1
|
Qiu J, Li X, Zhu H, Xiao F. Spatial Epidemiology and Its Role in Prevention and Control of Swine Viral Disease. Animals (Basel) 2024; 14:2814. [PMID: 39409763 PMCID: PMC11476123 DOI: 10.3390/ani14192814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/08/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
Spatial epidemiology offers a comprehensive framework for analyzing the spatial distribution and transmission of diseases, leveraging advanced technical tools and software, including Geographic Information Systems (GISs), remote sensing technology, statistical and mathematical software, and spatial analysis tools. Despite its increasing application to swine viral diseases (SVDs), certain challenges arise from its interdisciplinary nature. To support novices, frontline veterinarians, and public health policymakers in navigating its complexities, we provide a comprehensive overview of the common applications of spatial epidemiology in SVD. These applications are classified into four categories based on their objectives: visualizing and elucidating spatiotemporal distribution patterns, identifying risk factors, risk mapping, and tracing the spatiotemporal evolution of pathogens. We further elucidate the technical methods, software, and considerations necessary to accomplish these objectives. Additionally, we address critical issues such as the ecological fallacy and hypothesis generation in geographic correlation analysis. Finally, we explore the future prospects of spatial epidemiology in SVD within the One Health framework, offering a valuable reference for researchers engaged in the spatial analysis of SVD and other epidemics.
Collapse
Affiliation(s)
- Juan Qiu
- Key Laboratory of Monitoring and Estimate for Environment and Disaster of Hubei Province, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430077, China; (X.L.); (F.X.)
| | - Xiaodong Li
- Key Laboratory of Monitoring and Estimate for Environment and Disaster of Hubei Province, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430077, China; (X.L.); (F.X.)
| | - Huaiping Zhu
- Laboratory of Mathematical Parallel Systems (LAMPS), Department of Mathematics and Statistics, Centre for Diseases Modeling (CDM), York University, Toronto, ON M3J1P3, Canada;
| | - Fei Xiao
- Key Laboratory of Monitoring and Estimate for Environment and Disaster of Hubei Province, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430077, China; (X.L.); (F.X.)
| |
Collapse
|
2
|
Choe S, Park GN, Kim KS, Shin J, Lim SI, An BH, Hyun BH, An DJ. Efficacy of an orally administered classical swine fever live marker vaccine (Flc-LOM-BE rns strain) in pigs. Vaccine 2023; 41:7377-7386. [PMID: 37973511 DOI: 10.1016/j.vaccine.2023.10.071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/19/2023]
Abstract
In several countries, classical swine fever (CSF) has not been detected in domestic pigs, but has been detected in wild boars, making the disease difficult to control. To overcome this problem, we inoculated pigs with a CSF live marker vaccine (Flc-LOM-BErns strain), which has "distinguish infection from vaccinated animals (DIVA)" function, to determine whether it is suitable as an oral vaccine specifically for wild boars. Pigs inoculated intramuscularly or orally with the Flc-LOM-BErns vaccine were challenged 2 or 4 weeks later, respectively, with virulent CSFV. Pigs administered the oral Flc-LOM-BErns strain (105.0 and 6.0 TCID50/dose), and those vaccinated intramuscularly (103.0 TCID50/dose), had normal numbers of leukocytes and normal body temperature. Also, they generated protective neutralizing antibodies and anti-BVDV Erns antibodies. In addition, all pigs in these groups survived, with no CSFV RNA detected in feces, spleen, or other organs. Thus, the Flc-LOM-BErns vaccine shows excellent safety and efficacy, while having DIVA function and suitability for oral inoculation.
