1
|
Khalil AM, Nogales A, Martínez-Sobrido L, Mostafa A. Antiviral responses versus virus-induced cellular shutoff: a game of thrones between influenza A virus NS1 and SARS-CoV-2 Nsp1. Front Cell Infect Microbiol 2024; 14:1357866. [PMID: 38375361 PMCID: PMC10875036 DOI: 10.3389/fcimb.2024.1357866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 01/16/2024] [Indexed: 02/21/2024] Open
Abstract
Following virus recognition of host cell receptors and viral particle/genome internalization, viruses replicate in the host via hijacking essential host cell machinery components to evade the provoked antiviral innate immunity against the invading pathogen. Respiratory viral infections are usually acute with the ability to activate pattern recognition receptors (PRRs) in/on host cells, resulting in the production and release of interferons (IFNs), proinflammatory cytokines, chemokines, and IFN-stimulated genes (ISGs) to reduce virus fitness and mitigate infection. Nevertheless, the game between viruses and the host is a complicated and dynamic process, in which they restrict each other via specific factors to maintain their own advantages and win this game. The primary role of the non-structural protein 1 (NS1 and Nsp1) of influenza A viruses (IAV) and the pandemic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), respectively, is to control antiviral host-induced innate immune responses. This review provides a comprehensive overview of the genesis, spatial structure, viral and cellular interactors, and the mechanisms underlying the unique biological functions of IAV NS1 and SARS-CoV-2 Nsp1 in infected host cells. We also highlight the role of both non-structural proteins in modulating viral replication and pathogenicity. Eventually, and because of their important role during viral infection, we also describe their promising potential as targets for antiviral therapy and the development of live attenuated vaccines (LAV). Conclusively, both IAV NS1 and SARS-CoV-2 Nsp1 play an important role in virus-host interactions, viral replication, and pathogenesis, and pave the way to develop novel prophylactic and/or therapeutic interventions for the treatment of these important human respiratory viral pathogens.
Collapse
Affiliation(s)
- Ahmed Magdy Khalil
- Disease Intervention & Prevention and Host Pathogen Interactions Programs, Texas Biomedical Research Institute, San Antonio, TX, United States
- Department of Zoonotic Diseases, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Aitor Nogales
- Center for Animal Health Research, CISA-INIA-CSIC, Madrid, Spain
| | - Luis Martínez-Sobrido
- Disease Intervention & Prevention and Host Pathogen Interactions Programs, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Ahmed Mostafa
- Disease Intervention & Prevention and Host Pathogen Interactions Programs, Texas Biomedical Research Institute, San Antonio, TX, United States
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, Egypt
| |
Collapse
|
2
|
Avanthay R, Garcia-Nicolas O, Zimmer G, Summerfield A. NS1 and PA-X of H1N1/09 influenza virus act in a concerted manner to manipulate the innate immune response of porcine respiratory epithelial cells. Front Cell Infect Microbiol 2023; 13:1222805. [PMID: 37565063 PMCID: PMC10410561 DOI: 10.3389/fcimb.2023.1222805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/05/2023] [Indexed: 08/12/2023] Open
Abstract
Live-attenuated influenza A viruses (LAIV) may be superior to inactivated or subunit vaccines since they can be administered via mucosal routes to induce local immunity in the respiratory tract. In addition, LAIV are expected to trigger stronger T-cell responses that may protect against a broader range of antigen-drifted viruses. However, the development of LAIV is challenging since a proper balance between immunogenicity and safety has to be reached. In this study, we took advantage of reverse genetics to generate three LAIV based on the pandemic H1N1 2009 (pH1N1/09) virus strain: ΔPA-X, which is defective in the synthesis of the accessory PA-X protein, NS1(1-126) lacking 93 amino acids at the C-terminus of the NS1 protein, and a combination of both. Characterization of these recombinant viruses using a novel porcine bronchiolar epithelial cell line (T3) revealed that the ΔPA-X mutant replicated similar to wild type (WT) virus. However, in contrast to the parental virus the ΔPA-X mutant allowed transcription of genes involved in cell cycle progression and limits apoptosis. The NS1(1-126) mutant also replicated comparable to WT virus, but triggered the release of type I and III IFN and several chemokines and cytokines. Surprisingly, only the NS1(1-126)/ΔPA-X double mutant was significantly attenuated on T3 cells, and this was associated with enhanced transcription of genes of the innate immune system and complete absence of apoptosis induction. In conclusion, these findings indicate that NS1 and PA-X act in a concerted manner to manipulate the host cell response, which may help to develop swine LAIV vaccine with a more favorable balance of safety and immunogenicity.
