatje University, Kimberley, 8301, South Africa
- Centre for Global Change, Sol Plaatje University, Kimberley, 8301, South Africa
| | - Wisdom A Munzeiwa
- Department of Physical and Earth Sciences, Sol Plaatje University, Kimberley, 8301, South Africa
| | - Luvo Magoswana
- National Herbarium, South African National Biodiversity Institute, Private Bag X101, Pretoria, South Africa
| | - Nhamo Chaukura
- Department of Physical and Earth Sciences, Sol Plaatje University, Kimberley, 8301, South Africa.
| |
Collapse
|
2
|
Serrano-Blanco S, Zan R, Harvey AP, Velasquez-Orta SB. Intensified microalgae production and development of microbial communities on suspended carriers and municipal wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122717. [PMID: 39383762 DOI: 10.1016/j.jenvman.2024.122717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/19/2024] [Accepted: 09/28/2024] [Indexed: 10/11/2024]
Abstract
Wastewater represents an alternative source of nutrients in which to grow microalgae, whilst improving the quality of the wastewater, and reducing the downstream treatment required. However, commercialisation of microalgal cultures for such duties faces a number of challenges, predominantly high cost and low productivity. Suspended-solid reactors (ssPBR) can reduce the operational costs, while promoting attached and suspended microalgae growth. In the present study, a novel approach was developed by integrating microalgal wastewater treatment with carrier systems to favour the growth of both attached and suspended cells of T. obliquus. This study found that T. obliquus was able to uptake nutrients from municipal wastewater, achieving removals of 99.3-99.9 % NH3-N, 54.5-88.5 % PO43- and 92.8-94.5 % DTC. The addition of a 12.5 % volumetric fill ratio of carriers in ssPBRs produced higher microalgal cell productivity (1.2·106 ± 2.5·105 cell ml-1 d-1) than the control (4.3·105 ± 2.8·105 cell ml-1 d-1). MinION nanopore sequencing was conducted to assess the impact of microalgal and carrier treatment on wastewater bacterial communities. It was found not only that bacterial communities had changed after the treatment but also the ones attached differed from the ones suspended. Untreated wastewater was characterised by the abundance of sewer bacteria genera such as Aliarcobacter and Arcobacter, whilst, after treatment, microbial communities were characterised by the presence of photosynthetic freshwater (Limnococcus, Stanieria) and bioremediation-like bacteria genera (Pseudomonas, Rheinheimera). In conclusion, the addition of 12.5 % fill carrier ratio increased microalgal productivity, while stimulating changes in the algal microbiome, and creating distinctly different populations in the free and attached environments.
Collapse
Affiliation(s)
| | - Rixia Zan
- Newcastle University, School of Engineering, Cassie Building, Newcastle Upon Tyne, UK
| | - Adam P Harvey
- Newcastle University, School of Engineering, Merz Court, Newcastle Upon Tyne, UK
| | | |
Collapse
|
3
|
Zeghal E, Vaksmaa A, van Bleijswijk J, Niemann H. Environmental factors control microbial colonization of plastics in the North Sea. MARINE POLLUTION BULLETIN 2024; 208:116964. [PMID: 39342912 DOI: 10.1016/j.marpolbul.2024.116964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/01/2024] [Accepted: 09/07/2024] [Indexed: 10/01/2024]
Abstract
Large quantities of plastic enter the oceans each year providing extensive attachment surfaces for marine microbes yet understanding their interactions and colonization of plastic debris remains limited. We investigated microbial colonization of various plastic types (polyethylene, polystyrene, polyethylene-terephthalate, and nylon) in ex-situ incubation experiments. Plastic films, both UV-pretreated and untreated, were exposed to seawater from a coastal and an offshore location in the North Sea. 16S rRNA amplicon sequencing was employed to assess microbial community structures after 5, 10, 30, and 45 days of incubation. Our findings show the significant influence of time, seawater origin and plastic type on microbial community succession. We also identified several genera associated with hydrocarbon or plastic degradation potential as well as genera selecting for specific plastics such as Ketobacter and Microbacterium. Our results highlight potential role of microorganisms in plastic biodegradation and support the idea that microbial colonizers on marine plastics debris seemingly select distinct substrate types.
Collapse
Affiliation(s)
- Emna Zeghal
- Royal Netherlands Institute for Sea Research (NIOZ), Department of Marine Microbiology and Biogeochemistry, the Netherlands.
| | - Annika Vaksmaa
- Royal Netherlands Institute for Sea Research (NIOZ), Department of Marine Microbiology and Biogeochemistry, the Netherlands
| | - Judith van Bleijswijk
- Royal Netherlands Institute for Sea Research (NIOZ), Department of Marine Microbiology and Biogeochemistry, the Netherlands
| | - Helge Niemann
- Royal Netherlands Institute for Sea Research (NIOZ), Department of Marine Microbiology and Biogeochemistry, the Netherlands; Faculty of Geosciences, Utrecht University, the Netherlands
| |
Collapse
|
4
|
Ye Q, Gao C, Xiao H, Ruan S, Wang Y, Li X, Chang Y, Zhao C, Wang H, Han B, Ding J. Feeding Behavior, Gut Microbiota, and Transcriptome Analysis Reveal Individual Growth Differences in the Sea Urchin Strongylocentrotus intermedius. BIOLOGY 2024; 13:705. [PMID: 39336132 PMCID: PMC11428599 DOI: 10.3390/biology13090705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024]
Abstract
Growth differentiation among farmed sea urchins (Strongylocentrotus intermedius) poses a significant challenge to aquaculture, with there being a limited understanding of the underlying molecular mechanisms. In this study, sea urchins with varying growth rates, reared under identical conditions, were analyzed for feeding behavior, gut microbiota, and transcriptomes. Large-sized sea urchins demonstrated significantly higher feeding ability and longer duration than smaller ones. The dominant phyla across all size groups were Campylobacterota, Proteobacteria, and Firmicutes, with Campylobacterota showing the highest abundance in small-sized sea urchins (82.6%). However, the families Lachnospiraceae and Pseudomonadaceae were significantly less prevalent in small-sized sea urchins. Transcriptome analysis identified 214, 544, and 732 differentially expressed genes (DEGs) in the large vs. medium, large vs. small, and medium vs. small comparisons, respectively. Gene Ontology and KEGG pathway analyses associated DEGs with key processes such as steroid biosynthesis, protein processing within the endoplasmic reticulum, and nucleotide sugar metabolism. Variations in phagosomes and signaling pathways indicated that size differences are linked to disparities in energy expenditure and stress responses. These findings provide a foundation for future investigations into the regulatory mechanisms underlying growth differences in S. intermedius and provide clues for the screening of molecular markers useful to improve sea urchin production.
