1
|
Li K, Zhang Y, Luo T, Li C, Yu H, Wang W, Zhang H, Chen H, Xia C, Gao C. Development of a Triplex qPCR Assay Based on the TaqMan Probe for the Detection of Haemophilus parasuis, Streptococcus suis Serotype 2 and Pasteurella multocida. Microorganisms 2024; 12:2017. [PMID: 39458326 PMCID: PMC11509477 DOI: 10.3390/microorganisms12102017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/29/2024] [Accepted: 10/03/2024] [Indexed: 10/28/2024] Open
Abstract
Porcine respiratory disease is a significant economic problem for the global swine industry. Haemophilus parasuis (H. parasuis), Streptococcus suis (S. suis), and Pasteurella multocida (P. multocida) are three important pathogenic bacteria of the swine respiratory tract. Notably, the three pathogens not only frequently manifest as mixed infections, but their striking clinical similarities also present difficulties for pig populations in terms of disease prevention and treatment. Thus, we developed a triplex real-time quantitative polymerase chain reaction (qPCR) assay based on a TaqMan probe for the detection of H. parasuis, S. suis serotype 2, and P. multocida. Primers and probes were designed to target the conserved regions of the H. parasuis OmpP2 gene, the S. suis serotype 2 gdh gene, and the P. multocida Kmt1 gene. By optimizing the reaction system and conditions, a triplex qPCR method for simultaneous detection of H. parasuis, S. suis serotype 2, and P. multocida was successfully established. The amplification efficiencies of the standard curves for all three pathogens were found to be highly similar, with values of 102.105% for H. parasuis, 105.297% for S. suis serotype 2, and 104.829% for P. multocida, and all R2 values achieving 0.999. The specificity analysis results showed that the triplex qPCR method had a strong specificity. The sensitivity test results indicated that the limit of detection can reach 50 copies/μL for all three pathogens. Both intra- and inter-assay coefficients of variation for repeatability were below 1%. This triplex qPCR method was shown to have good specificity, sensitivity, and reproducibility. Finally, the triplex qPCR method established in this study was compared with the nested PCR as recommended by the Chinese national standard (GB/T34750-2017) for H. parasuis, the PCR as recommended by the Chinese national standard (GB/T 19915.9-2005) for S. suis serotype 2, and the PCR as recommended by the Chinese agricultural industry standard (NY/T 564-2016) for P. multocida by detecting the same clinical samples. Both methods are reasonably consistent, while the triplex qPCR assay was more sensitive. In summary, triplex qPCR serves not only as a rapid and accurate detection and early prevention method for these pathogens but also constitutes a robust tool for microbial quality control in specific pathogen-free pigs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Changyou Xia
- State Key Laboratory for Animal Disease Control and Prevention, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (K.L.); (Y.Z.); (T.L.); (C.L.); (H.Y.); (W.W.); (H.Z.); (H.C.)
| | - Caixia Gao
- State Key Laboratory for Animal Disease Control and Prevention, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (K.L.); (Y.Z.); (T.L.); (C.L.); (H.Y.); (W.W.); (H.Z.); (H.C.)
| |
Collapse
|
2
|
Wang L, Sun J, Zhao J, Bai J, Zhang Y, Zhu Y, Zhang W, Wang C, Langford PR, Liu S, Li G. A CRISPR-Cas12a-based platform facilitates the detection and serotyping of Streptococcus suis serotype 2. Talanta 2024; 267:125202. [PMID: 37734291 DOI: 10.1016/j.talanta.2023.125202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/05/2023] [Accepted: 09/11/2023] [Indexed: 09/23/2023]
Abstract
Streptococcus suis serotype 2 is an economically important zoonotic pathogen that causes septicemia, arthritis, and meningitis in pigs and humans. S. suis serotype 2 is responsible for substantial economic losses to the swine industry and poses a serious threat to public health, and accurate and rapid detection is important for the prevention and control of epidemic disease. In this study, we developed a high-fidelity detection and serotyping platform for S. suis serotype 2 based on recombinase polymerase amplification (RPA) and a clustered regularly interspaced short palindromic repeat (CRISPR)-Cas12a system called Cards-SSJ/K. Cards-SSJ had a detection limit of 10 CFU, takes <60 min, and no cross-reaction was found with other S. suis serotypes, closely related Streptococcus spp., or common pig pathogens, and Cards-SSK could differentiate serotype 2 from serotype 1/2. Results from Cards-SSJ and qPCR were equivalent in detecting S. suis serotype 2 in tissue samples. Analysis indicated that despite a relatively high reagent cost compared to PCR and qPCR, Cards-SSJ was less time-consuming and had low requirements for equipment and personnel. Thus, it is an excellent method for point-of-care detection for S. suis serotype 2.
