1
|
Gao N, Rezaee F. Airway Epithelial Cell Junctions as Targets for Pathogens and Antimicrobial Therapy. Pharmaceutics 2022; 14:2619. [PMID: 36559113 PMCID: PMC9786141 DOI: 10.3390/pharmaceutics14122619] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
Intercellular contacts between epithelial cells are established and maintained by the apical junctional complexes (AJCs). AJCs conserve cell polarity and build epithelial barriers to pathogens, inhaled allergens, and environmental particles in the respiratory tract. AJCs consist of tight junctions (TJs) and adherens junctions (AJs), which play a key role in maintaining the integrity of the airway barrier. Emerging evidence has shown that different microorganisms cause airway barrier dysfunction by targeting TJ and AJ proteins. This review discusses the pathophysiologic mechanisms by which several microorganisms (bacteria and viruses) lead to the disruption of AJCs in airway epithelial cells. We present recent progress in understanding signaling pathways involved in the formation and regulation of cell junctions. We also summarize the potential chemical inhibitors and pharmacological approaches to restore the integrity of the airway epithelial barrier. Understanding the AJCs-pathogen interactions and mechanisms by which microorganisms target the AJC and impair barrier function may further help design therapeutic innovations to treat these infections.
Collapse
Affiliation(s)
- Nannan Gao
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Fariba Rezaee
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
- Center for Pediatric Pulmonary Medicine, Cleveland Clinic Children’s, Cleveland, OH 44195, USA
| |
Collapse
|
2
|
Karra N, Fernandes J, Swindle EJ, Morgan H. Integrating an aerosolized drug delivery device with conventional static cultures and a dynamic airway barrier microphysiological system. BIOMICROFLUIDICS 2022; 16:054102. [PMID: 36118260 PMCID: PMC9473724 DOI: 10.1063/5.0100019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
Organ on a chip or microphysiological systems (MPSs) aim to resolve current challenges surrounding drug discovery and development resulting from an unrepresentative static cell culture or animal models that are traditionally used by generating a more physiologically relevant environment. Many different airway MPSs have been developed that mimic alveolar or bronchial interfaces, but few methods for aerosol drug delivery at the air-liquid interface exist. This work demonstrates a compact Surface Acoustic Wave (SAW) drug delivery device that generates an aerosol of respirable size for delivery of compounds directly onto polarized or differentiated epithelial cell cultures within an airway barrier MPS and conventional static inserts. As proof of principle, the SAW drug delivery device was used to nebulize viral dsRNA analog poly I:C and steroids fluticasone and dexamethasone without disrupting their biological function.
Collapse
Affiliation(s)
- Nikita Karra
- Electronics and Computer Science, Faculty of Physical Sciences and Engineering, University of Southampton, United Kingdom
| | - Joao Fernandes
- Electronics and Computer Science, Faculty of Physical Sciences and Engineering, University of Southampton, United Kingdom
| | | | - Hywel Morgan
- Author to whom correspondence should be addressed:
| |
Collapse
|
3
|
Fernandes J, Karra N, Bowring J, Reale R, James J, Blume C, Pell TJ, Rowan WC, Davies DE, Swindle EJ, Morgan H. Real-time monitoring of epithelial barrier function by impedance spectroscopy in a microfluidic platform. LAB ON A CHIP 2022; 22:2041-2054. [PMID: 35485428 DOI: 10.1039/d1lc01046h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
A multichannel microfluidic platform for real-time monitoring of epithelial barrier integrity by electrical impedance has been developed. Growth and polarization of human epithelial cells from the airway or gastrointestinal tract was continuously monitored over 5 days in 8 parallel, individually perfused microfluidic chips. Electrical impedance data were continuously recorded to monitor cell barrier formation using a low-cost bespoke impedance analyser. Data was analysed using an electric circuit model to extract the equivalent transepithelial electrical resistance and epithelial cell layer capacitance. The cell barrier integrity steadily increased overtime, achieving an average resistance of 418 ± 121 Ω cm2 (airway cells) or 207 ± 59 Ω cm2 (gastrointestinal cells) by day 5. The utility of the polarized airway epithelial barrier was demonstrated using a 24 hour challenge with double stranded RNA to mimic viral infection. This caused a rapid decrease in barrier integrity in association with disruption of tight junctions, whereas simultaneous treatment with a corticosteroid reduced this effect. The platform is able to measure barrier integrity in real-time and is scalable, thus has the potential to be used for drug development and testing.