Collapse
Affiliation(s)
- Qi Ye
- Key Laboratory of Mariculture and Stock Enhancement in North China's Sea (Ministry of Agriculture and Rural Affairs), Dalian Ocean University, Dalian 116023, China
| | - Chuang Gao
- Key Laboratory of Mariculture and Stock Enhancement in North China's Sea (Ministry of Agriculture and Rural Affairs), Dalian Ocean University, Dalian 116023, China
| | - Haoran Xiao
- Key Laboratory of Mariculture and Stock Enhancement in North China's Sea (Ministry of Agriculture and Rural Affairs), Dalian Ocean University, Dalian 116023, China
| | - Shuchao Ruan
- Key Laboratory of Mariculture and Stock Enhancement in North China's Sea (Ministry of Agriculture and Rural Affairs), Dalian Ocean University, Dalian 116023, China
| | - Yongjie Wang
- Key Laboratory of Mariculture and Stock Enhancement in North China's Sea (Ministry of Agriculture and Rural Affairs), Dalian Ocean University, Dalian 116023, China
| | - Xiaonan Li
- Key Laboratory of Mariculture and Stock Enhancement in North China's Sea (Ministry of Agriculture and Rural Affairs), Dalian Ocean University, Dalian 116023, China
| | - Yaqing Chang
- Key Laboratory of Mariculture and Stock Enhancement in North China's Sea (Ministry of Agriculture and Rural Affairs), Dalian Ocean University, Dalian 116023, China
| | - Chong Zhao
- Key Laboratory of Mariculture and Stock Enhancement in North China's Sea (Ministry of Agriculture and Rural Affairs), Dalian Ocean University, Dalian 116023, China
| | - Heng Wang
- Key Laboratory of Mariculture and Stock Enhancement in North China's Sea (Ministry of Agriculture and Rural Affairs), Dalian Ocean University, Dalian 116023, China
| | - Bing Han
- Key Laboratory of Mariculture and Stock Enhancement in North China's Sea (Ministry of Agriculture and Rural Affairs), Dalian Ocean University, Dalian 116023, China
| | - Jun Ding
- Key Laboratory of Mariculture and Stock Enhancement in North China's Sea (Ministry of Agriculture and Rural Affairs), Dalian Ocean University, Dalian 116023, China
| |
Collapse
|
5
|
Shibulal B, Smith MP, Cooper I, Burgess HM, Moles N, Willows A. Deciphering microbial communities involved in marine steel corrosion using high-throughput amplicon sequencing. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e70001. [PMID: 39189590 PMCID: PMC11348066 DOI: 10.1111/1758-2229.70001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 07/26/2024] [Indexed: 08/28/2024]
Abstract
To characterize the source and effects of bacterial communities on corrosion of intertidal structures, three different UK coastal sites were sampled for corrosion materials, sediment and seawater. Chemical analyses indicate the activity of sulfate-reducing microbes (SRBs) at 2 sites (Shoreham and Newhaven), but not at the third (Southend-on-Sea). Microbial communities in the deep sediment and corrosion samples are similar. The phylum Proteobacteria is dominant (40.4% of the total ASV), followed by Campilobacterota (11.3%), Desulfobacterota and Firmicutes (4%-5%). At lower taxonomic levels, corrosion causing bacteria, such as Shewanella sp. (6%), Colwellia sp. (7%) and Mariprofundus sp. (1%), are present. At Southend-on-sea, the relative abundance of Campilobacterota is higher compared to the other two sites. The mechanism of action of microorganisms at Shoreham and Newhaven involves biogenic sulfuric acid corrosion of iron by the combined action of SRBs and sulfur-oxidizing microbes. However, at Southend-on-sea, sulfur compounds are not implicated in corrosion, but SRBs and other electroactive microbes may play a role in which cathodic reactions (electrical MIC) and microbial enzymes (chemical MIC) are involved. To contribute to diagnosis of accelerated intertidal corrosion types, we developed a rapid identification method for SRBs using quantitative polymerase chain reaction high-resolution melt curve analysis of the dsrB gene.
Collapse
Affiliation(s)
- Biji Shibulal
- School of Applied SciencesUniversity of BrightonBrightonUK
| | | | - Ian Cooper
- School of Applied SciencesUniversity of BrightonBrightonUK
| | | | - Norman Moles
- School of Applied SciencesUniversity of BrightonBrightonUK
| | - Alison Willows
- School of Applied SciencesUniversity of BrightonBrightonUK
| |
Collapse
|
6
|
Li J, Xiang S, Li Y, Cheng R, Lai Q, Wang L, Li G, Dong C, Shao Z. Arcobacteraceae are ubiquitous mixotrophic bacteria playing important roles in carbon, nitrogen, and sulfur cycling in global oceans. mSystems 2024; 9:e0051324. [PMID: 38904399 PMCID: PMC11265409 DOI: 10.1128/msystems.00513-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 05/14/2024] [Indexed: 06/22/2024] Open
Abstract
Mixotrophy is an important trophic strategy for bacterial survival in the ocean. However, the global relevance and identity of the major mixotrophic taxa remain largely elusive. Here, we combined phylogenetic, metagenomic, and metatranscriptomic analyses to characterize ubiquitous Arcobacteraceae based on our deep-sea in situ incubations and the global data. The phylogenomic tree of Arcobacteraceae is divided into three large clades, among which members of clades A and B are almost all from terrestrial environments, while those of clade C are widely distributed in various marine habitats in addition to some terrestrial origins. All clades harbor genes putatively involved in chitin degradation, sulfide oxidation, hydrogen oxidation, thiosulfate oxidation, denitrification, dissimilatory nitrate reduction to ammonium, microaerophilic respiration, and metal (iron/manganese) reduction. Additionally, in clade C, more unique pathways were retrieved, including thiosulfate disproportionation, ethanol fermentation, methane oxidation, fatty acid oxidation, cobalamin synthesis, and dissimilatory reductions of sulfate, perchlorate, and arsenate. Within this clade, two mixotrophic Candidatus genera represented by UBA6211 and CAIJNA01 harbor genes putatively involved in the reverse tricarboxylic acid pathway for carbon fixation. Moreover, the metatranscriptomic data in deep-sea in situ incubations indicated that the latter genus is a mixotroph that conducts carbon fixation by coupling sulfur oxidation and denitrification and metabolizing organic matter. Furthermore, global metatranscriptomic data confirmed the ubiquitous distribution and global relevance of Arcobacteraceae in the expression of those corresponding genes across all oceanic regions and depths. Overall, these results highlight the contribution of previously unrecognized Arcobacteraceae to carbon, nitrogen, and sulfur cycling in global oceans.IMPORTANCEMarine microorganisms exert a profound influence on global carbon cycling and ecological relationships. Mixotrophy, characterized by the simultaneous utilization of both autotrophic and heterotrophic nutrition, has a significant impact on the global carbon cycling. This report characterizes a group of uncultivated bacteria Arcobacteraceae that thrived on the "hot time" of bulky particulate organic matter and exhibited mixotrophic strategy during the in situ organic mineralization. Compared with clades A and B, more unique metabolic pathways were retrieved in clade C, including the reverse tricarboxylic acid pathway for carbon fixation, thiosulfate disproportionation, methane oxidation, and fatty acid oxidation. Global metatranscriptomic data from the Tara Oceans expeditions confirmed the ubiquitous distribution and extensive transcriptional activity of Arcobacteraceae with the expression of genes putatively involved in carbon fixation, methane oxidation, multiple sulfur compound oxidation, and denitrification across all oceanic regions and depths.
Collapse
Affiliation(s)
- Jianyang Li
- Key Laboratory of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of Fujian Province, Third Institute of Oceanography, Ministry of Natural Resources of PR China, Xiamen, China
| | - Shizheng Xiang
- Key Laboratory of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of Fujian Province, Third Institute of Oceanography, Ministry of Natural Resources of PR China, Xiamen, China
| | - Yufei Li
- Key Laboratory of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of Fujian Province, Third Institute of Oceanography, Ministry of Natural Resources of PR China, Xiamen, China
| | - Ruolin Cheng
- Key Laboratory of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of Fujian Province, Third Institute of Oceanography, Ministry of Natural Resources of PR China, Xiamen, China
| | - Qiliang Lai
- Key Laboratory of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of Fujian Province, Third Institute of Oceanography, Ministry of Natural Resources of PR China, Xiamen, China
| | - Liping Wang
- Key Laboratory of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of Fujian Province, Third Institute of Oceanography, Ministry of Natural Resources of PR China, Xiamen, China
| | - Guizhen Li
- Key Laboratory of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of Fujian Province, Third Institute of Oceanography, Ministry of Natural Resources of PR China, Xiamen, China
| | - Chunming Dong
- Key Laboratory of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of Fujian Province, Third Institute of Oceanography, Ministry of Natural Resources of PR China, Xiamen, China
| | - Zongze Shao
- Key Laboratory of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of Fujian Province, Third Institute of Oceanography, Ministry of Natural Resources of PR China, Xiamen, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| |
Collapse
|
7
|
Dekić Rozman S, Puljko A, Karkman A, Virta M, Udiković-Kolić N. Bacterial hosts of clinically significant beta-lactamase genes in Croatian wastewaters. FEMS Microbiol Ecol 2024; 100:fiae081. [PMID: 38796694 PMCID: PMC11165274 DOI: 10.1093/femsec/fiae081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 05/02/2024] [Accepted: 05/24/2024] [Indexed: 05/28/2024] Open
Abstract
Wastewater treatment plants (WWTPs) provide a suitable environment for the interaction of antibiotic resistant bacteria and antibiotic-resistance genes (ARGs) from human, animal, and environmental sources. The aim was to study the influent and effluent of two WWTPs in Croatia to identify bacterial hosts of clinically important beta-lactamase genes (blaTEM, blaVIM, blaOXA-48-like) and observe how their composition changes during the treatment process. A culture-independent epicPCR (Emulsion, Paired isolation and Concatenation Polymerase Chain Reaction) was used to identify the ARG hosts, and 16S rRNA amplicon sequencing to study the entire bacterial community. Different wastewater sources contributed to the significant differences in bacterial composition of the wastewater between the two WWTPs studied. A total of 167 genera were detected by epicPCR, with the Arcobacter genus, in which all ARGs studied were present, dominating in both WWTPs. In addition, the clinically important genera Acinetobacter and Aeromonas contained all ARGs examined. The blaOXA-48-like gene had the highest number of hosts, followed by blaVIM, while blaTEM had the narrowest host range. Based on 16S rRNA gene sequencing, ARG hosts were detected in both abundant and rare taxa. The number of hosts carrying investigated ARGs was reduced by wastewater treatment. EpicPCR provided valuable insights into the bacterial hosts of horizontally transmissible beta-lactamase genes in Croatian wastewater.
