1
|
Soler-Tovar D, Escobar LE. Rabies transmitted from vampires to cattle: An overview. PLoS One 2025; 20:e0317214. [PMID: 39804921 PMCID: PMC11730393 DOI: 10.1371/journal.pone.0317214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 12/23/2024] [Indexed: 01/16/2025] Open
Abstract
Rabies is a zoonotic infectious disease of global distribution that impacts human and animal health. In rural Latin America, rabies negatively impacts food security and the economy due to losses in livestock production. The common vampire bat, Desmodus rotundus, is the main reservoir and transmitter of rabies virus (RABV) to domestic animals in Latin America. Desmodus rotundus RABV is known to impact the cattle industry, from small farmers to large corporations. We assessed the main patterns of rabies in cattle attributed to D. rotundus RABV across Latin America. Epidemiological data on rabies from Latin America were collected from the Pan American Health Organization spanning the 1970-2023 period. Analyses revealed an average of 450 outbreaks annually for the countries where D. rotundus is distributed, with at least 6 animals dying in each outbreak. Brazil, Colombia, Peru, and Mexico were the Latin American countries with the highest number of rabies outbreaks during the study period and are the most affected countries in recent years. Findings suggest a re-emergence of bat-borne rabies in the region with more outbreaks reported in recent years, especially during the 2003-2020 period. Rabies outbreaks in cattle in the 2000-2020 period were significantly more frequent than in previous decades, with an increase in cross-species transmission after 2002. The size of outbreaks, however, was smaller in recent years, involving lower cattle mortality. Peru, El Salvador, and Brazil showed a strong association (R = 0.73, p = 0.01) between rabies incidence in D. rotundus (rates per million humans: 1.61, 0.94, and 1.09, respectively) and rabies outbreaks in cattle (rates per million cattle: 465.85, 351.01, and 48.22, respectively). A sustained, standardized, and widespread monitoring of D. rotundus demography and health could serve to inform an early warning system for the early detection of RABV and other bat-borne pathogens in Latin America. Current data can be used to forecast when, where, and in which intensity RABV outbreaks are more likely to occur in subtropical and tropical Latin America. A decrease in the size of outbreaks could suggest that strategies for epidemic management (e.g., education, early diagnosis, vaccination) have been effective. The increase in the number of outbreaks could suggest that the factors facilitating cross-species transmission could be on the rise.
Collapse
Affiliation(s)
- Diego Soler-Tovar
- Department of Fish and Wildlife Conservation, Virginia Tech, Blacksburg, VA, United States of America
- Faculty of Agricultural Sciences, Universidad de La Salle, Bogotá, Colombia
| | - Luis E. Escobar
- Department of Fish and Wildlife Conservation, Virginia Tech, Blacksburg, VA, United States of America
- Faculty of Agricultural Sciences, Universidad de La Salle, Bogotá, Colombia
- Kellogg Center for Philosophy, Politics, and Economics, Virginia Tech, Blacksburg, VA, United States of America
- Global Change Center, Virginia Tech, Blacksburg, VA, United States of America
- Center for Emerging Zoonotic and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, VA, United States of America
| |
Collapse
|
2
|
Yang M, Gu K, Xu Q, Wen R, Li J, Zhou C, Zhao Y, Shi M, Weng Y, Guo B, Lei C, Sun Y, Wang H. Recombinant Lactococcus lactis secreting FliC protein nanobodies for resistance against Salmonella enteritidis invasion in the intestinal tract. J Nanobiotechnology 2024; 22:629. [PMID: 39407284 PMCID: PMC11481460 DOI: 10.1186/s12951-024-02904-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 10/03/2024] [Indexed: 10/19/2024] Open
Abstract
Salmonella Enteritidis is a major foodborne pathogen throughout the world and the increase in antibiotic resistance of Salmonella poses a significant threat to public safety. Natural nanobodies exhibit high affinity, thermal stability, ease of production, and notably higher diversity, making them widely applicable for the treatment of viral and bacterial infections. Recombinant expression using Lactococcus lactis leverages both acid resistance and mucosal colonization properties of these bacteria, allowing the effective expression of exogenous proteins for therapeutic effects. In this study, nine specific nanobodies against the flagellar protein FliC were identified and expressed. In vitro experiments demonstrated that FliC-Nb-76 effectively inhibited the motility of S. Enteritidis and inhibited its adhesion to and invasion of HIEC-6, RAW264.7, and chicken intestinal epithelial cells. Additionally, a recombinant L. lactis strain secreting the nanobody, L. lactis-Nb76, was obtained. Animal experiments confirmed that it could significantly reduce the mortality rates of chickens infected with S. Enteritidis, together with alleviating the inflammatory response caused by the pathogen. These results provide a novel strategy for the treatment of antibiotic-resistant S. Enteritidis infection in the intestinal tract.
Collapse
Affiliation(s)
- Ming Yang
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Kui Gu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Qiang Xu
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Renqiao Wen
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Jinpeng Li
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Changyu Zhou
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Yu Zhao
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Miwan Shi
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Yuan Weng
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Boyan Guo
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Changwei Lei
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Yong Sun
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Hongning Wang
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China.