Collapse
Affiliation(s)
- Robin Avanthay
- Institute of Virology and Immunology, Mittelhäusern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Obdulio Garcia-Nicolas
- Institute of Virology and Immunology, Mittelhäusern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Gert Zimmer
- Institute of Virology and Immunology, Mittelhäusern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Artur Summerfield
- Institute of Virology and Immunology, Mittelhäusern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
3
|
Okamura S, Yoshida A, Miyazato P, Matsumoto M, Ebina H. Protocol to isolate temperature-sensitive SARS-CoV-2 mutants and identify associated mutations. STAR Protoc 2023; 4:102352. [PMID: 37300825 DOI: 10.1016/j.xpro.2023.102352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/11/2023] [Accepted: 05/11/2023] [Indexed: 06/12/2023] Open
Abstract
An inability to proliferate at high temperatures typically gives viruses an attenuated phenotype. Here, we present a protocol to obtain and isolate temperature-sensitive (TS) SARS-CoV-2 strains via 5-fluorouracile-induced mutagenesis. We describe steps for the induction of mutations in the wild-type virus and selection of TS clones. We then show how to identify the mutations associated with the TS phenotype, following forward and reverse genetics strategies. For complete details on the use and execution of this protocol, please refer to Yoshida et al. (2022).1.
Collapse
Affiliation(s)
- Shinya Okamura
- Virus Vaccine Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka, Japan; The Research Foundation for Microbial Diseases of Osaka University, Suita, Osaka, Japan
| | - Akiho Yoshida
- Virus Vaccine Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka, Japan; The Research Foundation for Microbial Diseases of Osaka University, Suita, Osaka, Japan
| | - Paola Miyazato
- Virus Vaccine Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka, Japan; The Research Foundation for Microbial Diseases of Osaka University, Suita, Osaka, Japan
| | - Mai Matsumoto
- The Research Foundation for Microbial Diseases of Osaka University, Suita, Osaka, Japan
| | - Hirotaka Ebina
- Virus Vaccine Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka, Japan; The Research Foundation for Microbial Diseases of Osaka University, Suita, Osaka, Japan; Virus Vaccine Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Research institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan; Virus Vaccine Group, Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka, Japan.
| |
Collapse
|
4
|
Safety and Viral Shedding of Live Attenuated Influenza Vaccine (LAIV) in Chinese Healthy Juveniles and Adults: A Phase Ⅰ Randomized, Double-Blind, Placebo-Controlled Study. Vaccines (Basel) 2022; 10:vaccines10111796. [DOI: 10.3390/vaccines10111796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/23/2022] [Accepted: 10/24/2022] [Indexed: 11/16/2022] Open
Abstract
This study was a randomized, double-blind, placebo-controlled study to evaluate the safety and viral shedding of live attenuated influenza vaccine (LAIV) in Chinese healthy juveniles and adults. A total of 80 Eligible volunteers were divided into two age groups (≥18 and 3–17 years old). Volunteers were randomly and equally assigned to the experimental group and placebo-controlled group by ratio of 3:1 in each age group. Vaccination was carried out in steps. Totally, 34 (56.67%) adverse events and 24 (40.00%) adverse reactions of the LAIV group were reported. Most adverse reactions were grade 1 and grade 2, and the incidence of adverse reactions that grade 3 was 5%. The most common local reaction was runny nose/nasal congestion (n = 4, 6.67%). And the most common general reaction was fever (n = 10, 16.67%). There were no statistically significant differences in the incidence of total adverse reactions, different grades of adverse reactions, and symptoms between the experimental group and placebo-controlled group. No severe adverse events were reported. Three subjects (5.00%) had been detected vaccine strains on the 3rd day after LAIV vaccination; one was type B and the other two were H3N2. Four subjects (6.67%) had been detected with vaccine strains on the 7th day after LAIV vaccination, all were H3N2. There were no subjects detected carrying the influenza virus on the 15th day after vaccination. There were no statistically significant differences in the positive rate of vaccine strains of influenza virus between the experimental group and placebo-controlled group. The vaccine was well tolerated and not associated with increased rates in adverse reactions or the occurrence of severe adverse events. Pathogenicity of shed vaccine virus to surrounding people was not observed. Thus, Phase Ⅱ study can be carried out as scheduled.