Collapse
Affiliation(s)
- Svjetlana Dekić Rozman
- Department of Microbiology, University of Helsinki, Viikinkaari 9 00014 Helsinki, Finland
- Division for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička 54 10 000 Zagreb, Croatia
| | - Ana Puljko
- Division for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička 54 10 000 Zagreb, Croatia
| | - Antti Karkman
- Department of Microbiology, University of Helsinki, Viikinkaari 9 00014 Helsinki, Finland
| | - Marko Virta
- Department of Microbiology, University of Helsinki, Viikinkaari 9 00014 Helsinki, Finland
| | - Nikolina Udiković-Kolić
- Division for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička 54 10 000 Zagreb, Croatia
| |
Collapse
|
8
|
Isokpehi RD, Kim Y, Krejci SE, Trivedi VD. Ecological Trait-Based Digital Categorization of Microbial Genomes for Denitrification Potential. Microorganisms 2024; 12:791. [PMID: 38674735 PMCID: PMC11052009 DOI: 10.3390/microorganisms12040791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Microorganisms encode proteins that function in the transformations of useful and harmful nitrogenous compounds in the global nitrogen cycle. The major transformations in the nitrogen cycle are nitrogen fixation, nitrification, denitrification, anaerobic ammonium oxidation, and ammonification. The focus of this report is the complex biogeochemical process of denitrification, which, in the complete form, consists of a series of four enzyme-catalyzed reduction reactions that transforms nitrate to nitrogen gas. Denitrification is a microbial strain-level ecological trait (characteristic), and denitrification potential (functional performance) can be inferred from trait rules that rely on the presence or absence of genes for denitrifying enzymes in microbial genomes. Despite the global significance of denitrification and associated large-scale genomic and scholarly data sources, there is lack of datasets and interactive computational tools for investigating microbial genomes according to denitrification trait rules. Therefore, our goal is to categorize archaeal and bacterial genomes by denitrification potential based on denitrification traits defined by rules of enzyme involvement in the denitrification reduction steps. We report the integration of datasets on genome, taxonomic lineage, ecosystem, and denitrifying enzymes to provide data investigations context for the denitrification potential of microbial strains. We constructed an ecosystem and taxonomic annotated denitrification potential dataset of 62,624 microbial genomes (866 archaea and 61,758 bacteria) that encode at least one of the twelve denitrifying enzymes in the four-step canonical denitrification pathway. Our four-digit binary-coding scheme categorized the microbial genomes to one of sixteen denitrification traits including complete denitrification traits assigned to 3280 genomes from 260 bacteria genera. The bacterial strains with complete denitrification potential pattern included Arcobacteraceae strains isolated or detected in diverse ecosystems including aquatic, human, plant, and Mollusca (shellfish). The dataset on microbial denitrification potential and associated interactive data investigations tools can serve as research resources for understanding the biochemical, molecular, and physiological aspects of microbial denitrification, among others. The microbial denitrification data resources produced in our research can also be useful for identifying microbial strains for synthetic denitrifying communities.
Collapse
Affiliation(s)
| | - Yungkul Kim
- Oyster Microbiome Project, College of Science, Engineering and Mathematics, Bethune-Cookman University, Daytona Beach, FL 32114, USA; (S.E.K.); (V.D.T.)
| | | | | |
Collapse
|
9
|
González-Aravena M, Perrois G, Font A, Cárdenas CA, Rondon R. Microbiome profile of the Antarctic clam Laternula elliptica. Braz J Microbiol 2024; 55:487-497. [PMID: 38157148 PMCID: PMC10920576 DOI: 10.1007/s42770-023-01200-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 11/27/2023] [Indexed: 01/03/2024] Open
Abstract
The filter feeder clam Laternula elliptica is a key species in the Antarctic ecosystem. As a stenothermal benthic species, it has a poor capacity for adaptation to small temperature variations. Despite their ecological importance and sensitivity to climate change, studies on their microbiomes are lacking. The goal of this study was to characterize the bacterial communities of L. elliptica and the tissues variability of this microbiome to provide an initial insight of host-microbiota interactions. We investigated the diversity and taxonomic composition of bacterial communities of L. elliptica from five regions of the body using high-throughput 16S rRNA gene sequencing. The results showed that the microbiome of L. elliptica tended to differ from that of the surrounding seawater samples. However, there were no significant differences in the microbial composition between the body sites, and only two OTUs were present in all samples, being considered core microbiome (genus Moritella and Polaribacter). No significant differences were detected in diversity indexes among tissues (mean 626.85 for observed OTUs, 628.89 Chao1, 5.42 Shannon, and 0.87 Simpson). Rarefaction analysis revealed that most tissues reached a plateau of OTU number according to sample increase, with the exception of Siphon samples. Psychromonas and Psychrilyobacter were particularly abundant in L. elliptica whereas Fluviicola dominated seawater and siphons. Typical polar bacteria were Polaribacter, Shewanella, Colwellia, and Moritella. We detected the prevalence of pathogenic bacterial sequences, particularly in the family Arcobacteraceae, Pseudomonadaceae, and Mycoplasmataceae. The prokaryotic diversity was similar among tissues, as well as their taxonomic composition, suggesting a homogeneity of the microbiome along L. elliptica body. The Antarctic clam population can be used to monitor the impact of human activity in areas near Antarctic stations that discharge wastewater.
Collapse
Affiliation(s)
| | - Garance Perrois
- Departamento Científico, Instituto Antártico Chileno, Punta Arenas, Chile
- Tropical & Subtropical Research Center, Korea Institute of Ocean Science & Technology, Busan, Republic of Korea
| | - Alejandro Font
- Departamento Científico, Instituto Antártico Chileno, Punta Arenas, Chile
| | - César A Cárdenas
- Departamento Científico, Instituto Antártico Chileno, Punta Arenas, Chile
- Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Santiago, Chile
| | - Rodolfo Rondon
- Departamento Científico, Instituto Antártico Chileno, Punta Arenas, Chile.
| |
Collapse
|
10
|
Jacob J, Veras I, Calderόn O, Porter-Morgan HA, Tan J, Aguilar HE, Elkins WT, Martinez Castro VP, Fulton V, Yousri WK. Possibly pathogenic bacteria in aerosols and foams as a result of aeration remediation in a polluted urban waterway. Folia Microbiol (Praha) 2024; 69:235-246. [PMID: 37777646 PMCID: PMC10876779 DOI: 10.1007/s12223-023-01096-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 09/16/2023] [Indexed: 10/02/2023]
Abstract
Newtown Creek is a tributary of the Hudson River Estuary. It has a legacy of both industrial pollution and sewage pollution and has been designated a Superfund site. To ameliorate the chronically low levels of dissolved oxygen detected in the Creek, the New York City Department of Environmental Protection has been installing aerators. The abundance of various bacteria in the aerosols, foams, and water, at two sites in the Creek, was studied before, during, and after the aeration process. Additionally, aerosols and dispersed foams created by the aeration process were sampled and cultured to determine what unique taxa of bacteria could be grown and identified. Taxa including Actinobacteria and Firmicutes were prevalent in cultures taken from aerosols, whereas Gammaproteobacteria were prevalent in cultures taken from foam. Campylobacteria was found to have a significant presence in both samples taken after the aerators were turned off. These taxa include potentially pathogenic bacteria and are therefore of particular concern.