Collapse
Affiliation(s)
- SeEun Choe
- Virus Disease Division, Animal and Plant Quarantine Agency, Gimcheon, Gyeongbuk-do 39660, Republic of Korea.
| | - Gyu-Nam Park
- Virus Disease Division, Animal and Plant Quarantine Agency, Gimcheon, Gyeongbuk-do 39660, Republic of Korea.
| | - Ki-Sun Kim
- Virus Disease Division, Animal and Plant Quarantine Agency, Gimcheon, Gyeongbuk-do 39660, Republic of Korea.
| | - Jihye Shin
- Virus Disease Division, Animal and Plant Quarantine Agency, Gimcheon, Gyeongbuk-do 39660, Republic of Korea.
| | - Seong-In Lim
- Virus Disease Division, Animal and Plant Quarantine Agency, Gimcheon, Gyeongbuk-do 39660, Republic of Korea.
| | - Byung-Hyun An
- Department of Virology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Bang-Hun Hyun
- Virus Disease Division, Animal and Plant Quarantine Agency, Gimcheon, Gyeongbuk-do 39660, Republic of Korea.
| | - Dong-Jun An
- Virus Disease Division, Animal and Plant Quarantine Agency, Gimcheon, Gyeongbuk-do 39660, Republic of Korea.
| |
Collapse
|
3
|
Park GN, Shin J, Choe S, Kim KS, Kim JJ, Lim SI, An BH, Hyun BH, An DJ. Safety and Immunogenicity of Chimeric Pestivirus KD26_E2LOM in Piglets and Calves. Vaccines (Basel) 2023; 11:1622. [PMID: 37897024 PMCID: PMC10610696 DOI: 10.3390/vaccines11101622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/19/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
A chimeric pestivirus (KD26_E2LOM) was prepared by inserting the E2 gene of the classical swine fever virus (CSFV) LOM strain into the backbone of the bovine viral diarrhea virus (BVDV) KD26 strain. KD26_E2LOM was obtained by transfecting the cDNA pACKD26_E2LOM into PK-15 cells. KD26_E2LOM chimeric pestivirus proliferated to titers of 106.5 TCID50/mL and 108.0 TCID50/mL at 96 h post-inoculation into PK-15 cells or MDBK cells, respectively. It also reacted with antibodies specific for CSFV E2 and BVDV Erns, but not with an anti-BVDV E2 antibody. Piglets (55-60 days old) inoculated with a high dose (107.0 TCID50/mL) of KD26_E2LOM produced high levels of CSFV E2 antibodies. In addition, no co-habiting pigs were infected with KD26_E2LOM; however, some inoculated pigs excreted the virus, and the virus was detected in some organs. When pregnant sows were inoculated during the first trimester (55-60 days) with a high dose (107.0 TCID50/mL) of KD26_E2LOM, anti-CSFV E2 antibodies were produced at high levels; chimeric pestivirus was detected in one fetus and in the ileum of one sow. When 5-day-old calves that did not consume colostrum received a high dose (107.0 TCID50/mL) of KD26_E2LOM, one calf secreted the virus in both feces and nasal fluid on Day 2. A high dose of KD26_E2LOM does not induce specific clinical signs in most animals, does not spread from animal to animal, and generates CSFV E2 antibodies with DVIA functions. Therefore, chimeric pestivirus KD26_E2LOM is a potential CSFV live marker vaccine.
Collapse
Affiliation(s)
- Gyu-Nam Park
- Virus Disease Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Republic of Korea; (G.-N.P.); (J.S.); (S.C.); (K.-S.K.); (J.-J.K.); (S.-I.L.); (B.-H.H.)
| | - Jihye Shin
- Virus Disease Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Republic of Korea; (G.-N.P.); (J.S.); (S.C.); (K.-S.K.); (J.-J.K.); (S.-I.L.); (B.-H.H.)
| | - SeEun Choe
- Virus Disease Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Republic of Korea; (G.-N.P.); (J.S.); (S.C.); (K.-S.K.); (J.-J.K.); (S.-I.L.); (B.-H.H.)
| | - Ki-Sun Kim
- Virus Disease Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Republic of Korea; (G.-N.P.); (J.S.); (S.C.); (K.-S.K.); (J.-J.K.); (S.-I.L.); (B.-H.H.)
| | - Jae-Jo Kim
- Virus Disease Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Republic of Korea; (G.-N.P.); (J.S.); (S.C.); (K.-S.K.); (J.-J.K.); (S.-I.L.); (B.-H.H.)
| | - Seong-In Lim
- Virus Disease Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Republic of Korea; (G.-N.P.); (J.S.); (S.C.); (K.-S.K.); (J.-J.K.); (S.-I.L.); (B.-H.H.)
