1
|
de Oliveira Sant'Anna L, Dos Santos LS, Ramos JN, Bokermann S, Bernardes Sousa MÂ, Prates FD, Mattos-Guaraldi AL, Vieira VV, Araújo MRB. Genotypic and phenotypic characterization of the first Latin America isolates of Corynebacterium rouxii, a recently described member of the Corynebacterium diphtheriae complex reported in Europe. Braz J Microbiol 2024; 55:3269-3277. [PMID: 39373943 PMCID: PMC11711730 DOI: 10.1007/s42770-024-01526-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 09/16/2024] [Indexed: 10/08/2024] Open
Abstract
The genus Corynebacterium is the largest genera among corynebacteria and has a range of species widely spread in ecological niches, some with epidemic potential and capable of causing fatal diseases. In recent years, due to the reclassifications and discoveries of new potentially toxin-producing species, microbiological identification and epidemiological control have been compromised, becoming possible only with sequencing techniques. Two bacterial strains isolated from a cat were identified by MALDI-TOF mass spectrometry as Corynebacterium diphtheriae and sent to the collaborating center of the Brazilian Ministry of Health for molecular identification and determination of toxigenicity potential, which were initially performed by multiplex PCR method. In addition, the antimicrobial susceptibility profile was determined according to BrCAST. Finally, for the final identification at the species level and effective epidemiological monitoring, the sequencing of the 16S rRNA and rpoB housekeeping genes was carried out. The isolates were identified as nontoxigenic C. diphtheriae strains by mPCR. Both strains were found susceptible to all antimicrobial agents. Although the identification at the species level was not possible through similarity analysis of S rRNA and rpoB housekeeping genes, the phylogenetic analysis showed that the isolates belonged to the species Corynebacterium rouxii with a high value of reliability. This is the first report of the isolation of C. rouxii in Latin America. Molecular identification, whether by the MALDI-TOF mass spectrometry or PCR techniques, does not discriminate C. rouxii from C. diphtheriae, requiring gene sequencing and phylogenetic analysis for correct identification at the species level.
Collapse
Affiliation(s)
- Lincoln de Oliveira Sant'Anna
- Laboratory of Diphtheria and Corynebacteria of Clinical Relevance, Department of Microbiology, Immunology and Parasitology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Louisy Sanches Dos Santos
- Laboratory of Diphtheria and Corynebacteria of Clinical Relevance, Department of Microbiology, Immunology and Parasitology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Juliana Nunes Ramos
- Laboratory of Diphtheria and Corynebacteria of Clinical Relevance, Department of Microbiology, Immunology and Parasitology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Sérgio Bokermann
- Bacteriology Branch, Adolfo Lutz Institute, Secretary of Health of the State of São Paulo, São Paulo, Brazil
| | - Mireille Ângela Bernardes Sousa
- Laboratory of Diphtheria and Corynebacteria of Clinical Relevance, Department of Microbiology, Immunology and Parasitology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernanda Diniz Prates
- Operational Technical Nucleus, Hermes Pardini Institute, Microbiology, Minas Gerais, Brazil
| | - Ana Luíza Mattos-Guaraldi
- Laboratory of Diphtheria and Corynebacteria of Clinical Relevance, Department of Microbiology, Immunology and Parasitology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Verônica Viana Vieira
- Interdisciplinary Laboratory of Medical Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | | |
Collapse
|
2
|
Roslund MI, Nurminen N, Oikarinen S, Puhakka R, Grönroos M, Puustinen L, Kummola L, Parajuli A, Cinek O, Laitinen OH, Hyöty H, Sinkkonen A. Skin exposure to soil microbiota elicits changes in cell-mediated immunity to pneumococcal vaccine. Sci Rep 2024; 14:18573. [PMID: 39127736 DOI: 10.1038/s41598-024-68235-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
A resilient immune system is characterized by its capacity to respond appropriately to challenges, such as infections, and it is crucial in vaccine response. Here we report a paired randomized intervention-control trial in which we evaluated the effect of microbially rich soil on immune resilience and pneumococcal vaccine response. Twenty-five age and sex matched pairs of volunteers were randomized to intervention and control groups. The intervention group rubbed hands three times a day in microbially rich soil until participants received a pneumococcal vaccine on day 14. Vaccine response, skin and gut bacteriome and blood cytokine levels were analyzed on days 0, 14 and 35. Peripheral blood mononuclear cells (PBMCs) were stimulated with vaccine components and autoclaved soil for cytokine production. Commensal bacterial community shifted only in the intervention group during the 14-day intervention period. When PBMCs collected on day 14 before the vaccination were stimulated with the vaccine components, IFN-y production increased in the intervention but not in the control group. On day 35, vaccination induced a robust antibody response in both groups. In parallel, gut bacterial community was associated with TGF-β plasma levels and TGF-β decrease in plasma was lower in the intervention group. The results indicate that exposure to microbially rich soil can modulate the cell-mediated immunity to components in pneumococcal vaccine.