Collapse
Affiliation(s)
- Joby Jacob
- Natural Sciences Department, LaGuardia Community College, City University of New York, Long Island City, NY, USA.
| | - Ingrid Veras
- Natural Sciences Department, LaGuardia Community College, City University of New York, Long Island City, NY, USA
| | - Olga Calderόn
- Natural Sciences Department, LaGuardia Community College, City University of New York, Long Island City, NY, USA
| | - Holly A Porter-Morgan
- Natural Sciences Department, LaGuardia Community College, City University of New York, Long Island City, NY, USA
| | - Joshua Tan
- Natural Sciences Department, LaGuardia Community College, City University of New York, Long Island City, NY, USA
| | - Harry E Aguilar
- Natural Sciences Department, LaGuardia Community College, City University of New York, Long Island City, NY, USA
| | | | - Veronica P Martinez Castro
- Natural Sciences Department, LaGuardia Community College, City University of New York, Long Island City, NY, USA
| | - Vania Fulton
- Natural Sciences Department, LaGuardia Community College, City University of New York, Long Island City, NY, USA
| | - Wesam K Yousri
- Natural Sciences Department, LaGuardia Community College, City University of New York, Long Island City, NY, USA
| |
Collapse
|
11
|
Handler ER, Andersen SDJ, Gradinger R, McGovern M, Vader A, Poste AE. Seasonality in land-ocean connectivity and local processes control sediment bacterial community structure and function in a High Arctic tidal flat. FEMS Microbiol Ecol 2024; 100:fiad162. [PMID: 38111220 PMCID: PMC10799726 DOI: 10.1093/femsec/fiad162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 10/26/2023] [Accepted: 12/14/2023] [Indexed: 12/20/2023] Open
Abstract
Climate change is altering patterns of precipitation, cryosphere thaw, and land-ocean influxes, affecting understudied Arctic estuarine tidal flats. These transitional zones between terrestrial and marine systems are hotspots for biogeochemical cycling, often driven by microbial processes. We investigated surface sediment bacterial community composition and function from May to September along a river-intertidal-subtidal-fjord gradient. We paired metabarcoding of in situ communities with in vitro carbon-source utilization assays. Bacterial communities differed in space and time, alongside varying environmental conditions driven by local seasonal processes and riverine inputs, with salinity emerging as the dominant structuring factor. Terrestrial and riverine taxa were found throughout the system, likely transported with runoff. In vitro assays revealed sediment bacteria utilized a broader range of organic matter substrates when incubated in fresh and brackish water compared to marine water. These results highlight the importance of salinity for ecosystem processes in these dynamic tidal flats, with the highest potential for utilization of terrestrially derived organic matter likely limited to tidal flat areas (and times) where sediments are permeated by freshwater. Our results demonstrate that intertidal flats must be included in future studies on impacts of increased riverine discharge and transport of terrestrial organic matter on coastal carbon cycling in a warming Arctic.
Collapse
Affiliation(s)
- Eleanor R Handler
- Department of Arctic and Marine Biology, UiT – The Arctic University of Norway, Framstredet 39, 9019 Tromsø, Norway
- Department of Arctic Biology, The University Centre in Svalbard, P.O. Box 156, 9171 Longyearbyen, Norway
- Norwegian Institute for Water Research, Fram Centre for High North Research, Hjalmar Johansensgate 14, 9007 Tromsø, Norway
| | - Sebastian D J Andersen
- Department of Arctic and Marine Biology, UiT – The Arctic University of Norway, Framstredet 39, 9019 Tromsø, Norway
- Department of Arctic Biology, The University Centre in Svalbard, P.O. Box 156, 9171 Longyearbyen, Norway
- Norwegian Institute for Water Research, Fram Centre for High North Research, Hjalmar Johansensgate 14, 9007 Tromsø, Norway
| | - Rolf Gradinger
- Department of Arctic and Marine Biology, UiT – The Arctic University of Norway, Framstredet 39, 9019 Tromsø, Norway
| | - Maeve McGovern
- Department of Arctic and Marine Biology, UiT – The Arctic University of Norway, Framstredet 39, 9019 Tromsø, Norway
- Norwegian Institute for Water Research, Fram Centre for High North Research, Hjalmar Johansensgate 14, 9007 Tromsø, Norway
| | - Anna Vader
- Department of Arctic Biology, The University Centre in Svalbard, P.O. Box 156, 9171 Longyearbyen, Norway
| | - Amanda E Poste
- Department of Arctic and Marine Biology, UiT – The Arctic University of Norway, Framstredet 39, 9019 Tromsø, Norway
- Norwegian Institute for Water Research, Fram Centre for High North Research, Hjalmar Johansensgate 14, 9007 Tromsø, Norway
- Norwegian Institute for Nature Research, Fram Centre for High North Research, Hjalmar Johansensgate 14, 9007 Tromsø, Norway
| |
Collapse
|
12
|
Xin R, Zhang K, Yu D, Zhang Y, Ma Y, Niu Z. Cyanobacterial extracellular antibacterial substances could promote the spread of antibiotic resistance: impacts and reasons. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023; 25:2139-2147. [PMID: 37947439 DOI: 10.1039/d3em00306j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Many studies have shown that antibiotic resistance genes (ARGs) can be facilitated by a variety of antibacterial substances. Cyanobacteria are photosynthetic bacteria that are widely distributed in the ocean. Some extracellular substances produced by marine cyanobacteria have been found to possess antibacterial activity. However, the impact of these extracellular substances on ARGs is unclear. Therefore, we established groups of seawater microcosms that contained different concentrations (1000, 100, 10, 1, 0.1, 0.01, and 0 μg mL-1) of cyanobacterial extracellular substances (CES), and tracked the changes of 17 types of ARGs, the integron gene (intI1), as well as the bacterial community at different time points. The results showed that CES could enrich most ARGs (15/17) in the initial stage, particularly at low concentrations (10 and 100 μg mL-1). The correlation analysis showed a positive correlation between several ARGs and intI1. It is suggested that the abundance of intI1 increased with CES may contribute to the changes of these ARGs, and co-resistance of CES may be the underlying reason for the similar variation pattern of some ARGs. Moreover, the results of qPCR and high-throughput sequencing of 16S rRNA showed that CES had an inhibitory impact on the growth of bacterial communities. High concentrations of CES were found to alter the structure of bacterial communities. Co-occurrence networks showed that bacteria elevated in the high concentration group of CES and might serve as the potential hosts for a variety of ARGs. In general, marine cyanobacteria could play an important role in the global dissemination of ARGs and antibiotic-resistant bacteria (ARBs).
Collapse
Affiliation(s)
- Rui Xin
- School of Marine Science and Technology, Tianjin University, Tianjin 300072, China.
| | - Kai Zhang
- Henan Key Laboratory for Synergistic Prevention of Water and Soil Environmental Pollution, School of Geographic Sciences, Xinyang Normal University, Xinyang 464000, China
| | - Dongjin Yu
- School of Marine Science and Technology, Tianjin University, Tianjin 300072, China.
| | - Ying Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yongzheng Ma
- School of Marine Science and Technology, Tianjin University, Tianjin 300072, China.
| | - Zhiguang Niu
- School of Marine Science and Technology, Tianjin University, Tianjin 300072, China.