Collapse
|
5
|
Abstract
Together with inactivated influenza vaccines (IIV), live attenuated influenza vaccines (LAIV) are an important tool to prevent influenza A virus (IAV) illnesses in patients. LAIVs present the advantages to have a needle-free administration and to trigger a mucosal immune response. LAIV is approved for healthy 2- to 49-year old individuals. However, due to its replicative nature and higher rate of adverse events at-risk populations are excluded from the benefits of this vaccine. Using targeted mutagenesis, we modified the nonstructural protein 1 of the currently licensed LAIV in order to impair its ability to bind the host cellular protein CPSF30 and thus its ability to inhibit host mRNA poly-adenylation. We characterized our optimized LAIV (optiLAIV) in three different mouse models mimicking healthy and high-risk patients. Using a neonatal mouse model, we show faster clearance of our optimized vaccine compared to the licensed LAIV. Despite lower replication, optiLAIV equally protected mice against homosubtypic and hetesubtypic influenza strain challenges. We confirmed the safer profile of optiLAIV in Stat1-/- mice (highly susceptible to viral infections) by showing no signs of morbidity compared to a 50% mortality rate observed following LAIV inoculation. Using a human nasal 3D tissue model, we showed an increased induction of ER stress-related genes following immunization with optiLAIV. Induction of ER stress was previously shown to improve antigen-specific immune responses and is proposed as the mechanism of action of the licensed adjuvant AS03. This study characterizes a safer LAIV candidate in two mouse models mimicking infants and severely immunocompromised patients and proposes a simple attenuation strategy that could broaden LAIV application and reduce influenza burden in high-risk populations. IMPORTANCE Live attenuated influenza vaccine (LAIV) is a needle-free, mucosal vaccine approved for healthy 2- to 49-year old individuals. Its replicative nature and higher rate of adverse events excludes at-risk populations. We propose a strategy to improve LAIV safety and explore the possibility to expand its applications in children under 2-year old and immunocompromised patients. Using a neonatal mouse model, we show faster clearance of our optimized vaccine (optiLAIV) compared to the licensed LAIV. Despite lower replication, optiLAIV equally protected mice against influenza virus challenges. We confirmed the safer profile of optiLAIV in Stat1-/- mice (highly susceptible to viral infections) by showing no signs of morbidity compared to a 50% mortality rate from LAIV. OptiLAIV could expand the applications of the current LAIV and help mitigate the burden of IAV in susceptible populations.