| | - Byung-Hyun An
- College of Veterinary Medicine, Seoul University, Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea;
| | - Bang-Hun Hyun
- Virus Disease Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Republic of Korea; (G.-N.P.); (J.S.); (S.C.); (K.-S.K.); (J.-J.K.); (S.-I.L.); (B.-H.H.)
| | - Dong-Jun An
- Virus Disease Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Republic of Korea; (G.-N.P.); (J.S.); (S.C.); (K.-S.K.); (J.-J.K.); (S.-I.L.); (B.-H.H.)
| |
Collapse
|
4
|
Yi W, Wang H, Qin H, Wang Q, Guo R, Wen G, Pan Z. Construction and efficacy of a new live chimeric C-strain vaccine with DIVA characteristics against classical swine fever. Vaccine 2023; 41:2003-2012. [PMID: 36803898 DOI: 10.1016/j.vaccine.2023.02.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/21/2023]
Abstract
To develop the new classical swine fever (CSF) vaccine candidate with differentiating infected vaccinated animals (DIVA) characteristics, a chimeric CSF virus (CSFV) was constructed based on an infectious cDNA clone of the CSF vaccine C-strain. The 5'- and 3'-untranslated regions (UTRs) and partial E2 region (residues 690-860) of the C-strain were substituted with the corresponding regions of bovine viral diarrhoea virus (BVDV) to construct the chimeric cDNA clone pC/bUTRs-tE2. The chimeric virus rC/bUTRs-tE2 was generated by several passages of pC/bUTRs-tE2-transfected PK15 cells. Stable growth and genetic properties of rC/bUTRs-tE2 were obtained after 30 serial passages. Compared to parental rC/bUTRs-tE2 (1st passage), two residue mutations (M834K and M979K) located in E2 in rC/bUTRs-tE2 P30 were observed. Compared to the C-strain, rC/bUTRs-tE2 exhibited unchanged cell tropism and decreased plaque-forming ability. Substituting the C-strain UTRs with the BVDV UTRs resulted in significantly increased viral replication in PK15 cells. Compared to CSFV Erns-positive and BVDV tE2-negative antibody responses induced by the CSF vaccine C-strain, immunization of rabbits and piglets with rC/bUTRs-tE2 resulted in serological profiles of CSFV Erns- and BVDV tE2-positive antibodies, which are used to serologically discriminate pigs that are clinically infected and vaccinated. Vaccination of piglets with rC/bUTRs-tE2 conferred complete protection against lethal CSFV challenge. Our results suggest that rC/bUTRs-tE2 is a promising new CSF marker vaccine candidate.
Collapse
Affiliation(s)
- Weicheng Yi
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Hao Wang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Huan Qin
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China; Laboratory, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430015, China
| | - Qin Wang
- World Organisation for Animal Health Reference Laboratory for Classical Swine Fever, China Institute of Veterinary Drug Control, Beijing 100081, China
| | - Rui Guo
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Guoyuan Wen
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Zishu Pan
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
5
|
Haplotype of Wild Korean Boars Infected by Classical Swine Fever Virus Subgenotype 2.1d. Animals (Basel) 2022; 12:ani12192670. [PMID: 36230411 PMCID: PMC9559489 DOI: 10.3390/ani12192670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/29/2022] [Accepted: 10/01/2022] [Indexed: 11/05/2022] Open
Abstract
Simple Summary Classical swine fever is a highly contagious disease that infects both domestic pigs and wild boars. Classical swine fever virus (CSFV) has not been detected in domestic pigs in South Korea since 2016, but has been increasing in wild boars since 2017. Two cases of CSFV subgenotype 2.1d were detected in wild Korean boars in 2011, but then no cases were detected until 2016; however, 16 cases of CSFV were detected between 2017 and 2019. In this study, we report seven CSFV-positive samples obtained from wild boars in 2020. In addition, although 13 mtDNA haplotypes were detected in wild boars in South Korea, all 25 cases of CSFV that occurred in wild boars between 2011 and 2020 were detected in animals with haplotype 01. Abstract Classical swine fever virus (CSFV) is one of the major pathogens that causes severe economic damage to the swine industry. Circulation of CSFV in wild boars carries the potential risk of reintroducing the virus into CSFV-free pig farms. This study carried out a genetic analysis of CSFV isolates from wild boars and analyzed the mtDNA haplotypes of the wild boars. Blood samples (n = 2140) from wild Korean boars captured in 2020 were subjected to qRT-PCR to detect CSFV, which was classified as subgenotype 2.1d based on phylogenetic analysis. CSFV had been detected in wild boars only in northern regions (Gangwon and Gyeonggi) of South Korea between 2011 and 2019. However, CSFV was identified in wild boars in the more southern regions (Chungbuk and Gyeongbuk) in 2020. Based on mitochondrial DNA analysis, all wild boars with CSFV were haplotype 01 (H01). Thus, we presume that the H01 haplotype is more susceptible to CSFV. In the future, infection of wild boars by CSFV is expected to occur intermittently every year, and we predict that most wild boars infected with CSFV will be haplotype H01.