- The International Joint Institute of Tianjin University, Fuzhou 350207, China
| |
Collapse
|
13
|
Lobiuc A, Pavăl NE, Dimian M, Covașă M. Nanopore Sequencing Assessment of Bacterial Pathogens and Associated Antibiotic Resistance Genes in Environmental Samples. Microorganisms 2023; 11:2834. [PMID: 38137978 PMCID: PMC10745997 DOI: 10.3390/microorganisms11122834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/07/2023] [Accepted: 11/17/2023] [Indexed: 12/24/2023] Open
Abstract
As seen in earlier and present pandemics, monitoring pathogens in the environment can offer multiple insights on their spread, evolution, and even future outbreaks. The present paper assesses the opportunity to detect microbial pathogens and associated antibiotic resistance genes, in relation to specific pathogen sources, by using nanopore sequencing in municipal waters and wastewaters in Romania. The main results indicated that waters collecting effluents from a meat processing facility exhibit altered communities' diversity and abundance, with reduced values (101-108 and 0.86-0.91) of Chao1 and, respectively, Simpson diversity indices and Campylobacterales as main order, compared with other types of municipal waters where the same diversity index had much higher values of 172-214 and 0.97-0.98, and Burkholderiaceae and Pseudomonadaceae were the most abundant families. Moreover, the incidence and type of antibiotic resistance genes were significantly influenced by the proximity of antibiotic sources, with either tetracycline (up to 45% of total reads) or neomycin, streptomycin and tobramycin (up to 3.8% total reads) resistance incidence being shaped by the sampling site. As such, nanopore sequencing proves to be an easy-to-use, accessible molecular technique for environmental pathogen surveillance and associated antibiotic resistance genes.
Collapse
Affiliation(s)
- Andrei Lobiuc
- Department of Biomedical Sciences, Faculty of Medicine and Biological Sciences, “Ştefan cel Mare” University, 720229 Suceava, Romania; (N.-E.P.); (M.C.)
| | - Naomi-Eunicia Pavăl
- Department of Biomedical Sciences, Faculty of Medicine and Biological Sciences, “Ştefan cel Mare” University, 720229 Suceava, Romania; (N.-E.P.); (M.C.)
| | - Mihai Dimian
- Department of Computers, Electronics and Automation, Stefan cel Mare University of Suceava, 720229 Suceava, Romania;
| | - Mihai Covașă
- Department of Biomedical Sciences, Faculty of Medicine and Biological Sciences, “Ştefan cel Mare” University, 720229 Suceava, Romania; (N.-E.P.); (M.C.)
| |
Collapse
|
14
|
Xiao CH, Meng XZ, Li BX, Gao HW. A systematic review and meta-analysis of pollutants in environmental media. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:113205-113217. [PMID: 37858014 DOI: 10.1007/s11356-023-30347-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 10/04/2023] [Indexed: 10/21/2023]
Abstract
Environmental pollutants are ubiquitous in our environmental media, resulting in detrimental impacts on both humans and the environment. An evidence-based review, particularly a systematic review and meta-analysis, performs a crucial function in assessing the pollution status of pollutants in environmental media at national and global scales. We selected and thoroughly investigated 76 papers focusing on systematic reviews and meta-analyses of contaminants in environmental media. The need to broaden the scope of studies was observed with an increase in the total number of publications, and there were greater focuses on food safety, water pollution, biological pollution, and environmental risks. Furthermore, this review outlined the fundamental procedures involved in a systematic review and meta-analysis, including literature searching, screening of articles, study quality analysis, data extraction and synthesis, and meta-analysis. A meta-analysis typically comprises fixed- and/or random-effects meta-analysis, identifying and measuring heterogeneity, sensitivity analysis, publication bias, subgroup analysis, and meta-regression. We specifically explored the application of meta-analysis to assess the presence of contaminants in environmental media based on two different pollutant categories, namely, non-biological and biological pollutants. The mean value is commonly utilized to assess the pooled concentration of non-biological pollutants, while the prevalence serves as the effect size of biological pollutants. Additionally, we summarized the innovative applications, frequent misuses, and problems encountered in systematic reviews and meta-analyses. Finally, we proposed several suggestions for future research endeavors.
Collapse
Affiliation(s)
- Chun-Hong Xiao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Xiang-Zhou Meng
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
- Jiaxing-Tongji Environmental Research Institute, 1994 Linggongtang Road, Jiaxing, 314051, Zhejiang Province, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Ben-Xiang Li
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Hong-Wen Gao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
15
|
Barosa B, Ferrillo A, Selci M, Giardina M, Bastianoni A, Correggia M, di Iorio L, Bernardi G, Cascone M, Capuozzo R, Intoccia M, Price R, Vetriani C, Cordone A, Giovannelli D. Mapping the microbial diversity associated with different geochemical regimes in the shallow-water hydrothermal vents of the Aeolian archipelago, Italy. Front Microbiol 2023; 14:1134114. [PMID: 37637107 PMCID: PMC10452888 DOI: 10.3389/fmicb.2023.1134114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 07/25/2023] [Indexed: 08/29/2023] Open
Abstract
Shallow-water hydrothermal vents are unique marine environments ubiquitous along the coast of volcanically active regions of the planet. In contrast to their deep-sea counterparts, primary production at shallow-water vents relies on both photoautotrophy and chemoautotrophy. Such processes are supported by a range of geochemical regimes driven by different geological settings. The Aeolian archipelago, located in the southern Tyrrhenian sea, is characterized by intense hydrothermal activity and harbors some of the best sampled shallow-water vents of the Mediterranean Sea. Despite this, the correlation between microbial diversity, geochemical regimes and geological settings of the different volcanic islands of the archipelago is largely unknown. Here, we report the microbial diversity associated with six distinct shallow-water hydrothermal vents of the Aeolian Islands using a combination of 16S rRNA amplicon sequencing along with physicochemical and geochemical measurements. Samples were collected from biofilms, fluids and sediments from shallow vents on the islands of Lipari, Panarea, Salina, and Vulcano. Two new shallow vent locations are described here for the first time. Our results show the presence of diverse microbial communities consistent in their composition with the local geochemical regimes. The shallow water vents of the Aeolian Islands harbor highly diverse microbial community and should be included in future conservation efforts.