Collapse
Affiliation(s)
- Marja I Roslund
- Natural Resources Institute Finland, Luke, Viikki and Turku, Finland
| | - Noora Nurminen
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön Katu 34, 33520, Tampere, Finland
| | - Sami Oikarinen
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön Katu 34, 33520, Tampere, Finland
| | - Riikka Puhakka
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Niemenkatu 73, 15140, Lahti, Finland
| | - Mira Grönroos
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Niemenkatu 73, 15140, Lahti, Finland
| | - Leena Puustinen
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön Katu 34, 33520, Tampere, Finland
| | - Laura Kummola
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön Katu 34, 33520, Tampere, Finland
| | - Anirudra Parajuli
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Niemenkatu 73, 15140, Lahti, Finland
- Department of Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Ondřej Cinek
- Department of Medical Microbiology, 2nd Faculty of Medicine, Charles University, V Úvalu 84, Praha 5, 150 06, Prague, Czech Republic
| | - Olli H Laitinen
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön Katu 34, 33520, Tampere, Finland
| | - Heikki Hyöty
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön Katu 34, 33520, Tampere, Finland
- Fimlab Laboratories, Pirkanmaa Hospital District, Tampere, Finland
| | - Aki Sinkkonen
- Natural Resources Institute Finland, Luke, Viikki and Turku, Finland.
| |
Collapse
|
3
|
Prygiel M, Mosiej E, Polak M, Krysztopa-Grzybowska K, Wdowiak K, Formińska K, Zasada AA. Challenges of Diphtheria Toxin Detection. Toxins (Basel) 2024; 16:245. [PMID: 38922140 PMCID: PMC11209151 DOI: 10.3390/toxins16060245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/27/2024] Open
Abstract
Diphtheria toxin (DT) is the main virulence factor of Corynebacterium diphtheriae, C. ulcerans and C. pseudotuberculosis. Moreover, new Corynebacterium species with the potential to produce diphtheria toxin have also been described. Therefore, the detection of the toxin is the most important test in the microbiological diagnosis of diphtheria and other corynebacteria infections. Since the first demonstration in 1888 that DT is a major virulence factor of C. diphtheriae, responsible for the systemic manifestation of the disease, various methods for DT detection have been developed, but the diagnostic usefulness of most of them has not been confirmed on a sufficiently large group of samples. Despite substantial progress in the science and diagnostics of infectious diseases, the Elek test is still the basic recommended diagnostic test for DT detection. The challenge here is the poor availability of an antitoxin and declining experience even in reference laboratories due to the low prevalence of diphtheria in developed countries. However, recent and very promising assays have been developed with the potential for use as rapid point-of-care testing (POCT), such as ICS and LFIA for toxin detection, LAMP for tox gene detection, and biosensors for both.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Aleksandra A. Zasada
- Department of Sera and Vaccines Evaluation, National Institute of Public Health NIH—National Research Institute, Chocimska 24, 00-791 Warsaw, Poland; (M.P.); (E.M.); (M.P.); (K.K.-G.); (K.W.); (K.F.)