Collapse
|
6
|
Lorenzo MM, Nogales A, Chiem K, Blasco R, Martínez-Sobrido L. Vaccinia Virus Attenuation by Codon Deoptimization of the A24R Gene for Vaccine Development. Microbiol Spectr 2022; 10:e0027222. [PMID: 35583360 PMCID: PMC9241885 DOI: 10.1128/spectrum.00272-22] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 04/20/2022] [Indexed: 11/20/2022] Open
Abstract
Poxviruses have large DNA genomes, and they are able to infect multiple vertebrate and invertebrate animals, including humans. Despite the eradication of smallpox, poxvirus infections still remain a significant public health concern. Vaccinia virus (VV) is the prototypic member in the poxviridae family and it has been used extensively for different prophylactic applications, including the generation of vaccines against multiple infectious diseases and/or for oncolytic treatment. Many attempts have been pursued to develop novel attenuated forms of VV with improved safety profiles for their implementation as vaccines and/or vaccines vectors. We and others have previously demonstrated how RNA viruses encoding codon-deoptimized viral genes are attenuated, immunogenic and able to protect, upon a single administration, against challenge with parental viruses. In this study, we employed the same experimental approach based on the use of misrepresented codons for the generation of a recombinant (r)VV encoding a codon-deoptimized A24R gene, which is a key component of the viral RNA polymerase. Similar to our previous studies with RNA viruses, the A24R codon-deoptimized rVV (v-A24cd) was highly attenuated in vivo but able to protect, after a single intranasal dose administration, against an otherwise lethal challenge with parental VV. These results indicate that poxviruses can be effectively attenuated by synonymous codon deoptimization and open the possibility of using this methodology alone or in combination with other experimental approaches for the development of attenuated vaccines for the treatment of poxvirus infection, or to generate improved VV-based vectors. Moreover, this approach could be applied to other DNA viruses. IMPORTANCE The family poxviridae includes multiple viruses of medical and veterinary relevance, being vaccinia virus (VV) the prototypic member in the family. VV was used during the smallpox vaccination campaign to eradicate variola virus (VARV), which is considered a credible bioterrorism threat. Because of novel innovations in genetic engineering and vaccine technology, VV has gained popularity as a viral vector for the development of vaccines against several infectious diseases. Several approaches have been used to generate attenuated VV for its implementation as vaccine and/or vaccine vector. Here, we generated a rVV containing a codon-deoptimized A24R gene (v-A24cd), which encodes a key component of the viral RNA polymerase. v-A24cd was stable in culture cells and highly attenuated in vivo but able to protect against a subsequent lethal challenge with parental VV. Our findings support the use of this approach for the development of safe, stable, and protective live-attenuated VV and/or vaccine vectors.
Collapse
Affiliation(s)
- María M. Lorenzo
- Departamento de Biotecnología, Centro Nacional INIA, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Aitor Nogales
- Department of Microbiology and Immunology, University of Rochester, Rochester, New York, USA
- Animal Health Research Centre (CISA), National Institute for Agriculture and Food Research and Technology (INIA-CSIC), Valdeolmos, Madrid, Spain
| | - Kevin Chiem
- Department of Microbiology and Immunology, University of Rochester, Rochester, New York, USA
- Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Rafael Blasco
- Departamento de Biotecnología, Centro Nacional INIA, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Luis Martínez-Sobrido
- Department of Microbiology and Immunology, University of Rochester, Rochester, New York, USA
- Texas Biomedical Research Institute, San Antonio, Texas, USA
| |
Collapse
|
7
|
Nogales A, Steel J, Liu WC, Lowen AC, Rodriguez L, Chiem K, Cox A, García-Sastre A, Albrecht RA, Dewhurst S, Martínez-Sobrido L. Mutation L319Q in the PB1 Polymerase Subunit Improves Attenuation of a Candidate Live-Attenuated Influenza A Virus Vaccine. Microbiol Spectr 2022; 10:e0007822. [PMID: 35583364 PMCID: PMC9241597 DOI: 10.1128/spectrum.00078-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 04/25/2022] [Indexed: 01/11/2023] Open
Abstract