Collapse
Affiliation(s)
- Bernardo Barosa
- Department of Biology, University of Naples “Federico II”, Naples, Italy
| | | | - Matteo Selci
- Department of Biology, University of Naples “Federico II”, Naples, Italy
| | - Marco Giardina
- Department of Biology, University of Naples “Federico II”, Naples, Italy
| | - Alessia Bastianoni
- Department of Biology, University of Naples “Federico II”, Naples, Italy
| | - Monica Correggia
- Department of Biology, University of Naples “Federico II”, Naples, Italy
| | - Luciano di Iorio
- Department of Biology, University of Naples “Federico II”, Naples, Italy
| | | | - Martina Cascone
- Department of Biology, University of Naples “Federico II”, Naples, Italy
| | - Rosaria Capuozzo
- Department of Biology, University of Naples “Federico II”, Naples, Italy
| | - Michele Intoccia
- Department of Biology, University of Naples “Federico II”, Naples, Italy
| | - Roy Price
- School of Marine and Atmospheric Sciences, Stony Brook, NY, United States
| | - Costantino Vetriani
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, United States
- Department of Marine and Coastal Science, Rutgers University, New Brunswick, NJ, United States
| | - Angelina Cordone
- Department of Biology, University of Naples “Federico II”, Naples, Italy
| | - Donato Giovannelli
- Department of Biology, University of Naples “Federico II”, Naples, Italy
- Department of Marine and Coastal Science, Rutgers University, New Brunswick, NJ, United States
- Istituto per le Risorse Biologiche e Biotecnologiche Marine, Consiglio Nazionale Delle Ricerche, CNR-IRBIM, Ancona, Italy
- Earth-Life Science Institute, Tokyo Institute of Technology, Ookayama, Tokyo, Japan
- Marine Chemistry and Geochemistry Department–Woods Hole Oceanographic Institution, Woods Hole, MA, United States
| |
Collapse
|
16
|
Gupta A, Dutt V, Sharma N, Kajale S, Bhatt A, Shafi S, Azhar E, Zumla A, Sharma A. Examining the microbial composition of natural springs in Bhaderwah, Jammu and Kashmir, India. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:949. [PMID: 37450062 DOI: 10.1007/s10661-023-11507-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 06/10/2023] [Indexed: 07/18/2023]
Abstract
Natural springs are the main source of water supply for domestic and agricultural use for humans living in the mountainous regions of Asia. Increasing anthropogenic activities with associated waste load, coupled with inadequate sanitation, and contamination of natural water resources and the environment are emerging as important public health issues. We performed a prospective microbiological and physicochemical investigation of water samples from seven distinct natural springs situated at an altitude of 1615 m in the Bhaderwah region of Jammu and Kashmir, India. Bacterial groups belonging to opportunistic pathogens such as members of Moraxellaceae (Acinetobacter), Arcobacteraceae (Pseudoarcobacter), Pseudomonadaceae (Pseudomonas), Oxalobacteraceae (Massilia), and Flavobacteriaceae (Flavobacterium) were observed. The total coliform test indicated an intermediate level of risk of fecal contamination of the springs, except for one site. Through a questionnaire-based survey of the local population, we discovered that around 40% of participants had suffered from waterborne diseases including typhoid (~14%) and diarrhea (~11%). Our data suggests that increased surveillance of fecal contamination and heterotrophic opportunistic pathogens is needed to enhance water quality and reduce health risks for people living in mountainous regions.
Collapse
Affiliation(s)
- Abhishek Gupta
- National Centre for Microbial Resource, National Centre for Cell Science, Pune, India
| | - Vandana Dutt
- Institute of Mountain Environment, University of Jammu, Bhaderwah Campus, Jammu and Kashmir, India
| | - Neeraj Sharma
- Institute of Mountain Environment, University of Jammu, Bhaderwah Campus, Jammu and Kashmir, India.
| | - Swapnil Kajale
- National Centre for Microbial Resource, National Centre for Cell Science, Pune, India
| | - Arun Bhatt
- GB Pant Institute of Engineering and Technology, Garhwal, Uttarakhand, India
| | - Shuja Shafi
- Mass Gatherings and Global Health Network, London, UK
| | - Esam Azhar
- Special Infectious Agents Unit, King Fahd Medical Research Center, and Medical Laboratory Sciences Department, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Alimuddin Zumla
- Division of Infection and Immunity, NIHR Biomedical Research Centre, UCL Hospitals NHS Foundation Trust, University College London, London, UK
| | - Avinash Sharma
- National Centre for Microbial Resource, National Centre for Cell Science, Pune, India.
| |
Collapse
|
17
|
Leão I, Khalifa L, Gallois N, Vaz-Moreira I, Klümper U, Youdkes D, Palmony S, Dagai L, Berendonk TU, Merlin C, Manaia CM, Cytryn E. Microbiome and Resistome Profiles along a Sewage-Effluent-Reservoir Trajectory Underline the Role of Natural Attenuation in Wastewater Stabilization Reservoirs. Appl Environ Microbiol 2023; 89:e0017023. [PMID: 37199629 PMCID: PMC10304787 DOI: 10.1128/aem.00170-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/24/2023] [Indexed: 05/19/2023] Open
Abstract
Antibiotic-resistant bacteria and antibiotic resistance gene (ARGs) loads dissipate through sewage treatment plants to receiving aquatic environments, but the mechanisms that mitigate the spread of these ARGs are not well understood due to the complexity of full-scale systems and the difficulty of source tracking in downstream environments. To overcome this problem, we targeted a controlled experimental system comprising a semicommercial membrane-aerated bioreactor (MABR), whose effluents fed a 4,500-L polypropylene basin that mimicked effluent stabilization reservoirs and receiving aquatic ecosystems. We analyzed a large set of physicochemical measurements, concomitant with the cultivation of total and cefotaxime-resistant Escherichia coli, microbial community analyses, and quantitative PCR (qPCR)/digital droplet PCR (ddPCR) quantification of selected ARGs and mobile genetic elements (MGEs). The MABR removed most of the sewage-derived organic carbon and nitrogen, and simultaneously, E. coli, ARG, and MGE levels dropped by approximately 1.5- and 1.0-log unit mL-1, respectively. Similar levels of E. coli, ARGs, and MGEs were removed in the reservoir, but interestingly, unlike in the MABR, the relative abundance (normalized to 16S rRNA gene-inferred total bacterial abundance) of these genes also decreased. Microbial community analyses revealed the substantial shifts in bacterial and eukaryotic community composition in the reservoir relative to the MABR. Collectively, our observations lead us to conclude that the removal of ARGs in the MABR is mainly a consequence of treatment-facilitated biomass removal, whereas in the stabilization reservoir, mitigation is linked to natural attenuation associated with ecosystem functioning, which includes abiotic parameters, and the development of native microbiomes that prevent the establishment of wastewater-derived bacteria and associated ARGs. IMPORTANCE Wastewater treatment plants are sources of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs), which can contaminate receiving aquatic environments and contribute to antibiotic resistance. We focused on a controlled experimental system comprising a semicommercial membrane-aerated bioreactor (MABR) that treated raw sewage, whose effluents fed a 4,500-L polypropylene basin that mimicked effluent stabilization reservoirs. We evaluated ARB and ARG dynamics across the raw-sewage-MABR-effluent trajectory, concomitant with evaluation of microbial community composition and physicochemical parameters, in an attempt to identify mechanisms associated with ARB and ARG dissipation. We found that removal of ARB and ARGs in the MABR was primarily associated with bacterial death or sludge removal, whereas in the reservoir it was attributed to the inability of ARBs and associated ARGs to colonize the reservoir due to a dynamic and persistent microbial community. The study demonstrates the importance of ecosystem functioning in removing microbial contaminants from wastewater.
Collapse
Affiliation(s)
- Inês Leão
- Universidade Católica Portuguesa, Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
| | - Leron Khalifa
- Institute of Soil, Water and Environmental Sciences, Volcani Institute, Agricultural Research Organization, Rishon-Lezion, Israel
| | | | - Ivone Vaz-Moreira
- Universidade Católica Portuguesa, Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
| | - Uli Klümper
- Technische Universität Dresden, Institute of Hydrobiology, Dresden, Germany
| | - Daniel Youdkes
- Institute of Soil, Water and Environmental Sciences, Volcani Institute, Agricultural Research Organization, Rishon-Lezion, Israel
| | | | | | | | | | - Célia M. Manaia
- Universidade Católica Portuguesa, Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
| | - Eddie Cytryn
- Institute of Soil, Water and Environmental Sciences, Volcani Institute, Agricultural Research Organization, Rishon-Lezion, Israel
| |
Collapse
|
18
|
Ramatla T, Ramaili T, Lekota KE, Ndou R, Mphuti N, Bezuidenhout C, Thekisoe O. A systematic review and meta-analysis on prevalence and antimicrobial resistance profile of Escherichia coli isolated from water in africa (2000-2021). Heliyon 2023; 9:e16123. [PMID: 37274713 PMCID: PMC10238873 DOI: 10.1016/j.heliyon.2023.e16123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 04/22/2023] [Accepted: 05/06/2023] [Indexed: 06/06/2023] Open
Abstract
Water is essential for the survival of humans, animals and plants. Numerous research has been conducted on the prevalence and antibiotic resistance of Escherichia coli (E. coli) in water from various African countries, however, there is lack of comprehensive analysis of published literature. We conducted a systematic review and meta-analysis following the PRISMA guidelines where articles published in English language between January 2000 and March 2022 were searched from ScienceDirect, PubMed, Google Scholar, Scopus, African Journal Online (AJO), and Africa Index Medicus (AIM). Comprehensive Meta-Analysis (CMA) Ver 3.0 software was used to analyze the data. The pooled prevalence estimate (PPE) with 95% confidence interval was calculated using the random-effects model (CI). The overall PPE and antimicrobial resistance trends of E. coli isolated from water was screened from 4009 isolates which were isolated from 2586 samples. We extracted data from 17 studies including drinking water (n = 6), rivers (n = 5), wastewaters (n = 4) and wastewater/river (n = 1) which are all covering 27 countries in Africa with 3438 isolates. The PPE of E. coli in water was 71.7% (0.717; 95% CI: 0.562-0.833). The highest PPE antibiotic resistance was against penicillin followed by erythromycin, and ampicilin with resistance rates of 93.4%, 92.3%, and 69.4%, respectively. This systematic review provides critical evidence of E. coli consolidated prevalence and antibiotic resistance profiles, as well as regions where future studies and enhanced reporting could be beneficial in the African continent.