Collapse
Affiliation(s)
- Lu Wang
- State Key Laboratory for Animal Disease Control and Prevention, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China; College of Veterinary Medicine, Xinjiang Agricultural University, Xinjiang, 830052, China
| | - Jing Sun
- State Key Laboratory for Animal Disease Control and Prevention, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Jiyu Zhao
- State Key Laboratory for Animal Disease Control and Prevention, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China; College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Jieyu Bai
- State Key Laboratory for Animal Disease Control and Prevention, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China; College of Veterinary Medicine, Xinjiang Agricultural University, Xinjiang, 830052, China
| | - Yueling Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Yao Zhu
- State Key Laboratory for Animal Disease Control and Prevention, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Wanjiang Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Chunlai Wang
- State Key Laboratory for Animal Disease Control and Prevention, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Paul R Langford
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College London, St. Mary's Campus, London, W2 1NY, United Kingdom
| | - Siguo Liu
- State Key Laboratory for Animal Disease Control and Prevention, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China.
| | - Gang Li
- State Key Laboratory for Animal Disease Control and Prevention, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China.
| |
Collapse
|
3
|
Wayop IYA, de Vet E, Wagenaar JA, Speksnijder DC. Why Veterinarians (Do Not) Adhere to the Clinical Practice Streptococcus suis in Weaned Pigs Guideline: A Qualitative Study. Antibiotics (Basel) 2023; 12:antibiotics12020320. [PMID: 36830232 PMCID: PMC9952329 DOI: 10.3390/antibiotics12020320] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/28/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
The Netherlands has been very successful in the last decade in reducing antimicrobial use in animals. On about a quarter of farms, antimicrobial use in weaned pigs remains relatively high. As Streptococcus suis (S. suis) infections are responsible for a high consumption of antimicrobials, a specific veterinary guideline to control S. suis was developed, but seemed to be poorly adopted by veterinarians. Guided by the theoretical domains framework, the aim of this study was to identify determinants influencing veterinarians' adherence to this guideline. We interviewed 13 pig veterinarians. Interviewees described multiple approaches to managing S. suis problems and adherence to the guideline. Mentioned determinants could be categorized into 12 theoretical domains. The following six domains were mentioned in all interviews: knowledge, skills, beliefs about capabilities, beliefs about consequences, social influences, and environmental context and resources. The insights derived from this study are relevant for understanding factors influencing veterinarians' adoption of scientific evidence and guidelines and can be used to develop evidence-based implementation strategies for veterinary guidelines.
Collapse
Affiliation(s)
- Isaura Y. A. Wayop
- Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands
| | - Emely de Vet
- Consumption and Healthy Lifestyles Group, Wageningen University and Research, 6700 EW Wageningen, The Netherlands
| | - Jaap A. Wagenaar
- Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands
- Wageningen Bioveterinary Research, Houtribweg 39, 8221 RA Lelystad, The Netherlands
| | - David C. Speksnijder
- Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands
- University Farm Animal Clinic ULP, Reijerscopse Overgang 1, 3481 LZ Harmelen, The Netherlands
- Correspondence:
| |
Collapse
|
4
|
Savcheniuk MO, Tarasov OA, Zakharova OM, Korniienko LY, Zotsenko VM, Tsarenko TM. Detection of Streptococcus suis using the optimized real-time polymerase chain reaction protocol. REGULATORY MECHANISMS IN BIOSYSTEMS 2022. [DOI: 10.15421/022221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The article presents the results of studies on the detection of Streptococcus suis by real-time polymerase chain reaction. Isolation and species identification of the studied isolates of streptococci was carried out according to morphological, cultural, biochemical and biological properties by conventional methods. The study of cultural characteristics of growth was carried out using conventional bacteriological methods on the brain heart infusion broth (BHI) and BHI agar with the addition of 5% sheep blood (blood BHI agar). To confirm biochemical properties as a confirmatory method, API 20 STREP test kit (bioMerieux, France) was used. In addition, to differentiate S. suis from the non-pathogenic species of streptococci, the hemolysis test was used. As a result of the studies, it was found that the use of the real-time PCR (polymerase chain reaction) method makes it possible to detect S. suis in an amount of 1 x 104 genome copies in the sample. All described validation parameters for the qualitative detection of S. suis DNA by real-time