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, People's Republic of China.
| |
Collapse
|
3
|
Yuan L, Huang SM, Yang JH, Qu Q, Liu Y, Xiao YW, Qu J. A case report of travel-associated infection with melioidosis pneumonia and septicemia. Travel Med Infect Dis 2024; 60:102743. [PMID: 39025283 DOI: 10.1016/j.tmaid.2024.102743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024]
Affiliation(s)
- Li Yuan
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Institute of Clinical Pharmacy, Changsha, 410011, People's Republic of China; Department of Pharmacy, The First Hospital of Changsha, Changsha, 410005, People's Republic of China
| | - Si-Min Huang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Institute of Clinical Pharmacy, Changsha, 410011, People's Republic of China; Department of Pharmacy, Foresea Life Insurance Shaoguan Hospital, Shaoguan, 512000, People's Republic of China
| | - Jia-Hao Yang
- Department of Pharmacy, The 7th People's Hospital of Zhengzhou, Zhengzhou, 450016, People's Republic of China
| | - Qiang Qu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410078, People's Republic of China
| | - Ying Liu
- Department of Pharmacy, Yiyang Central Hospital, Yiyang, 413000, People's Republic of China
| | - Yi-Wen Xiao
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Institute of Clinical Pharmacy, Changsha, 410011, People's Republic of China
| | - Jian Qu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Institute of Clinical Pharmacy, Changsha, 410011, People's Republic of China; Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha, 410219, People's Republic of China.
| |
Collapse
|
4
|
Orosco FL. Host immune responses against African swine fever virus: Insights and challenges for vaccine development. Open Vet J 2023; 13:1517-1535. [PMID: 38292721 PMCID: PMC10824091 DOI: 10.5455/ovj.2023.v13.i12.2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 11/22/2023] [Indexed: 02/01/2024] Open
Abstract
The African swine fever virus (ASFV) poses a serious threat to global swine populations, underscoring the urgent need for effective preventive strategies. This comprehensive review investigates the intricate interplay between innate, cellular, and humoral immunity against ASFV, with a focus on their relevance to vaccine development. By delving into immunopathogenesis and immunological challenges, this review article aims to provide a holistic perspective on the complexities of ASFV infections and immune evasion. Key findings underscore the critical role of innate immune recognition in shaping subsequent adaptive immune defenses, potential protective antigens, and the multifaceted nature of ASFV-specific antibodies and cytotoxic T-cell responses. Despite advancements, the unique attributes of ASFV present hurdles in the development of a successful vaccine. In conclusion, this review examines the current state of ASFV immune responses and offers insights into future research directions, fostering the development of effective interventions against this devastating pathogen.
Collapse
Affiliation(s)
- Fredmoore L. Orosco
- Virology and Vaccine Institute of the Philippines Program, Department of Science and Technology, Industrial Technology Development Institute, Taguig, Philippines
- S&T Fellows Program, Department of Science and Technology, Taguig, Philippines
- Department of Biology, College of Arts and Sciences, University of the Philippines Manila, Manila, Philippines
| |
Collapse
|
5
|
Breulmann M, Kallies R, Bernhard K, Gasch A, Müller RA, Harms H, Chatzinotas A, van Afferden M. A long-term passive sampling approach for wastewater-based monitoring of SARS-CoV-2 in Leipzig, Germany. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 887:164143. [PMID: 37182773 PMCID: PMC10181866 DOI: 10.1016/j.scitotenv.2023.164143] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/04/2023] [Accepted: 05/09/2023] [Indexed: 05/16/2023]
Abstract
Wastewater-based monitoring of SARS-CoV-2 has become a promising and useful tool in tracking the potential spread or dynamics of the virus. Its recording can be used to predict how the potential number of infections in a population will develop. Recent studies have shown that the use of passive samplers is also suitable for the detection of SARS-CoV-2 genome copies (GC) in wastewater. They can be used at any site, provide timely data and may collect SARS-CoV-2 GC missed by traditional sampling methods. Therefore, the aim of this study was to evaluate the suitability of passive samplers for the detection of SARS-CoV-2 GC in wastewater in the long-term at two different scales. Polyethylene-based plastic passive samplers were deployed at the city-scale level of Leipzig at 13 different locations, with samples being taken from March 2021 to August 2022. At the smaller city district level, three types of passive samplers (cotton-cloth, unravelled polypropylene plastic rope and polyethylene-based plastic strips) were used and sampled on a weekly basis from March to August 2022. The results are discussed in relation to wastewater samples taken at the individual passive sampling point. Our results show that passive samplers can indicate at a city-scale level an accurate level of positive infections in the population (positive-rate: 86 %). On a small-scale level, the use of passive samplers was also feasible and effective to detect SARS-CoV-2 GC easily and cost-effectively, mirroring a similar trend to that at a city-scale level. Thus, this study demonstrated that passive samplers provide reproducible SARS-CoV-2 GC signals from wastewater and a time-integrated measurement of the sampled matrix with greater sensitivity compared to wastewater. We thus recommend the use of passive samplers as an alternative method for wastewater-based epidemiology. Passive samplers can in particular be considered for a better estimation of infections compared to incidence levels.
Collapse
Affiliation(s)
- Marc Breulmann
- Centre for Environmental Biotechnology, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318 Leipzig, Germany.
| | - René Kallies
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - Katy Bernhard
- Centre for Environmental Biotechnology, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - Andrea Gasch
- Wastewater Monitoring Department, Kommunale Wasserwerke Leipzig GmbH, Johannisgasse 7-9, 04103 Leipzig, Germany
| | - Roland Arno Müller
- Centre for Environmental Biotechnology, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - Hauke Harms
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - Antonis Chatzinotas
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318 Leipzig, Germany; Institute of Biology, Leipzig University, 04103 Leipzig, Germany; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany
| | - Manfred van Afferden
- Centre for Environmental Biotechnology, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| |
Collapse
|