| |
Collapse
|
4
|
Xie AG, Yomogida K, Berry I, Briggs NL, Esie P, Hamlet A, Paris K, Tromble E, DeBolt C, Graff NR, Chow EJ. Notes from the Field: Increase in Nontoxigenic Corynebacterium diphtheriae - Washington, 2018-2023. MMWR. MORBIDITY AND MORTALITY WEEKLY REPORT 2024; 73:405-407. [PMID: 38696348 PMCID: PMC11065466 DOI: 10.15585/mmwr.mm7317a4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2024]
|
5
|
Burkovski A. Proteomics of Toxigenic Corynebacteria. Proteomes 2023; 12:2. [PMID: 38250813 PMCID: PMC10801583 DOI: 10.3390/proteomes12010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/20/2023] [Accepted: 12/28/2023] [Indexed: 01/23/2024] Open
Abstract
Within the genus Corynebacterium, six species are potential carriers of the tox gene, which encodes the highly potent diphtheria exotoxin: Corynebacterium diphtheriae, Corynebacterium belfantii, Corynebacterium rouxii, Corynebacterium ulcerans, Corynebacterium pseudotuberculosis and Corynebacterium silvaticum. Based on their potential to infect different host species and cause either human infections, zoonotic diseases or infections of economically important animals, these bacteria are of high scientific and economic interest and different research groups have carried out proteome analyses. These showed that especially the combination of MS-based proteomics with bioinformatic tools helped significantly to elucidate the functional aspects of corynebacterial genomes and to handle the genome and proteome complexity. The combination of proteomic and bioinformatic approaches was also used to discover new vaccine and drug targets. In addition, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry has been established as a fast and precise tool for the identification of these bacteria.
Collapse
Affiliation(s)
- Andreas Burkovski
- Microbiology Division, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| |
Collapse
|
6
|
Ramos JN, Araújo MRB, Baio PVP, Sant'Anna LO, Veras JFC, Vieira ÉMD, Sousa MÂB, Camargo CH, Sacchi CT, Campos KR, Santos MBN, Bokermann S, Alvim LB, Sanches Dos Santos L, de Mattos-Guaraldi AL, Vieira VV. Molecular characterization and phylogenetic analysis of the first Corynebacterium rouxii strains isolated in Brazil: a recent member of Corynebacterium diphtheriae complex. BMC Genom Data 2023; 24:65. [PMID: 37940844 PMCID: PMC10634135 DOI: 10.1186/s12863-023-01167-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 10/20/2023] [Indexed: 11/10/2023] Open
Abstract
BACKGROUND Corynebacterium diphtheriae complex was formed by the species C. diphtheriae, Corynebacterium ulcerans and Corynebacterium pseudotuberculosis in the recent past. In addition to C. diphtheriae, C. ulcerans and C. pseudotuberculosis species can carry the tox gene, which encodes diphtheria toxin. Currently, three new species have been included in the complex: Corynebacterium rouxii, Corynebacterium silvaticum, and Corynebacterium belfantii. C. rouxii is derived from the ancient Belfanti biovar of C. diptheriae. We provide the complete genome sequences of two non-toxigenic strains C. rouxii isolated from a cat with a purulent infection in Brazil. The taxonomic status and sequence type, as well as the presence of resistance and virulence genes, and CRISPR-Cas system were additionally defined. RESULTS The genomes showed an average size of 2.4 Mb and 53.2% GC content, similar to the type strain of the species deposited in Genbank/NCBI. Strains were identified as C. rouxii by the rMLST database, with 95% identity. ANI and DDH in silico were consistent with values above the proposed cut-off points for species limit, corroborating the identification of the strains as C. rouxii. MLST analyses revealed a new ST, which differs from ST-537 only by the fusA allele. No horizontal transfer resistance gene was predicted in both genomes and no mutation was detected in the constitutive genes gyrA and rpoB. Some mutations were found in the seven penicillin-binding proteins (PBPs) detected. The tox gene was not found, but its regulatory gene dtxR was present. Among the predicted virulence genes are those involved in iron uptake and adherence, in addition to the DIP0733 protein involved in epithelial cell adhesion and invasion. The CRISPR-Cas type I-E system was detected in both genomes, with 16 spacer sequences each. Of them, half are unknown according to the databases used, indicating that there is an unexplored reservoir of corynebacteriophages and plasmids. CONCLUSIONS This is the first genomic study of C. rouxii reported in Brazil. Here we performed taxonomic analysis and the prediction of virulence factors. The genomic analyses performed in this study may help to understand the potential pathogenesis of non-toxigenic C. rouxii strains.