Collapse
Affiliation(s)
- Tsepo Ramatla
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, 2531, South Africa
| | - Taole Ramaili
- Department of Animal Health, School of Agriculture, North-West University, Private Bag X2046, Mmabatho, 2735, South Africa
| | - Kgaugelo E. Lekota
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, 2531, South Africa
| | - Rendani Ndou
- Department of Animal Health, School of Agriculture, North-West University, Private Bag X2046, Mmabatho, 2735, South Africa
| | - Nthabiseng Mphuti
- Department of Animal Health, School of Agriculture, North-West University, Private Bag X2046, Mmabatho, 2735, South Africa
| | - Carlos Bezuidenhout
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, 2531, South Africa
| | - Oriel Thekisoe
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, 2531, South Africa
| |
Collapse
|
19
|
Uljanovas D, Gölz G, Fleischmann S, Kudirkiene E, Kasetiene N, Grineviciene A, Tamuleviciene E, Aksomaitiene J, Alter T, Malakauskas M. Genomic Characterization of Arcobacter butzleri Strains Isolated from Various Sources in Lithuania. Microorganisms 2023; 11:1425. [PMID: 37374927 DOI: 10.3390/microorganisms11061425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/09/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
Arcobacter (A.) butzleri, the most widespread species within the genus Arcobacter, is considered as an emerging pathogen causing gastroenteritis in humans. Here, we performed a comparative genome-wide analysis of 40 A. butzleri strains from Lithuania to determine the genetic relationship, pangenome structure, putative virulence, and potential antimicrobial- and heavy-metal-resistance genes. Core genome single nucleotide polymorphism (cgSNP) analysis revealed low within-group variability (≤4 SNPs) between three milk strains (RCM42, RCM65, RCM80) and one human strain (H19). Regardless of the type of input (i.e., cgSNPs, accessory genome, virulome, resistome), these strains showed a recurrent phylogenetic and hierarchical grouping pattern. A. butzleri demonstrated a relatively large and highly variable accessory genome (comprising of 6284 genes with around 50% of them identified as singletons) that only partially correlated to the isolation source. Downstream analysis of the genomes resulted in the detection of 115 putative antimicrobial- and heavy-metal-resistance genes and 136 potential virulence factors that are associated with the induction of infection in host (e.g., cadF, degP, iamA), survival and environmental adaptation (e.g., flagellar genes, CheA-CheY chemotaxis system, urease cluster). This study provides additional knowledge for a better A. butzleri-related risk assessment and highlights the need for further genomic epidemiology studies in Lithuania and other countries.
Collapse
Affiliation(s)
- Dainius Uljanovas
- Department of Food Safety and Quality, Faculty of Veterinary Medicine, Veterinary Academy, Lithuanian University of Health Sciences, Tilzes St. 18, LT-47181 Kaunas, Lithuania
| | - Greta Gölz
- Institute of Food Safety and Food Hygiene, Freie Universität Berlin, Königsweg 69, 14163 Berlin, Germany
| | - Susanne Fleischmann
- Institute of Food Safety and Food Hygiene, Freie Universität Berlin, Königsweg 69, 14163 Berlin, Germany
| | - Egle Kudirkiene
- Statens Serum Institut, Artillerivej 5, DK-2300 Copenhagen, Denmark
| | - Neringa Kasetiene
- Department of Food Safety and Quality, Faculty of Veterinary Medicine, Veterinary Academy, Lithuanian University of Health Sciences, Tilzes St. 18, LT-47181 Kaunas, Lithuania
| | - Audrone Grineviciene
- Kaunas Clinical Hospital Microbiology Laboratory, Medical Academy, Lithuanian University of Health Sciences, Josvainiu St. 2, LT-47144 Kaunas, Lithuania
| | - Egle Tamuleviciene
- Department of Pediatrics, Medical Academy, Lithuanian University of Health Sciences, Eiveniu St. 2, LT-50161 Kaunas, Lithuania
| | - Jurgita Aksomaitiene
- Department of Food Safety and Quality, Faculty of Veterinary Medicine, Veterinary Academy, Lithuanian University of Health Sciences, Tilzes St. 18, LT-47181 Kaunas, Lithuania
| | - Thomas Alter
- Institute of Food Safety and Food Hygiene, Freie Universität Berlin, Königsweg 69, 14163 Berlin, Germany
| | - Mindaugas Malakauskas
- Department of Food Safety and Quality, Faculty of Veterinary Medicine, Veterinary Academy, Lithuanian University of Health Sciences, Tilzes St. 18, LT-47181 Kaunas, Lithuania
| |
Collapse
|
20
|
Barel M, Yildirim Y. Arcobacter species isolated from various seafood and water sources; virulence genes, antibiotic resistance genes and molecular characterization. World J Microbiol Biotechnol 2023; 39:183. [PMID: 37147408 DOI: 10.1007/s11274-023-03547-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/11/2023] [Indexed: 05/07/2023]
Abstract
Arcobacter spp. has gained clinical significance as an emerging diarrheagenic pathogen associated with water reservoirs in recent years. The complete clinical significance of Arcobacter remains rather speculative due to the virulence and antibiotic susceptibility of individual strains. This study aimed to assess the prevalence of Arcobacter spp. in fish, water, and shellfish. A total of 150 samples were collected from the Adana, Kayseri and Kahramanmaras provinces in Turkey. Arcobacter spp. was isolated from 32 (21%) of the 150 samples. The most prevalent species was A. cryaerophilus, 17 (56%), A. butzleri 13 (37%) and A. lacus 2 (6%). As a result, the ratios of the mviN, irgA, pldA, tlyA and hecA target genes were found as 17 (51%), 1 (3%), 7 (23%), 7 (23%), 1 (3%), respectively. While bla OXA-61, tetO and tetW were positive in all isolates, were found as mcr1/2/6, mcr3/7, and mcr5, genes %37.5, %25, and %34.3, respectively. Although in A. butzleri was found 10 (58%), 1 (3%), 3 (43%), 2 (28%) (mviN, irgA, pldA, and tlyA, respectively) virulence genes 7 (42%), 4 (57%), 5 (72%), 1 (3%) was found (mviN, irgA, tlyA, and hecA, respectively) virulence genes in A. cryoaerophilus. Moreover, was found for the mcr 1/2/6 7 (58%) genes, for the mcr 3/7 genes 3 (38%) in A. butzleri. In A. cryoaerophilus was found for the mcr 1/2/6 genes 5 (42%), for the mcr 3/7 genes 5 (62%), and for the mcr 5 gene 10 (100%). Thus, the current study indicated that the existence of Arcobacter spp. isolated from fish and mussel samples may pose a potential risk to public health.