Collapse
|
6
|
Lim JS, Kim E, Ryu PD, Pak SI. Basic reproduction number of African swine fever in wild boars ( Sus scrofa) and its spatiotemporal heterogeneity in South Korea. J Vet Sci 2021; 22:e71. [PMID: 34553516 PMCID: PMC8460458 DOI: 10.4142/jvs.2021.22.e71] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 07/29/2021] [Accepted: 08/05/2021] [Indexed: 11/21/2022] Open
Abstract
Background African swine fever (ASF) is a hemorrhagic fever occurring in wild boars (Sus scrofa) and domestic pigs. The epidemic situation of ASF in South Korean wild boars has increased the risk of ASF in domestic pig farms. Although basic reproduction number (R0) can be applied for control policies, it is challenging to estimate the R0 for ASF in wild boars due to surveillance bias, lack of wild boar population data, and the effect of ASF-positive wild boar carcass on disease dynamics. Objectives This study was undertaken to estimate the R0 of ASF in wild boars in South Korea, and subsequently analyze the spatiotemporal heterogeneity. Methods We detected the local transmission clusters using the spatiotemporal clustering algorithm, which was modified to incorporate the effect of ASF-positive wild boar carcass. With the assumption of exponential growth, R0 was estimated for each cluster. The temporal change of the estimates and its association with the habitat suitability of wild boar were analyzed. Results Totally, 22 local transmission clusters were detected, showing seasonal patterns occurring in winter and spring. Mean value of R0 of each cluster was 1.54. The estimates showed a temporal increasing trend and positive association with habitat suitability of wild boar. Conclusions The disease dynamics among wild boars seems to have worsened over time. Thus, in areas with a high elevation and suitable for wild boars, practical methods need to be contrived to ratify the control policies for wild boars.
Collapse
Affiliation(s)
- Jun-Sik Lim
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, Korea
| | - Eutteum Kim
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, Korea
| | - Pan-Dong Ryu
- College of Veterinary Medicine, Seoul National University, Seoul 08732, Korea
| | - Son-Il Pak
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, Korea.