Collapse
Affiliation(s)
- Juliana Nunes Ramos
- Laboratory of Diphtheria and Corynebacteria of Clinical Relevance, Department of Microbiology, Immunology and Parasitology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | | | | | - Lincoln Oliveira Sant'Anna
- Laboratory of Diphtheria and Corynebacteria of Clinical Relevance, Department of Microbiology, Immunology and Parasitology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - João Flávio Carneiro Veras
- Laboratório Interdisciplinar de Pesquisas Médicas (LIPMED) - Instituto Oswaldo Cruz - Fundação Oswaldo Cruz (Fiocruz), Av. Brasil, 4365. Pavilhão Cardoso Fontes, 1°. andar, sala 17. Manguinhos, Rio de Janeiro, CEP:21040-900, Brazil
| | - Érica Miranda Damásio Vieira
- Laboratório Interdisciplinar de Pesquisas Médicas (LIPMED) - Instituto Oswaldo Cruz - Fundação Oswaldo Cruz (Fiocruz), Av. Brasil, 4365. Pavilhão Cardoso Fontes, 1°. andar, sala 17. Manguinhos, Rio de Janeiro, CEP:21040-900, Brazil
| | | | - Carlos Henrique Camargo
- Center of Bacteriology, Adolfo Lutz Institute, Secretary of Health of the State of São Paulo, São Paulo, Brazil
| | - Cláudio Tavares Sacchi
- Strategic Laboratory, Adolfo Lutz Institute, Secretary of Health of the State of São Paulo, São Paulo, Brazil
| | - Karoline Rodrigues Campos
- Strategic Laboratory, Adolfo Lutz Institute, Secretary of Health of the State of São Paulo, São Paulo, Brazil
| | | | - Sérgio Bokermann
- Center of Bacteriology, Adolfo Lutz Institute, Secretary of Health of the State of São Paulo, São Paulo, Brazil
| | - Luige Biciati Alvim
- Operational Technical Nucleus, Research and Development, Hermes Pardini Institute, Belo Horizonte, Brazil
| | - Louisy Sanches Dos Santos
- Laboratory of Diphtheria and Corynebacteria of Clinical Relevance, Department of Microbiology, Immunology and Parasitology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Ana Luiza de Mattos-Guaraldi
- Laboratory of Diphtheria and Corynebacteria of Clinical Relevance, Department of Microbiology, Immunology and Parasitology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Verônica Viana Vieira
- Laboratório Interdisciplinar de Pesquisas Médicas (LIPMED) - Instituto Oswaldo Cruz - Fundação Oswaldo Cruz (Fiocruz), Av. Brasil, 4365. Pavilhão Cardoso Fontes, 1°. andar, sala 17. Manguinhos, Rio de Janeiro, CEP:21040-900, Brazil.
| |
Collapse
|
7
|
Sting R, Pölzelbauer C, Eisenberg T, Bonke R, Blazey B, Peters M, Riße K, Sing A, Berger A, Dangel A, Rau J. Corynebacterium ulcerans Infections in Eurasian Beavers ( Castor fiber). Pathogens 2023; 12:979. [PMID: 37623939 PMCID: PMC10459376 DOI: 10.3390/pathogens12080979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 08/26/2023] Open
Abstract
The Eurasian beaver (Castor fiber) has been reintroduced successfully in Germany since the 1990s. Since wildlife is an important source of zoonotic infectious diseases, monitoring of invasive and reintroduced species is crucial with respect to the One Health approach. Three Eurasian beavers were found dead in the German federal states of Bavaria, North Rhine-Westphalia and Baden-Wuerttemberg in 2015, 2021 and 2022, respectively. During post-mortem examinations, Corynebacterium (C.) ulcerans could be isolated from the abscesses of two beavers and from the lungs of one of the animals. Identification of the bacterial isolates at the species level was carried out by spectroscopic analysis using MALDI-TOF MS, FT-IR and biochemical profiles and were verified by molecular analysis based on 16-23S internal transcribed spacer (ITS) region sequencing. Molecular characterization of the C. ulcerans isolates using whole-genome sequencing (WGS) revealed a genome size of about 2.5 Mbp and a GC content of 53.4%. Multilocus sequence typing (MLST) analysis classified all three isolates as the sequence type ST-332. A minimum spanning tree (MST) based on cgMLST allelic profiles, including 1211 core genes of the sequenced C. ulcerans isolates, showed that the beaver-derived isolates clearly group on the branch of C. ulcerans with the closest relationship to each other, in close similarity to an isolate from a dog. Antibiotic susceptibility testing revealed resistance to clindamycin and, in one strain, to erythromycin according to EUCAST, while all isolates were susceptible to the other antimicrobials tested.