PCR meet international requirements, which guarantees accurate and reliable results. In Ukraine only a diagnostic test kit for convential PCR has been developed for the detection of swine streptococcosis. This approach is more time consuming and complex in comparison with the real-time PCR approach. We recommend that diagnostic laboratories implement this method in their practice. This will increase the number of effective diagnostic tools available to veterinarians on pig farms when they order laboratory tests. The high analytical sensitivity limit of a test is an essential parameter when screening is the focus, and obtaining false negative results causes a risk of the development of infection process among pig populations within infected herds. Our study showed that microbiological diagnostic methods to determine morphological and cultural properties can identify S. suis at the genus level. Determination of biochemical properties using the API 20 STREP test kit can be used to identify S. suis 1 and 2 serotypes. The conventional method and real-time PCR have 100% specificity and can be used to identify S. suis of different serotypes. Real-time PCR is a 2 to 4 times more sensitive limit than conventional PCR depending on the serotype being studied, and can be used to more accurately identify streptococcal DNA. It was found that the use of the real-time PCR method makes it possible to detect S. suis in an amount of 1 x 104 copies of the genome in the sample. Additionally, it was found that all the studied validation parameters of the qualitative method for determining S. suis DNA by real-time PCR meet international requirements, which guarantees accurate and reliable results.
Collapse
|
5
|
Jiang X, Zhu L, Zhan D. Development of a recombinase polymerase amplification assay for rapid detection of Streptococcus suis type 2 in nasopharyngeal swab samples. Diagn Microbiol Infect Dis 2021; 102:115594. [PMID: 34871933 DOI: 10.1016/j.diagmicrobio.2021.115594] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/27/2021] [Accepted: 10/29/2021] [Indexed: 12/28/2022]
Abstract
Streptococcus suis serotype 2 (SS2), an emerging zoonotic pathogen, may induce severe infections and symptoms manifested as septicemia, meningitis and even death both in human and pigs. The aim of this article was to develop a new methodology as real-time recombinase polymerase amplification (RT-RPA) assay targeting cps2J gene for the detection of SS2 (or SS1/2). The sensitivity and reproducibility of RT-RPA results were evaluated and compared with a real-time quantitative PCR (RT-qPCR). The established RT-RPA reaction could be completed in 20 minutes with distinguishable specificity against the predominant S. suis infection serotypes of 3, 4, 5, 7, 9, 14, and 31. Lower detection limit for RT-RPA was 102 genomic DNA copies per reaction. The specimen performance of RT-RPA was tested in nasopharyngeal swab samples with the sensitivity and specificity as 97.5% and 100%, respectively. Thus, this RT-RPA method is a rapid and potential molecular diagnostic tool for SS2 detection.
Collapse
Affiliation(s)
- Xiaowu Jiang
- Medical School of Yichun University, Yichun, Jiangxi, China; Jiangxi Provincial Key Laboratory of Active Component of Natural Drugs, Poster-Doctoral Research Center, Jiangxi, China.
| | - Lexin Zhu
- Medical School of Yichun University, Yichun, Jiangxi, China
| | - Dongbo Zhan
- Medical School of Yichun University, Yichun, Jiangxi, China
| |
Collapse
|
6
|
Li S, Wang D, Guo C, Tian M, Liu Q, Pan Z. Study on preparation of a Streptococcus suis ghost vaccine. Microb Pathog 2021; 154:104865. [PMID: 33771628 DOI: 10.1016/j.micpath.2021.104865] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 02/20/2021] [Accepted: 03/05/2021] [Indexed: 11/17/2022]
Abstract
Streptococcus suis (S.suis)is an important zoonotic pathogen in pigs and human. Bacterial ghosts (BGs) which are empty envelopes were used recently as efficient delivery system in vaccine development. In this study, S.suis ghosts were prepared and protective efficacy was evaluated in mice. Sodium hydroxide was used to prepare S.suis ghosts which were visualized under scanning electron microscopy. The optimum concentration of is Sodium hydroxide 6 mg/mL for ghosts formed. To investigate the S.suis ghosts as a candidate vaccine, the 50 BALB/c mice were randomly divided into three groups: Group A (control group), group B (subcutaneous injection of inactivated S.suis 2), group C (subcutaneous injection of inactivated S.suis 9), group D (subcutaneous injection of S.suis 2 ghosts), group E (subcutaneous injection of S.suis 9 ghosts). Serum were collected from five groups on the day of 7, 14, 21 and 28 after the first immunization for potency assay. Indirect ELISA results showed that antibody titer of blood serum of mice from group S.suis2 ghosts and group S.suis9 ghosts were significantly higher than blank group(P < 0.01), but were approximate to the conventional inactivated vaccine group SS2. In comparison with the conventional inactivated vaccine, S.suis ghosts as candidate vaccine strategy showed the excellent immunogenicity and provided protection against S.suis challenge in mice model.