| |
Collapse
|
7
|
Postel A, Becher P. Genetically distinct pestiviruses pave the way to improved classical swine fever marker vaccine candidates based on the chimeric pestivirus concept. Emerg Microbes Infect 2021; 9:2180-2189. [PMID: 32962557 PMCID: PMC7580611 DOI: 10.1080/22221751.2020.1826893] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Classical swine fever (CSF) is one of the most important viral diseases of pigs. In many countries, the use of vaccines is restricted due to limitations of subunit vaccines with regard to efficacy and onset of protection as well as failure of live vaccines to differentiate infected from vaccinated animals (DIVA principle). Chimeric pestiviruses based on CSF virus (CSFV) and the related bovine viral diarrhea virus (BVDV) have been licensed as live marker vaccines in Europe and Asia, but cross-reactive antibodies can cause problems in DIVA application due to close antigenic relationship. To develop marker vaccine candidates with improved DIVA properties, three chimeric viruses were generated by replacing Erns of CSFV Alfort-Tübingen with homologue proteins of only distantly related pestiviruses. The chimeric viruses “Ra”, “Pro”, and “RaPro” contained Erns sequences of Norway rat and Pronghorn pestiviruses or a combination of both, respectively. In porcine cells, the “Pro” chimera replicated to high titers, while replication of the “Ra” chimera was limited. The “RaPro” chimera showed an intermediate phenotype. All vaccine candidates were attenuated in a vaccination/ challenge trial in pigs, but to different extents. Inoculation induced moderate to high levels of neutralizing antibodies that protected against infection with a genetically heterologous, highly virulent CSFV. Importantly, serum samples of vaccinated animals did not show any cross-reactivity in a CSFV Erns antibody ELISA. In conclusion, the Erns antigen from distantly related pestiviruses can provide a robust serological negative marker for a new generation of improved CSFV marker vaccines based on the chimeric pestivirus concept.
Collapse
Affiliation(s)
- Alexander Postel
- Institute of Virology, Department of Infectious Diseases, University of Veterinary Medicine, Hannover, Germany
| | - Paul Becher
- Institute of Virology, Department of Infectious Diseases, University of Veterinary Medicine, Hannover, Germany
| |
Collapse
|
8
|
Yamamoto T, Sawai K, Nishi T, Fukai K, Kato T, Hayama Y, Murato Y, Shimizu Y, Yamaguchi E. Subgrouping and analysis of relationships between classical swine fever virus identified during the 2018-2020 epidemic in Japan by a novel approach using shared genomic variants. Transbound Emerg Dis 2021; 69:1166-1177. [PMID: 33730417 DOI: 10.1111/tbed.14076] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/01/2021] [Accepted: 03/15/2021] [Indexed: 11/29/2022]
Abstract
Classical swine fever (CSF) is a worldwide devastating disease of the pig industry caused by classical swine fever virus (CSFV). In September 2018, an outbreak of CSF occurred in Japan where the disease had been eradicated and was officially designated a CSF-free country since 2015. Following the detection of the first 2018 case on a farm in Gifu Prefecture, the disease spread among both farm pigs and wild boars and still continues. Epigenome analysis using whole-genome information is helpful in identifying the infection route, but the current approaches provide an insufficient resolution. In this study, a novel method of using single-nucleotide variants (SNVs) was employed to identify the associations among 158 isolates (65 from farms and 93 from wild boars). The identified groups of CSFV strains were plotted in different colours on a map, identifying the location where each strain was collected. The lack of an SNV set shared between the index case and the other strains suggested the first infection in Japan during the outbreak occurred in wild boars, not at the index farm. For the Atsumi Peninsula outbreaks, where nine farms were found infected within a 10-km radius area, the farm strains were assembled into three groups, suggesting these outbreaks resulted from at least three different infection events in this area. For the infections in the area around Saitama Prefecture, an area remote from the epicentre, strains from both the farms and wild boars were identified as being in the same group, suggesting they resulted from one viral introduction. Likewise, seven infected farms in Okinawa Prefecture, almost 1,500 km from Gifu Prefecture, were identified as being in a common, but separate group. By demonstrating the variety of transmission routes and possibility of long-distance infection, these results will help improve disease control measures.