Collapse
Affiliation(s)
- Reinhard Sting
- Chemical and Veterinary Analysis Agency (CVUA) Stuttgart, 70736 Fellbach, Germany; (C.P.); (B.B.); (J.R.)
- Consiliary Laboratory for Corynebacterium pseudotuberculosis (DVG), 70736 Fellbach, Germany
| | - Catharina Pölzelbauer
- Chemical and Veterinary Analysis Agency (CVUA) Stuttgart, 70736 Fellbach, Germany; (C.P.); (B.B.); (J.R.)
| | - Tobias Eisenberg
- Hessian State Laboratory (LHL), 35392 Giessen, Germany; (T.E.); (R.B.); (K.R.)
| | - Rebecca Bonke
- Hessian State Laboratory (LHL), 35392 Giessen, Germany; (T.E.); (R.B.); (K.R.)
| | - Birgit Blazey
- Chemical and Veterinary Analysis Agency (CVUA) Stuttgart, 70736 Fellbach, Germany; (C.P.); (B.B.); (J.R.)
| | - Martin Peters
- Chemical and Veterinary Investigation Office Westfalen, 59821 Arnsberg, Germany;
| | - Karin Riße
- Hessian State Laboratory (LHL), 35392 Giessen, Germany; (T.E.); (R.B.); (K.R.)
| | - Andreas Sing
- Germany National Consiliary Laboratory for Diphtheria, 85764 Oberschleißheim, Germany; (A.S.); (A.B.)
| | - Anja Berger
- Germany National Consiliary Laboratory for Diphtheria, 85764 Oberschleißheim, Germany; (A.S.); (A.B.)
| | - Alexandra Dangel
- Bavarian Health and Food Safety Authority, 85764 Oberschleißheim, Germany;
| | - Jörg Rau
- Chemical and Veterinary Analysis Agency (CVUA) Stuttgart, 70736 Fellbach, Germany; (C.P.); (B.B.); (J.R.)
| |
Collapse
|
8
|
Yin L, Thaker H. Cancer Drug Delivery Systems Using Bacterial Toxin Translocation Mechanisms. Bioengineering (Basel) 2023; 10:813. [PMID: 37508840 PMCID: PMC10376142 DOI: 10.3390/bioengineering10070813] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/16/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
Recent advances in targeted cancer therapy hold great promise for both research and clinical applications and push the boundaries in finding new treatments for various currently incurable cancers. However, these therapies require specific cell-targeting mechanisms for the efficient delivery of drug cargo across the cell membrane to reach intracellular targets and avoid diffusion to unwanted tissues. Traditional drug delivery systems suffer from a limited ability to travel across the barriers posed by cell membranes and, therefore, there is a need for high doses, which are associated with adverse reactions and safety concerns. Bacterial toxins have evolved naturally to specifically target cell subtypes via their receptor binding module, penetrating the cell membrane efficiently through the membrane translocation process and then successfully delivering the toxic cargo into the host cytosol. They have, thus, been harnessed for the delivery of various drugs. In this review, we focus on bacterial toxin translocation mechanisms and recent progress in the targeted delivery systems of cancer therapy drugs that have been inspired by the receptor binding and membrane translocation processes of the anthrax toxin protective antigen, diphtheria toxin, and Pseudomonas exotoxin A. We also discuss the challenges and limitations of these studies that should be addressed before bacterial toxin-based drug delivery systems can become a viable new generation of drug delivery approaches in clinical translation.