Collapse
Affiliation(s)
- João Fernandes
- Electronics and Computer Science, Faculty of Physical Sciences and Engineering, University of Southampton, UK.
| | - Nikita Karra
- Electronics and Computer Science, Faculty of Physical Sciences and Engineering, University of Southampton, UK.
| | - Joel Bowring
- Electronics and Computer Science, Faculty of Physical Sciences and Engineering, University of Southampton, UK.
| | - Riccardo Reale
- Electronics and Computer Science, Faculty of Physical Sciences and Engineering, University of Southampton, UK.
| | - Jonathan James
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, UK
| | - Cornelia Blume
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, UK
- Institute for Life Sciences, University of Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, UK
| | - Theresa J Pell
- Novel Human Genetics Research Unit, GlaxoSmithKline R&D, Stevenage, Hertfordshire, UK
| | - Wendy C Rowan
- Novel Human Genetics Research Unit, GlaxoSmithKline R&D, Stevenage, Hertfordshire, UK
| | - Donna E Davies
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, UK
- Institute for Life Sciences, University of Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, UK
| | - Emily J Swindle
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, UK
- Institute for Life Sciences, University of Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, UK
| | - Hywel Morgan
- Electronics and Computer Science, Faculty of Physical Sciences and Engineering, University of Southampton, UK.
- Institute for Life Sciences, University of Southampton, UK
| |
Collapse
|
4
|
Blume C, David J, Bell RE, Laver JR, Read RC, Clark GC, Davies DE, Swindle EJ. Erratum: Blume, C., et al. Modulation of Human Airway Barrier Functions during Burkholderia thailandensis and Francisella tularensis Infection Running Title: Airway Barrier Functions during Bacterial Infections. Pathogens 2016, 5, 53. Pathogens 2020; 9:pathogens9120987. [PMID: 33256268 PMCID: PMC7761030 DOI: 10.3390/pathogens9120987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 11/23/2020] [Indexed: 11/26/2022] Open
Affiliation(s)
- Cornelia Blume
- Academic Unit of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, University Hospital Southampton, Tremona Road, Southampton SO16 6YD, UK; (J.R.L.); (R.C.R.); (D.E.D.); (E.J.S.)
- Correspondence: ; Tel.: +44-2381-203-308; Fax: +44-2380-511-761
| | - Jonathan David
- Defence Science and Technology Laboratory (Dstl), Porton Down, Salisbury SP4 0JQ, UK; (J.D.); (R.E.B.); (G.C.C.)
| | - Rachel E. Bell
- Defence Science and Technology Laboratory (Dstl), Porton Down, Salisbury SP4 0JQ, UK; (J.D.); (R.E.B.); (G.C.C.)
- Centre for Molecular and Cellular Biology of Inflammation, Guy’s Campus, King’s College London, London SE1 1UL, UK
| | - Jay R. Laver
- Academic Unit of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, University Hospital Southampton, Tremona Road, Southampton SO16 6YD, UK; (J.R.L.); (R.C.R.); (D.E.D.); (E.J.S.)
| | - Robert C. Read
- Academic Unit of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, University Hospital Southampton, Tremona Road, Southampton SO16 6YD, UK; (J.R.L.); (R.C.R.); (D.E.D.); (E.J.S.)
- Southampton NIHR Respiratory Biomedical Research Unit, University Hospital Southampton, Southampton SO16 6YD, UK
- Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Graeme C. Clark
- Defence Science and Technology Laboratory (Dstl), Porton Down, Salisbury SP4 0JQ, UK; (J.D.); (R.E.B.); (G.C.C.)
| | - Donna E. Davies
- Academic Unit of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, University Hospital Southampton, Tremona Road, Southampton SO16 6YD, UK; (J.R.L.); (R.C.R.); (D.E.D.); (E.J.S.)