Collapse
Affiliation(s)
- Mukaddes Barel
- Veterinary Faculty, Department of Public Health, Erciyes University, Kayseri, Turkey.
| | - Yeliz Yildirim
- Veterinary Faculty, Department of Public Health, Erciyes University, Kayseri, Turkey
| |
Collapse
|
21
|
He H, Carlson AL, Nielsen PH, Zhou J, Daigger GT. Comparative analysis of floc characteristics and microbial communities in anoxic and aerobic suspended growth processes. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2022; 94:e10822. [PMID: 36544219 PMCID: PMC10107865 DOI: 10.1002/wer.10822] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/10/2022] [Accepted: 11/21/2022] [Indexed: 06/09/2023]
Abstract
A fully anoxic suspended growth process is an appealing alternative to conventional activated sludge (AS) due to considerable aeration reduction and improved carbon processing efficiency for biological nutrient removal (BNR). With development of the hybrid membrane aerated biofilm reactor (MABR) technology, implementation of a fully anoxic suspended growth community in BNR facilities became practical. To better understand potential limitations with the elimination of aeration, we carried out microscopic examination and 16S rRNA gene-based microbial community profiling to determine how an anoxic suspended growth would differ from the conventional aerobic process in floc characteristics, microbial diversity, microbial temporal dynamics, and community assembly pattern. Fewer filamentous populations were found in the anoxic mixed liquor, suggesting easily sheared flocs. The anoxic microbial community had distinct composition and structure, but its diversity and temporal dynamics were similar to the conventional aerobic community. A variety of well-studied functional guilds were also identified in the anoxic community. The anoxic microbial community assembly was more stochastic than the conventional aerobic community, but deterministic assembly was still significant with a large core microbiome adapted to the anoxic condition. PRACTITIONER POINTS: Flocs developed under the anoxic conditions had less filamentous backbones, implying reduced flocculation capacity and easily sheared flocs. Knowledge about the ecophysiology of Thauera, Thiothrix, and Trichococcus can help achieve good properties of the anoxic flocs. A diverse microbial community sustainably adapted to the fully anoxic condition, containing a variety of filaments, denitrifiers, and PAOs. The anoxic microbial community displayed a similar degree of diversity and temporal dynamics compared to the aerobic counterpart. The anoxic community's assembly was more stochastic, so it may be less subject to changes in environmental variables.
Collapse
Affiliation(s)
- Huanqi He
- Department of Civil and Environmental EngineeringUniversity of MichiganAnn ArborMichiganUSA
| | - Avery L. Carlson
- Department of Civil and Environmental EngineeringUniversity of MichiganAnn ArborMichiganUSA
| | - Per Halkjær Nielsen
- Center for Microbial Communities, Department of Chemistry and BioscienceAalborg UniversityAalborgDenmark
| | - Jizhong Zhou
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, School of Civil Engineering and Environmental Sciences, and School of Computer ScienceUniversity of OklahomaNormanOklahomaUSA
| | - Glen T. Daigger
- Department of Civil and Environmental EngineeringUniversity of MichiganAnn ArborMichiganUSA
| |
Collapse
|
22
|
Ramatla T, Tawana M, Mphuthi MBN, Onyiche TE, Lekota KE, Monyama MC, Ndou R, Bezuidenhout C, Thekisoe O. Prevalence and antimicrobial resistance profiles of Campylobacter species in South Africa: a "One Health" approach using systematic review and meta-analysis. Int J Infect Dis 2022; 125:294-304. [PMID: 36336247 DOI: 10.1016/j.ijid.2022.10.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/28/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022] Open
Abstract
OBJECTIVES This study investigated the prevalence and antibiotic resistance (AR) profiles of Campylobacter spp. isolated from animals, humans, and the environment in South Africa based on available published data. METHODS Original articles published from January 1, 1990 to January 1, 2021 were searched from PubMed, ScienceDirect, Google Scholar, Africa Index Medicus, Scopus, and African Journal Online databases. Data were analyzed with Comprehensive Meta-Analysis (version 3.0). RESULTS After screening, articles on animals (n = 25), humans (n = 7), environment (n = 3), animals/environment (n = 2), and a (n = 1) study on animals, humans, and the environment were included in this review. The pooled prevalence estimates (PPEs) were 28.8%, 16.4%, and 28.4% in animals, humans, and the environment, respectively. The Campylobacter jejuni and Campylobacter coli species were commonly isolated from humans, animals, and the environment in South Africa. The AR profiles were screened from 2032 Campylobacter spp., with the highest PPE of AR observed against clindamycin (76.9%) and clarithromycin (76.5%). Campylobacter isolates tested with the disk diffusion assay and minimum inhibitory concentration methods recorded an overall AR prevalence of 35.3% and 37.1%, respectively, whereas multidrug resistance PPE was 35.3%. CONCLUSION Regular surveillance of Campylobacter spp. prevalence and its antimicrobial resistance strains is recommended, as well as the formulation of a "One Health" approach for better management and control of Campylobacter spp. infection in South Africa.
Collapse
Affiliation(s)
- Tsepo Ramatla
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Mpho Tawana
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Malekoba B N Mphuthi
- Department of Animal Health, School of Agriculture, North-West University, Mmabatho, South Africa
| | - ThankGod E Onyiche
- Department of Veterinary Parasitology and Entomology, University of Maiduguri, Maiduguri, Nigeria
| | - Kgaugelo E Lekota
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Maropeng C Monyama
- Department of Life and Consumer Sciences, University of South Africa, Florida, South Africa
| | - Rendani Ndou
- Department of Animal Health, School of Agriculture, North-West University, Mmabatho, South Africa
| | - Carlos Bezuidenhout
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Oriel Thekisoe
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| |
Collapse
|
23
|
Lascu I, Locovei C, Bradu C, Gheorghiu C, Tanase AM, Dumitru A. Polyaniline-Derived Nitrogen-Containing Carbon Nanostructures with Different Morphologies as Anode Modifier in Microbial Fuel Cells. Int J Mol Sci 2022; 23:11230. [PMID: 36232531 PMCID: PMC9569864 DOI: 10.3390/ijms231911230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/08/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Anode modification with carbon nanomaterials is an important strategy for the improvement of microbial fuel cell (MFC) performance. The presence of nitrogen in the carbon network, introduced as active nitrogen functional groups, is considered beneficial for anode modification. In this aim, nitrogen-containing carbon nanostructures (NCNs) with different morphologies were obtained via carbonization of polyaniline and were further investigated as anode modifiers in MFCs. The present study investigates the influence of NCN morphology on the changes in the anodic microbial community and MFC performance. Results show that the nanofibrillar morphology of NCNs is beneficial for the improvement of MFC performance, with a maximum power density of 40.4 mW/m2, 1.25 times higher than the anode modified with carbonized polyaniline with granular morphology and 2.15 times higher than MFC using the carbon cloth-anode. The nanofibrillar morphology, due to the well-defined individual nanofibers separated by microgaps and micropores and a better organization of the carbon network, leads to a larger specific surface area and higher conductivity, which can allow more efficient substrate transport and better bacterial colonization with greater relative abundances of Geobacter and Thermoanaerobacter, justifying the improvement of MFC performance.
Collapse
Affiliation(s)
- Irina Lascu
- Faculty of Biology, University of Bucharest, Splaiul Independenței 91–95, 050095 Bucharest, Romania
| | - Claudiu Locovei
- Faculty of Physics, University of Bucharest, P.O. Box MG-11, 077125 Magurele, Romania
- National Institute of Materials Physics, Atomistilor 405A, 077125 Magurele, Romania
| | - Corina Bradu
- Faculty of Biology, University of Bucharest, Splaiul Independenței 91–95, 050095 Bucharest, Romania
| | - Cristina Gheorghiu
- Extreme Light Infrastructure-Nuclear Physics (ELI-NP), “Horia Hulubei” National Institute for R&D in Physics and Nuclear Engineering, P.O. Box MG-6, 077125 Magurele, Romania
| | - Ana Maria Tanase
- Faculty of Biology, University of Bucharest, Splaiul Independenței 91–95, 050095 Bucharest, Romania
| | - Anca Dumitru
- Faculty of Physics, University of Bucharest, P.O. Box MG-11, 077125 Magurele, Romania
| |
Collapse
|