Collapse
Affiliation(s)
- Linxiang Yin
- Department of Urology, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Hatim Thaker
- Department of Urology, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
9
|
Melnikov VG, Berger A, Dangel A, Sing A. Lateral flow immunoassay-based laboratory algorithm for rapid diagnosis of diphtheria. OPEN RESEARCH EUROPE 2023; 3:62. [PMID: 37645492 PMCID: PMC10445807 DOI: 10.12688/openreseurope.15038.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/17/2023] [Indexed: 08/31/2023]
Abstract
Background: In industrialised countries diphtheria is a rare but still life-threatening disease with a recent increase in cases due to migration and zoonotic aspects. Due to the rarity of the disease, laboratory diagnosis of diphtheria is often carried out in central reference laboratories and involves the use of sophisticated equipment and specially trained personnel. The result of the diphtheria agent detection can usually be obtained after 5-6 days or more. Authors suggest a Lateral Flow Immunoassay (LFIA)-based laboratory algorithm for the diagnosis of diphtheria, which may render less time in issuing a result and could promote the testing be performed in laboratories closer to the patient. Methods: LFIA for diphtheria toxin (DT) detection was designed using a pair of monoclonal antibodies to receptor-binding subunit B of the DT, and validated with 322 corynebacterial cultures as well as 360 simulated diphtheria specimens. Simulated diphtheria specimens were obtained by spiking of human pharyngeal samples with test strains of corynebacteria. The simulated specimens were plated on selective tellurite agar and after 18-24 hours of incubation, grey/black colonies characteristic of the diphtheria corynebacteria were examined for the DT using LFIA. Results: The diagnostic sensitivity of the LFIA for DT detection on bacterial cultures was 99.35%, and the specificity was 100%. Also, the LFIA was positive for all pharyngeal samples with toxigenic strains and negative for all samples with non-toxigenic strains. For setting LFIA, a 6-hour culture on Elek broth was used; thus, under routine conditions, the causative agent of diphtheria could be detected within two working days after plating of the clinical specimen on the tellurite medium of primary inoculation. Conclusions: The availability of such a simple and reliable methodology will speed up and increase the accuracy of diphtheria diagnosis globally.
Collapse
Affiliation(s)
- Vyacheslav G. Melnikov
- National Conciliary Laboratory on Diphtheria, Bavarian Health and Food Safety Authority, Oberschleißheim, 85764, Germany
| | - Anja Berger
- Public Health Microbiology, National Conciliary Laboratory on Diphtheria, Bavarian Health and Food Safety Authority, Oberschleißheim, 85764, Germany
| | - Alexandra Dangel
- Public Health Microbiology, National Conciliary Laboratory on Diphtheria, Bavarian Health and Food Safety Authority, Oberschleißheim, 85764, Germany
| | - Andreas Sing
- Public Health Microbiology, National Conciliary Laboratory on Diphtheria, Bavarian Health and Food Safety Authority, Oberschleißheim, 85764, Germany
| |
Collapse
|
10
|
The DarT/DarG Toxin-Antitoxin ADP-Ribosylation System as a Novel Target for a Rational Design of Innovative Antimicrobial Strategies. Pathogens 2023; 12:pathogens12020240. [PMID: 36839512 PMCID: PMC9967889 DOI: 10.3390/pathogens12020240] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
The chemical modification of cellular macromolecules by the transfer of ADP-ribose unit(s), known as ADP-ribosylation, is an ancient homeostatic and stress response control system. Highly conserved across the evolution, ADP-ribosyltransferases and ADP-ribosylhydrolases control ADP-ribosylation signalling and cellular responses. In addition to proteins, both prokaryotic and eukaryotic transferases can covalently link ADP-ribosylation to different conformations of nucleic acids, thus highlighting the evolutionary conservation of archaic stress response mechanisms. Here, we report several structural and functional aspects of DNA ADP-ribosylation modification controlled by the prototype DarT and DarG pair, which show ADP-ribosyltransferase and hydrolase activity, respectively. DarT/DarG is a toxin-antitoxin system conserved in many bacterial pathogens, for example in Mycobacterium tuberculosis, which regulates two clinically important processes for human health, namely, growth control and the anti-phage response. The chemical modulation of the DarT/DarG system by selective inhibitors may thus represent an exciting strategy to tackle resistance to current antimicrobial therapies.
Collapse
|