- Southampton NIHR Respiratory Biomedical Research Unit, University Hospital Southampton, Southampton SO16 6YD, UK
- Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Emily J. Swindle
- Academic Unit of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, University Hospital Southampton, Tremona Road, Southampton SO16 6YD, UK; (J.R.L.); (R.C.R.); (D.E.D.); (E.J.S.)
- Southampton NIHR Respiratory Biomedical Research Unit, University Hospital Southampton, Southampton SO16 6YD, UK
- Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
| |
Collapse
|
5
|
Zeng Q, He X, Puthiyakunnon S, Xiao H, Gong Z, Boddu S, Chen L, Tian H, Huang SH, Cao H. Probiotic Mixture Golden Bifido Prevents Neonatal Escherichia coli K1 Translocation via Enhancing Intestinal Defense. Front Microbiol 2017; 8:1798. [PMID: 28979247 PMCID: PMC5611410 DOI: 10.3389/fmicb.2017.01798] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 09/05/2017] [Indexed: 12/15/2022] Open
Abstract
Escherichia coli (E. coli) K1 sepsis and meningitis is a severe infection characterized by high mortality in neonates. Successful colonization and translocation across the intestinal mucosa have been regarded as the critical steps for E. coli K1 sepsis and meningitis. We recently reported that the probiotic mixture, Golden Bifido (containing live Lactobacillus bulgaricus, Bifidobacterium, and Streptococcus thermophilus, LBS) has a preventive role against neonatal E. coli K1 bacteremia and meningitis. However, the interaction between the neonatal gut barrier, probiotics and E. coli K1 is still not elucidated. The present study aims to investigate how LBS exerts its protective effects on neonatal gut barrier during E. coli K1 infection. The beneficial effects of LBS were explored in vitro and in vivo using human colon carcinoma cell lines HT-29 and rat model of neonatal E. coli K1 infection, respectively. Our results showed that stimulation with E. coli K1 was able to cause intestinal barrier dysfunction, which were reflected by E. coli K1-induced intestinal damage and apoptosis of intestinal epithelial cells, reduction of mucin, immunoglobulin A (IgA) and tight junction proteins expression, as well as increase in intestinal permeability, all these changes facilitate E. coli K1 intestinal translocation. However, these changes were alleviated when HT-29 cells were treated with LBS before E. coli K1 infection. Furthermore, we found that LBS-treated neonatal rats (without E. coli K1 infection) have showed higher production of mucin, ZO-1, IgA, Ki67 in intestinal mucosa as well as lower intestinal permeability than that of non-treated rats, indicating that LBS could accelerate the development of neonatal intestinal defense. Taken together, our results suggest that enhancement of the neonatal intestinal defense to fight against E. coli K1 translocation could be the potential mechanism to elucidate how LBS confers a protective effect against neonatal E. coli K1 bacteremia and meningitis. This indirect mechanism makes LBS exert preventive effect on most of gut-derived pathogenic infections rather than only E. coli.
Collapse
Affiliation(s)
- Qing Zeng
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical UniversityGuangzhou, China
| | - Xiaolong He
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical UniversityGuangzhou, China
| | - Santhosh Puthiyakunnon
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical UniversityGuangzhou, China
| | - Hansen Xiao
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical UniversityGuangzhou, China
| | - Zelong Gong
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical UniversityGuangzhou, China
| | - Swapna Boddu
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical UniversityGuangzhou, China
| | - Lecheng Chen
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical UniversityGuangzhou, China
| | - Huiwen Tian
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical UniversityGuangzhou, China.,The First School of Clinical Medicine, Southern Medical UniversityGuangzhou, China
| | - Sheng-He Huang
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical UniversityGuangzhou, China.,Saban Research Institute, Children's Hospital Los Angeles, University of Southern California, Los AngelesCA, United States
| | - Hong Cao
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical UniversityGuangzhou, China
| |
Collapse
|