Collapse
Affiliation(s)
- Takehisa Yamamoto
- Epidemiology Unit, Viral Disease and Epidemiology Research Division, National Institute of Animal Health, National Agriculture and Food Research Organization, Ibaraki, Japan
| | - Kotaro Sawai
- Epidemiology Unit, Viral Disease and Epidemiology Research Division, National Institute of Animal Health, National Agriculture and Food Research Organization, Ibaraki, Japan
| | - Tatsuya Nishi
- Foot and Mouth Disease Unit, Division of Transboundary Animal Diseases, National Institute of Animal Health, National Agriculture and Food Research Organization, Kodaira, Japan
| | - Katsuhiko Fukai
- Foot and Mouth Disease Unit, Division of Transboundary Animal Diseases, National Institute of Animal Health, National Agriculture and Food Research Organization, Kodaira, Japan
| | - Tomoko Kato
- Foot and Mouth Disease Unit, Division of Transboundary Animal Diseases, National Institute of Animal Health, National Agriculture and Food Research Organization, Kodaira, Japan
| | - Yoko Hayama
- Epidemiology Unit, Viral Disease and Epidemiology Research Division, National Institute of Animal Health, National Agriculture and Food Research Organization, Ibaraki, Japan
| | - Yoshinori Murato
- Epidemiology Unit, Viral Disease and Epidemiology Research Division, National Institute of Animal Health, National Agriculture and Food Research Organization, Ibaraki, Japan
| | - Yumiko Shimizu
- Epidemiology Unit, Viral Disease and Epidemiology Research Division, National Institute of Animal Health, National Agriculture and Food Research Organization, Ibaraki, Japan
| | - Emi Yamaguchi
- Epidemiology Unit, Viral Disease and Epidemiology Research Division, National Institute of Animal Health, National Agriculture and Food Research Organization, Ibaraki, Japan
| |
Collapse
|
9
|
Bazarragchaa E, Isoda N, Kim T, Tetsuo M, Ito S, Matsuno K, Sakoda Y. Efficacy of Oral Vaccine against Classical Swine Fever in Wild Boar and Estimation of the Disease Dynamics in the Quantitative Approach. Viruses 2021; 13:v13020319. [PMID: 33672749 PMCID: PMC7924559 DOI: 10.3390/v13020319] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/09/2021] [Accepted: 02/18/2021] [Indexed: 11/16/2022] Open
Abstract
Classical swine fever virus (CSFV) in the wild boar population has been spreading in Japan, alongside outbreaks on pigs, since classical swine fever (CSF) reemerged in September 2018. The vaccination using oral bait vaccine was initially implemented in Gifu prefecture in March 2019. In the present study, antibodies against CSFV in wild boar were assessed in 1443 captured and dead wild boars in Gifu prefecture. After the implementation of oral vaccination, the increase of the proportion of seropositive animals and their titer in wild boars were confirmed. Quantitative analysis of antigen and antibodies against CSFV in wild boar implies potential disease diversity in the wild boar population. Animals with status in high virus replication (Ct < 30) and non- or low-immune response were confirmed and were sustained at a certain level after initial oral vaccination. Through continuous vaccination periods, the increase of seroprevalence among wild boar and the decrease of CSFV-positive animals were observed. The epidemiological analysis based on the quantitative virological outcomes could provide more information on the efficacy of oral vaccination and dynamics of CSF in the wild boar population, which will help to improve the implementation of control measures for CSF in countries such as Japan and neighboring countries.
Collapse
Affiliation(s)
- Enkhbold Bazarragchaa
- Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-Ku, Sapporo 060-0818, Hokkaido, Japan; (E.B.); (T.K.); (M.T.)
| | - Norikazu Isoda
- Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-Ku, Sapporo 060-0818, Hokkaido, Japan; (E.B.); (T.K.); (M.T.)
- Unit of Risk Analysis and Management, Research Center for Zoonosis Control, Hokkaido University, Kita 20, Nishi 10, Kita-Ku, Sapporo 001-0020, Hokkaido, Japan; (S.I.); (K.M.)
- Correspondence: (N.I.); (Y.S.); Tel.: +81-11-706-5208 (N.I.); +81-11-706-5207 (Y.S.)
| | - Taksoo Kim
- Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-Ku, Sapporo 060-0818, Hokkaido, Japan; (E.B.); (T.K.); (M.T.)
| | - Madoka Tetsuo
- Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-Ku, Sapporo 060-0818, Hokkaido, Japan; (E.B.); (T.K.); (M.T.)
| | - Satoshi Ito
- Unit of Risk Analysis and Management, Research Center for Zoonosis Control, Hokkaido University, Kita 20, Nishi 10, Kita-Ku, Sapporo 001-0020, Hokkaido, Japan; (S.I.); (K.M.)
| | - Keita Matsuno
- Unit of Risk Analysis and Management, Research Center for Zoonosis Control, Hokkaido University, Kita 20, Nishi 10, Kita-Ku, Sapporo 001-0020, Hokkaido, Japan; (S.I.); (K.M.)