Influenza A viruses (IAV) remain emerging threats to human public health. Live-attenuated influenza vaccines (LAIV) are one of the most effective prophylactic options to prevent disease caused by influenza infections. However, licensed LAIV remain restricted for use in 2- to 49-year-old healthy and nonpregnant people. Therefore, development of LAIV with increased safety, immunogenicity, and protective efficacy is highly desired. The U.S.-licensed LAIV is based on the master donor virus (MDV) A/Ann Arbor/6/60 H2N2 backbone, which was generated by adaptation of the virus to growth at low temperatures. Introducing the genetic signature of the U.S. MDV into the backbone of other IAV strains resulted in varying levels of attenuation. While the U.S. MDV mutations conferred an attenuated phenotype to other IAV strains, the same amino acid changes did not significantly attenuate the pandemic A/California/04/09 H1N1 (pH1N1) strain. To attenuate pH1N1, we replaced the conserved leucine at position 319 with glutamine (L319Q) in PB1 and analyzed the in vitro and in vivo properties of pH1N1 viruses containing either PB1 L319Q alone or in combination with the U.S. MDV mutations using two animal models of influenza infection and transmission, ferrets and guinea pigs. Our results demonstrated that L319Q substitution in the pH1N1 PB1 alone or in combination with the mutations of the U.S. MDV resulted in reduced pathogenicity (ferrets) and transmission (guinea pigs), and an enhanced temperature sensitive phenotype. These results demonstrate the feasibility of generating an attenuated MDV based on the backbone of a contemporary pH1N1 IAV strain. IMPORTANCE Vaccination represents the most effective strategy to reduce the impact of seasonal IAV infections. Although LAIV are superior in inducing protection and sterilizing immunity, they are not recommended for many individuals who are at high risk for severe disease. Thus, development of safer and more effective LAIV are needed. A concern with the current MDV used to generate the U.S.-licensed LAIV is that it is based on a virus isolated in 1960. Moreover, mutations that confer the temperature-sensitive, cold-adapted, and attenuated phenotype of the U.S. MDV resulted in low level of attenuation in the contemporary pandemic A/California/04/09 H1N1 (pH1N1). Here, we show that introduction of PB1 L319Q substitution, alone or in combination with the U.S. MDV mutations, resulted in pH1N1 attenuation. These findings support the development of a novel LAIV MDV based on a contemporary pH1N1 strain as a medical countermeasure against currently circulating H1N1 IAV.
Collapse
Affiliation(s)
- Aitor Nogales
- Department of Microbiology and Immunology, School of Medicine and Dentistry, University of Rochester, Rochester, New York, USA
- Animal Health Research Centre (CISA), Centro Nacional Instituto de Investigación y Tecnología Agraria y Alimentaria (INIA, CSIC), Madrid, Spain
| | - John Steel
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Wen-Chun Liu
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Biomedical Translation Research Center, Academia Sinica, Taipei, Taiwan
| | - Anice C. Lowen
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Laura Rodriguez
- Department of Microbiology and Immunology, School of Medicine and Dentistry, University of Rochester, Rochester, New York, USA
- Agencia Española de Medicamentos y Productos Sanitarios, Madrid, Spain
| | - Kevin Chiem
- Department of Microbiology and Immunology, School of Medicine and Dentistry, University of Rochester, Rochester, New York, USA
- Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Andrew Cox
- Department of Microbiology and Immunology, School of Medicine and Dentistry, University of Rochester, Rochester, New York, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Randy A. Albrecht
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Stephen Dewhurst
- Department of Microbiology and Immunology, School of Medicine and Dentistry, University of Rochester, Rochester, New York, USA
| | - Luis Martínez-Sobrido
- Department of Microbiology and Immunology, School of Medicine and Dentistry, University of Rochester, Rochester, New York, USA
- Texas Biomedical Research Institute, San Antonio, Texas, USA
| |
Collapse
|
8
|
Okamura S, Ebina H. Could live attenuated vaccines better control COVID-19? Vaccine 2021; 39:5719-5726. [PMID: 34426024 PMCID: PMC8354792 DOI: 10.1016/j.vaccine.2021.08.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 12/23/2022]
Abstract