Collapse
Affiliation(s)
- Siyan Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; OIE Reference Laboratory for Swine Streptococcosis, Nanjing, 210095, China.
| | - Dan Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; OIE Reference Laboratory for Swine Streptococcosis, Nanjing, 210095, China.
| | - Chenyao Guo
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; OIE Reference Laboratory for Swine Streptococcosis, Nanjing, 210095, China.
| | - Motong Tian
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; OIE Reference Laboratory for Swine Streptococcosis, Nanjing, 210095, China.
| | - Qi Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; OIE Reference Laboratory for Swine Streptococcosis, Nanjing, 210095, China.
| | - Zihao Pan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing, 210095, China; OIE Reference Laboratory for Swine Streptococcosis, Nanjing, 210095, China.
| |
Collapse
|
7
|
Arai S, Kim H, Watanabe T, Tohya M, Suzuki E, Ishida-Kuroki K, Maruyama F, Murase K, Nakagawa I, Sekizaki T. Assessment of pig saliva as aStreptococcus suisreservoir and potential source of infection on farms by use of a novel quantitative polymerase chain reaction assay. Am J Vet Res 2018; 79:941-948. [DOI: 10.2460/ajvr.79.9.941] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
8
|
Methods for the detection and characterization of Streptococcus suis: from conventional bacterial culture methods to immunosensors. Antonie van Leeuwenhoek 2018; 111:2233-2247. [PMID: 29934695 DOI: 10.1007/s10482-018-1116-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Accepted: 06/14/2018] [Indexed: 01/26/2023]
Abstract
One of the most important zoonotic pathogens worldwide, Streptococcus suis is a swine pathogen that is responsible for meningitis, toxic shock and even death in humans. S. suis infection develops rapidly with nonspecific clinical symptoms in the early stages and a high fatality rate. Recently, much attention has been paid to the high prevalence of S. suis as well as the increasing incidence and its epidemic characteristics. As laboratory-acquired infections of S. suis can occur and it is dangerous to public health security, timely and early diagnosis has become key to controlling S. suis prevalence. Here, the techniques that have been used for the detection, typing and characterization of S. suis are reviewed and the prospects for future detection methods for this bacterium are also discussed.
Collapse
|
9
|
Effect of Simultaneous Exposure of Pigs to Streptococcus suis Serotypes 2 and 9 on Their Colonization and Transmission, and on Mortality. Pathogens 2017; 6:pathogens6040046. [PMID: 28953248 PMCID: PMC5750570 DOI: 10.3390/pathogens6040046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 09/22/2017] [Accepted: 09/26/2017] [Indexed: 01/13/2023] Open
Abstract
The distribution of Streptococcus suis serotypes isolated from clinically infected pigs differs between geographical areas, and varies over time. In several European countries, predomination of serotype 2 has changed to serotype 9. We hypothesize a relation, with one serotype affecting the other in colonization and invasion. The aim of this study was to evaluate whether simultaneous exposure of pigs to serotypes 2 and 9 affects colonization and transmission of each type, and mortality. Thirty-six caesarean-derived/colostrum-deprived piglets were randomly assigned to three groups, and there housed pair-wise. At six weeks old, one pig per pair was inoculated with either one (serotype 2 or 9; mono-group) or two serotypes simultaneously (dual-group); the other pig was contact-exposed. Tonsillar and nasal samples were collected within three weeks post inoculation. Bacterial loads in samples were quantified using multiplex real-time polymerase chain reaction (PCR). Transmission rates of the serotypes among pigs were estimated using a mathematical Susceptible-Infectious (SI) model. Bacterial loads and transmission rates did not differ significantly between serotypes. Compared to the mono-group, in the dual-group the average serotype 2 load in tonsillar samples from contact pigs was reduced on days 1 to 4 and on day 6. Simultaneous exposure to the serotypes reduced the mortality hazard 6.3 times (95% C.I.: 2.0–19.8) compared to exposure to serotype 2 only, and increased it 6.6 times (95% C.I.: 1.4–30.9) compared to exposure to serotype 9 only. This study indicates that serotype 2 load and mortality were affected in pigs exposed to these two serotypes.