- International Collaboration Unit, Research Center for Zoonosis Control, Hokkaido University, Kita 20, Nishi 10, Kita-Ku, Sapporo 001-0020, Hokkaido, Japan
| | - Yoshihiro Sakoda
- Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-Ku, Sapporo 060-0818, Hokkaido, Japan; (E.B.); (T.K.); (M.T.)
- International Collaboration Unit, Research Center for Zoonosis Control, Hokkaido University, Kita 20, Nishi 10, Kita-Ku, Sapporo 001-0020, Hokkaido, Japan
- Correspondence: (N.I.); (Y.S.); Tel.: +81-11-706-5208 (N.I.); +81-11-706-5207 (Y.S.)
| |
Collapse
|
10
|
Coronado L, Perera CL, Rios L, Frías MT, Pérez LJ. A Critical Review about Different Vaccines against Classical Swine Fever Virus and Their Repercussions in Endemic Regions. Vaccines (Basel) 2021; 9:154. [PMID: 33671909 PMCID: PMC7918945 DOI: 10.3390/vaccines9020154] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/31/2021] [Accepted: 02/09/2021] [Indexed: 12/24/2022] Open
Abstract
Classical swine fever (CSF) is, without any doubt, one of the most devasting viral infectious diseases affecting the members of Suidae family, which causes a severe impact on the global economy. The reemergence of CSF virus (CSFV) in several countries in America, Asia, and sporadic outbreaks in Europe, sheds light about the serious concern that a potential global reemergence of this disease represents. The negative aspects related with the application of mass stamping out policies, including elevated costs and ethical issues, point out vaccination as the main control measure against future outbreaks. Hence, it is imperative for the scientific community to continue with the active investigations for more effective vaccines against CSFV. The current review pursues to gather all the available information about the vaccines in use or under developing stages against CSFV. From the perspective concerning the evolutionary viral process, this review also discusses the current problematic in CSF-endemic countries.
Collapse
Affiliation(s)
- Liani Coronado
- National Centre for Animal and Plant Health (CENSA), OIE Collaborating Centre for Disaster Risk Reduction in Animal Health, San José de las Lajas 32700, Cuba; (L.C.); (C.L.P.); (M.T.F.)
| | - Carmen L. Perera
- National Centre for Animal and Plant Health (CENSA), OIE Collaborating Centre for Disaster Risk Reduction in Animal Health, San José de las Lajas 32700, Cuba; (L.C.); (C.L.P.); (M.T.F.)
| | - Liliam Rios
- Reiman Cancer Research Laboratory, Faculty of Medicine, University of New Brunswick, Saint John, NB E2L 4L5, Canada;
| | - María T. Frías
- National Centre for Animal and Plant Health (CENSA), OIE Collaborating Centre for Disaster Risk Reduction in Animal Health, San José de las Lajas 32700, Cuba; (L.C.); (C.L.P.); (M.T.F.)