In an effort to control the COVID-19 pandemic, large-scale vaccination is being implemented in various countries using anti-SARS-CoV-2 vaccines based on mRNAs, adenovirus vectors, and inactivated viruses. However, there are concerns regarding adverse effects, such as the induction of fever attributed to mRNA vaccines and pre-existing immunity against adenovirus vectored vaccines or their possible involvement in the development of thrombosis. The induction of antibodies against the adenovirus vector itself constitutes another hindrance, rendering boosting vaccinations ineffective. Additionally, it has been questioned whether inactivated vaccines that predominantly induce humoral immunity are effective against newly arising variants, as some isolated strains were found to be resistant to the serum from COVID-19-recovered patients. Although the number of vaccinated people is steadily increasing on a global scale, it is still necessary to develop vaccines to address the difficulties and concerns mentioned above. Among the various vaccine modalities, live attenuated vaccines have been considered the most effective, since they closely replicate a natural infection without the burden of the disease. In our attempt to provide an additional option to the repertoire of COVID-19 vaccines, we succeeded in isolating temperature-sensitive strains with unique phenotypes that could serve as seeds for a live attenuated vaccine. In this review article, we summarize the characteristics of the currently approved SARS-CoV-2 vaccines and discuss their advantages and disadvantages. In particular, we focus on the novel temperature-sensitive variants of SARS-CoV-2 that we have recently isolated, and their potential application as live-attenuated vaccines. Based on a thorough evaluation of the different vaccine modalities, we argue that it is important to optimize usage not only based on efficacy, but also on the phases of the pandemic. Our findings can be used to inform vaccination practices and improve global recovery from the COVID-19 pandemic.
Collapse
Affiliation(s)
- Shinya Okamura
- Virus Vaccine Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka, Japan; The Research Foundation for Microbial Diseases of Osaka University, Suita, Osaka, Japan
| | - Hirotaka Ebina
- Virus Vaccine Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka, Japan; The Research Foundation for Microbial Diseases of Osaka University, Suita, Osaka, Japan; Virus Vaccine Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan.
| |
Collapse
|
9
|
Nogales A, Villamayor L, Utrilla-Trigo S, Ortego J, Martinez-Sobrido L, DeDiego ML. Natural Selection of H5N1 Avian Influenza A Viruses with Increased PA-X and NS1 Shutoff Activity. Viruses 2021; 13:v13091760. [PMID: 34578340 PMCID: PMC8472985 DOI: 10.3390/v13091760] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/28/2021] [Accepted: 08/31/2021] [Indexed: 12/01/2022] Open
Abstract
Influenza A viruses (IAV) can infect a broad range of mammalian and avian species. However, the host innate immune system provides defenses that restrict IAV replication and infection. Likewise, IAV have evolved to develop efficient mechanisms to counteract host antiviral responses to efficiently replicate in their hosts. The IAV PA-X and NS1 non-structural proteins are key virulence factors that modulate innate immune responses and virus pathogenicity during infection. To study the determinants of IAV pathogenicity and their functional co-evolution, we evaluated amino acid differences in the PA-X and NS1 proteins of early (1996–1997) and more recent (since 2016) H5N1 IAV. H5N1 IAV have zoonotic and pandemic potential and represent an important challenge both in poultry farming and human health. The results indicate that amino acid changes occurred over time, affecting the ability of these two non-structural H5N1 IAV proteins to inhibit gene expression and affecting virus pathogenicity. These results highlight the importance to monitor the evolution of these two virulence factors of IAV, which could result in enhanced viral replication and virulence.
Collapse
Affiliation(s)
- Aitor Nogales
- Center for Animal Health Research, CISA-INIA-CSIC, Valdeolmos, 28130 Madrid, Spain; (S.U.-T.); (J.O.)
- Correspondence: (A.N.); (M.L.D.)
| | - Laura Villamayor
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain;
| | - Sergio Utrilla-Trigo
- Center for Animal Health Research, CISA-INIA-CSIC, Valdeolmos, 28130 Madrid, Spain; (S.U.-T.); (J.O.)
| | - Javier Ortego
- Center for Animal Health Research, CISA-INIA-CSIC, Valdeolmos, 28130 Madrid, Spain; (S.U.-T.); (J.O.)
| | - Luis Martinez-Sobrido
- Department of Disease Intervention and Prevention, Texas Biomedical Research Institute, San Antonio, TX 78227, USA;
| | - Marta L. DeDiego
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain;
- Correspondence: (A.N.); (M.L.D.)