Collapse
|
10
|
Streptococcus suis serotype 9 strain GZ0565 contains a type VII secretion system putative substrate EsxA that contributes to bacterial virulence and a vanZ-like gene that confers resistance to teicoplanin and dalbavancin in Streptococcus agalactiae. Vet Microbiol 2017. [PMID: 28622857 DOI: 10.1016/j.vetmic.2017.04.030] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Streptococcus suis (SS), an important pathogen for pigs, is not only considered as a zoonotic agent for humans, but is also recognized as a major reservoir of antimicrobial resistance contributing to the spread of resistance genes to other pathogenic Streptococcus species. In addition to serotype 2 (SS2), serotype 9 (SS9) is another prevalent serotype isolated from diseased pigs. Although many SS strains have been sequenced, the complete genome of a non-SS2 virulent strain has been unavailable to date. Here, we report the complete genome of GZ0565, a virulent strain of SS9, isolated from a pig with meningitis. Comparative genomic analysis revealed five new putative virulence or antimicrobial resistance-associated genes in strain GZ0565 but not in SS2 virulent strains. These five genes encode a putative triacylglycerol lipase, a TipAS antibiotic-recognition domain protein, a putative TetR family transcriptional repressor, a protein containing a LPXTG domain and a G5 domain, and a type VII secretion system (T7SS) putative substrate (EsxA), respectively. Western blot analysis showed that strain GZ0565 can secrete EsxA. We generated an esxA deletion mutant and showed that EsxA contributes to SS virulence in a mouse infection model. Additionally, the antibiotic resistance gene vanZSS was identified and expression of vanZSS conferred resistance to teicoplanin and dalbavancin in Streptococcus agalactiae. We believe this is the first experimental demonstration of the existence of the T7SS putative substrate EsxA and its contribution to bacterial virulence in SS. Together, our results contribute to further understanding of the virulence and antimicrobial resistance characteristics of SS.
Collapse
|
11
|
Segura M, Calzas C, Grenier D, Gottschalk M. Initial steps of the pathogenesis of the infection caused by Streptococcus suis: fighting against nonspecific defenses. FEBS Lett 2016; 590:3772-3799. [PMID: 27539145 DOI: 10.1002/1873-3468.12364] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 08/11/2016] [Accepted: 08/16/2016] [Indexed: 12/16/2022]
Abstract
Interactions between a bacterial pathogen and its potentially susceptible host are initiated with the colonization step. During respiratory/oral infection, the pathogens must compete with the normal microflora, resist defense mechanisms of the local mucosal immunity, and finally reach, adhere, and breach the mucosal epithelial cell barrier in order to induce invasive disease. This is the case during infection by the swine and zoonotic pathogen Streptococcus suis, which is able to counteract mucosal barriers to induce severe meningitis and sepsis in swine and in humans. The initial steps of the pathogenesis of S. suis infection has been a neglected area of research, overshadowed by studies on the systemic and central nervous phases of the disease. In this Review article, we provide for the first time, an exclusive focus on S. suis colonization and the potential mechanisms involved in S. suis establishment at the mucosa, as well as the mechanisms regulating mucosal barrier breakdown. The role of mucosal immunity is also addressed. Finally, we demystify the extensive list of putative adhesins and virulence factors reported to be involved in the initial steps of pathogenesis by S. suis.
Collapse
Affiliation(s)
- Mariela Segura
- Laboratory of Immunology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Quebec, Canada.,Swine and Poultry Infectious Diseases Research Centre (CRIPA), Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, Canada
| | - Cynthia Calzas
- Laboratory of Immunology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Quebec, Canada.,Swine and Poultry Infectious Diseases Research Centre (CRIPA), Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, Canada.,Laboratory of Streptococcus suis, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Quebec, Canada
| | - Daniel Grenier
- Swine and Poultry Infectious Diseases Research Centre (CRIPA), Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, Canada.,Groupe de Recherche en Écologie Buccale (GREB), Faculté de Médecine Dentaire, Université Laval, Quebec City, Quebec, Canada
| | - Marcelo Gottschalk
- Swine and Poultry Infectious Diseases Research Centre (CRIPA), Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, Canada.,Laboratory of Streptococcus suis, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Quebec, Canada
| |
Collapse
|