| | - Lester J. Pérez
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Illinois at Urbana–Champaign, Champaign, IL 61802, USA
| |
Collapse
|
11
|
Shimizu Y, Hayama Y, Murato Y, Sawai K, Yamaguchi E, Yamamoto T. Epidemiology of Classical Swine Fever in Japan-A Descriptive Analysis of the Outbreaks in 2018-2019. Front Vet Sci 2020; 7:573480. [PMID: 33195567 PMCID: PMC7536261 DOI: 10.3389/fvets.2020.573480] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 08/18/2020] [Indexed: 11/13/2022] Open
Abstract
This study describes the epidemiological characteristics of classical swine fever (CSF) outbreaks in Japan. The first case was confirmed in September 2018, 26 years after the last known case. Outbreaks occurred on 39 farms, 34 commercial farms, and 5 non-commercial farms, between September 2018 and August 2019. In this study, a descriptive analysis was conducted of the epidemiological data on the characteristics of the affected farms, clinical manifestations, intra-farm transmission, association with infected wild boars, and control measures implemented on the farms. Twenty-eight of the 34 affected commercial farms were farrow-to-finish farms. It was assumed that the major risk factors were frequent human-pig interactions and the movement of pigs between farms. Fever and leukopenia were commonly observed in infected pigs. In 12 out of 18 farms where clinical manifestations among fattening pigs was the reason for notification, death was the most frequent clinical manifestation, but the proportion of dead animals did not exceed 0.5% of the total number of animals at most of the affected farms. Therefore, the clinical form of CSF in Japan was considered to be sub-acute. Twenty-three of the 29 farms (79%) with pigs at multiple stages (i.e., piglets, fattening pigs, and sows), had infection across the multiple stages. Many of these farms were within 5 km of the site where the first infected wild boars had been discovered, suggesting that infected wild boars were the source of infection. Infections still occurred at farms that had implemented measures at their farm boundaries to prevent the introduction of the virus into their farms, such as disinfection of vehicles and people, changing boots of the workers, and installation of perimeter fences. It is necessary to continue to strengthen biosecurity measures for farms located in areas with infected wild boars and to continue monitoring the distribution of infected wild boars so that any abnormalities can be reported and inspected at an early stage.
Collapse
Affiliation(s)
- Yumiko Shimizu
- Viral Disease and Epidemiology Research Division, National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Yoko Hayama
- Viral Disease and Epidemiology Research Division, National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Yoshinori Murato
- Viral Disease and Epidemiology Research Division, National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Kotaro Sawai
- Viral Disease and Epidemiology Research Division, National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Emi Yamaguchi
- Viral Disease and Epidemiology Research Division, National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Takehisa Yamamoto
- Viral Disease and Epidemiology Research Division, National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Japan
| |
Collapse
|
12
|
Classical Swine Fever: A Truly Classical Swine Disease. Pathogens 2020; 9:pathogens9090745. [PMID: 32927731 PMCID: PMC7560091 DOI: 10.3390/pathogens9090745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/09/2020] [Accepted: 09/09/2020] [Indexed: 11/26/2022] Open
|
13
|
Seo MG, Kwon OD, Kwak D. Molecular Identification of Borrelia afzelii from Ticks Parasitizing Domestic and Wild Animals in South Korea. Microorganisms 2020; 8:microorganisms8050649. [PMID: 32365723 PMCID: PMC7284850 DOI: 10.3390/microorganisms8050649] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/25/2020] [Accepted: 04/27/2020] [Indexed: 12/11/2022] Open
Abstract
Lyme borreliosis is one of the most prevalent tick-borne infectious zoonotic diseases caused by spirochetes of the Borrelia burgdorferi sensu lato group. The present study assessed the risk factors and prevalence of Lyme borreliosis in ticks parasitizing domestic and wild animals. A total of 589 ticks (329 tick pools) collected from animals were identified as Haemaphysalis longicornis, (85.7%), H. flava (10.0%), and Ixodes nipponensis (4.3%) using morphological and molecular methods in South Korea. In this study, the 5S–23S gene sequences of B. afzelii (6/329, 1.8%) were detected in ticks taken from mammals, including ticks from horses (2/147 pools, 1.4%), wild boar (1/19 pools, 5.3%), native Korean goats (NKG, 2/34 pools, 5.9%), and Korean water deer (1/129 pools, 0.8%). Unfortunately, ospA, pyrG, and flagellin genes were not able to be amplified in the present study. To our knowledge, our results are the first inclusive data available for B. afzelii circulation in several tick species taken from NKG, horses, and wild boar in South Korea. We believe that the current findings extend our knowledge of the distribution and possible vector spectrum of Borrelia spp. We recommend continuous evaluation of the potential public health threat posed by Borrelia infected ticks.
Collapse
Affiliation(s)
- Min-Goo Seo
- Veterinary Drugs and Biologics Division, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon, Gyeongbuk 39660, Korea;
| | - Oh-Deog Kwon
- College of Veterinary Medicine, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Korea;
| | - Dongmi Kwak
- College of Veterinary Medicine, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Korea;
- Cardiovascular Research Institute, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Korea
- Correspondence:
| |
Collapse
|