| |
Collapse
|
10
|
Equine Influenza Virus and Vaccines. Viruses 2021; 13:v13081657. [PMID: 34452521 PMCID: PMC8402878 DOI: 10.3390/v13081657] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 01/01/2023] Open
Abstract
Equine influenza virus (EIV) is a constantly evolving viral pathogen that is responsible for yearly outbreaks of respiratory disease in horses termed equine influenza (EI). There is currently no evidence of circulation of the original H7N7 strain of EIV worldwide; however, the EIV H3N8 strain, which was first isolated in the early 1960s, remains a major threat to most of the world's horse populations. It can also infect dogs. The ability of EIV to constantly accumulate mutations in its antibody-binding sites enables it to evade host protective immunity, making it a successful viral pathogen. Clinical and virological protection against EIV is achieved by stimulation of strong cellular and humoral immunity in vaccinated horses. However, despite EI vaccine updates over the years, EIV remains relevant, because the protective effects of vaccines decay and permit subclinical infections that facilitate transmission into susceptible populations. In this review, we describe how the evolution of EIV drives repeated EI outbreaks even in horse populations with supposedly high vaccination coverage. Next, we discuss the approaches employed to develop efficacious EI vaccines for commercial use and the existing system for recommendations on updating vaccines based on available clinical and virological data to improve protective immunity in vaccinated horse populations. Understanding how EIV biology can be better harnessed to improve EI vaccines is central to controlling EI.
Collapse
|
11
|
Replication-Competent ΔNS1 Influenza A Viruses Expressing Reporter Genes. Viruses 2021; 13:v13040698. [PMID: 33920517 PMCID: PMC8072579 DOI: 10.3390/v13040698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/08/2021] [Accepted: 04/16/2021] [Indexed: 11/17/2022] Open
Abstract
The influenza A virus (IAV) is able to infect multiple mammalian and avian species, and in humans IAV is responsible for annual seasonal epidemics and occasional pandemics of respiratory disease with significant health and economic impacts. Studying IAV involves laborious secondary methodologies to identify infected cells. Therefore, to circumvent this requirement, in recent years, multiple replication-competent infectious IAV expressing traceable reporter genes have been developed. These IAVs have been very useful for in vitro and/or in vivo studies of viral replication, identification of neutralizing antibodies or antivirals, and in studies to evaluate vaccine efficacy, among others. In this report, we describe, for the first time, the generation and characterization of two replication-competent influenza A/Puerto Rico/8/1934 H1N1 (PR8) viruses where the viral non-structural protein 1 (NS1) was substituted by the monomeric (m)Cherry fluorescent or the NanoLuc luciferase (Nluc) proteins. The ΔNS1 mCherry was able to replicate in cultured cells and in Signal Transducer and Activator of Transcription 1 (STAT1) deficient mice, although at a lower extent than a wild-type (WT) PR8 virus expressing the same mCherry fluorescent protein (WT mCherry). Notably, expression of either reporter gene (mCherry or Nluc) was detected in infected cells by fluorescent microscopy or luciferase plate readers, respectively. ΔNS1 IAV expressing reporter genes provide a novel approach to better understand the biology and pathogenesis of IAV, and represent an excellent tool to develop new therapeutic approaches against IAV infections.
Collapse
|
12
|
Identification of amino acid residues required for inhibition of host gene expression by influenza A/Viet Nam/1203/2004 H5N1 PA-X. J Virol 2021; 96:e0040821. [PMID: 33853954 DOI: 10.1128/jvi.00408-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PA-X is a non-structural protein of influenza A virus (IAV), which is encoded by the polymerase acidic (PA) N-terminal region that contains a C-terminal +1 frameshifted sequence. IAV PA-X protein modulates virus-induced host innate immune responses and viral pathogenicity via suppression of host gene expression or cellular shutoff, through cellular mRNA cleavage. Highly pathogenic avian influenza viruses (HPAIV) of the H5N1 subtype naturally infect different avian species, they have an enormous economic impact in the poultry farming, and they also have zoonotic and pandemic potential, representing a risk to human public health. In the present study, we describe a novel bacteria-based approach to identify amino acid residues in the PA-X protein of the HPAIV A/Viet Nam/1203/2004 H5N1 that are important for its ability to inhibit host protein expression or cellular shutoff activity. Identified PA-X mutants displayed a reduced shutoff activity as compared to that of the wild-type (WT) A/Viet Nam/1203/2004 H5N1 PA-X protein. Notably, this new bacteria-based screening allowed us to identify amino acid residues widely distributed over the entire N-terminal region of PA-X. Furthermore, we found that some of the residues affecting A/Viet Nam/1203/2004 H5N1 PA-X host shutoff activity also affect PA polymerase activity in a minigenome assay. This information could be used for the rational design of new and more effective compounds with antiviral activity against IAV. Moreover, our results demonstrate the feasibility of using this bacteria-based approach to identify amino acid residues important for the activity of viral proteins to inhibit host gene expression. IMPORTANCE Highly pathogenic avian influenza viruses (HPAIV) continue to pose a huge threat to global animal and human health. Despite of the limited genome size of Influenza A virus (IAV), the virus encodes eight main viral structural proteins and multiple accessory non-structural proteins, depending on the IAV type, subtype or strain. One of the IAV accessory proteins, PA-X, is encoded by the polymerase acidic (PA) protein and is involved in pathogenicity through the modulation of IAV-induced host inflammatory and innate immune responses. However, the molecular mechanism(s) of IAV PA-X regulation of the host immune response is not well understood. In this work, we used, for the first time, a bacteria-based approach for the identification of amino acids important for the ability of IAV PA-X to induce host shutoff activity and describe novel residues relevant for its ability to inhibit host gene expression, and their contribution in PA polymerase activity.
Collapse
|
13
|
AGL2017-82570-RReverse genetics approaches for the development of new vaccines against influenza A virus infections. Curr Opin Virol 2020; 44:26-34. [PMID: 32599532 DOI: 10.1016/j.coviro.2020.06.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 05/26/2020] [Accepted: 06/05/2020] [Indexed: 01/30/2023]
Abstract
Influenza A viruses (IAVs) represent a serious concern globally because they are capable of rapid spread and cause severe disease in humans and other animals. The development and implementation of plasmid-based reverse genetics approaches have allowed the manipulation and recovery of recombinant IAVs from complementary DNA copies of the viral genome. Furthermore, IAV reverse genetics have provided researchers an efficient and powerful platform to introduce specific changes in the viral genome with the final goal of studying IAV biology, designing more effective vaccine strategies, and to reduce the rates of incidence and mortality associated with viral infections. In this review, we briefly discuss IAV reverse genetics and their applications to prevent IAV infections.
Collapse
|
14
|
Nogales A, DeDiego ML. Influenza Virus and Vaccination. Pathogens 2020; 9:pathogens9030220. [PMID: 32192196 PMCID: PMC7157237 DOI: 10.3390/pathogens9030220] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 03/11/2020] [Indexed: 12/21/2022] Open
Abstract
Influenza virus infections represent a serious public health problem causing contagious respiratory disease and substantial morbidity and mortality in humans, resulting in a considerable economic burden worldwide. Notably, the number of deaths due to influenza exceeds that of any other known pathogen. Moreover, influenza infections can differ in their intensity, from mild respiratory disease to pneumonia, which can lead to death. Articles in this Special Issue have addressed different aspects of influenza in human health, and the advances in influenza research leading to the development of better therapeutics and vaccination strategies, with a special focus on the study of factors associated with innate or adaptive immune responses to influenza vaccination and/or infection.
Collapse
Affiliation(s)
- Aitor Nogales
- Center for Animal Health Research, INIA-CISA, 28130 Madrid, Spain
- Correspondence: (A.N.); (M.L.D.)
| | - Marta L. DeDiego
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Correspondence: (A.N.); (M.L.D.)
| |
Collapse
|