1
|
Yan T, Wang Z, Li R, Zhang D, Song Y, Cheng Z. Gyrovirus: current status and challenge. Front Microbiol 2024; 15:1449814. [PMID: 39220040 PMCID: PMC11362077 DOI: 10.3389/fmicb.2024.1449814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024] Open
Abstract
Gyrovirus (GyV) is small, single-stranded circular DNA viruses that has recently been assigned to the family Anelloviridae. In the last decade, many GyVs that have an apparent pan-tropism at the host level were identified by high-throughput sequencing (HTS) technology. As of now, they have achieved global distribution. Several species of GyVs have been demonstrated to be pathogenic to poultry, particularly chicken anemia virus (CAV), causing significant economic losses to the global poultry industry. Although GyVs are highly prevalent in various birds worldwide, their direct involvement in the etiology of specific diseases and the reasons for their ubiquity and host diversity are not fully understood. This review summarizes current knowledge about GyVs, with a major emphasis on their morphofunctional properties, epidemiological characteristics, genetic evolution, pathogenicity, and immunopathogenesis. Additionally, the association between GyVs and various diseases, as well as its potential impact on the poultry industry, have been discussed. Future prevention and control strategies have also been explored. These insights underscore the importance of conducting research to establish a virus culture system, optimize surveillance, and develop vaccines for GyVs.
Collapse
Affiliation(s)
| | | | | | | | | | - Ziqiang Cheng
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai’an, China
| |
Collapse
|
2
|
Fujiwara A, Horii W, Sano J, Kodama T, Kato A, Shibuya K, Saitoh T. Invasion of Chicken Anemia Virus in Specific-Pathogen-Free Chicken Flocks and Its Successful Elimination from the Colony. Vet Sci 2024; 11:329. [PMID: 39058013 PMCID: PMC11281415 DOI: 10.3390/vetsci11070329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/19/2024] [Accepted: 07/20/2024] [Indexed: 07/28/2024] Open
Abstract
A specific-pathogen-free (SPF) chicken colony was maintained with successive groups a month apart in age. The absence of specific pathogens, including chicken anemia virus (CAV), was confirmed through periodic serological tests for each group. However, some groups became CAV seropositive. The procedures of removing seropositive and the adjacent seronegative chickens followed with chemically disinfecting the housing did not halt CAV outbreaks. The full genome sequence of the CAV strain that appeared was closely related to low-virulence isolates in China. The outbreaks of CAV decreased with an increase in the seropositive chicken population, indicating that the progeny is protected from CAV infection by maternal anti-CAV antibodies. The persistence of CAV in erythroid and lymphoid tissues or reproductive tissues from CAV seropositive chickens was examined in chickens of various ages using polymerase chain reaction (PCR). Since a low persistence of CAV was observed in the colony, we isolated eggs from CAV seropositive hens through artificial insemination using semen collected from roosters and confirmed as CAV-free by PCR. Fertilized eggs were transferred to a new SPF facility and used for generating CAV-free progeny. To date, chickens reared in the new facility have been CAV-free for longer than two years. Redirection of eggs from seropositive hens was an effective means of eliminating CAV from chickens.
Collapse
Affiliation(s)
- Akira Fujiwara
- Nippon Institute for Biological Science, 9-2221-1 Shin-machi, Ome 198-0024, Tokyo, Japan; (A.F.)
| | - Wataru Horii
- Nisseiken Co., Ltd., Kobuchisawa Facility, Kamisasao, Hokuto 408-0041, Yamanashi, Japan; (W.H.); (J.S.)
| | - Junichi Sano
- Nisseiken Co., Ltd., Kobuchisawa Facility, Kamisasao, Hokuto 408-0041, Yamanashi, Japan; (W.H.); (J.S.)
| | - Toshiaki Kodama
- Nippon Institute for Biological Science, 9-2221-1 Shin-machi, Ome 198-0024, Tokyo, Japan; (A.F.)
| | - Atsushi Kato
- Nippon Institute for Biological Science, 9-2221-1 Shin-machi, Ome 198-0024, Tokyo, Japan; (A.F.)
- Biomedical Science Association, 2-20-8-3F Kamiosaki, Shinagawa-ku 141-0021, Tokyo, Japan
| | - Kazumoto Shibuya
- Nippon Institute for Biological Science, 9-2221-1 Shin-machi, Ome 198-0024, Tokyo, Japan; (A.F.)
| | - Toshiki Saitoh
- Nisseiken Co., Ltd., 9-2221-1 Shin-machi, Ome 198-0024, Tokyo, Japan;
| |
Collapse
|
3
|
Angsujinda K, Peala W, Sittidech A, Wanganurakkul S, Mahony TJ, Wang SF, Smith DR, Chintapitaksakul L, Khongchareonporn N, Assavalapsakul W. Development of a lateral flow assay for rapid and accurate detection of chicken anemia virus. Poult Sci 2024; 103:103432. [PMID: 38232617 PMCID: PMC10827598 DOI: 10.1016/j.psj.2024.103432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/28/2023] [Accepted: 01/03/2024] [Indexed: 01/19/2024] Open
Abstract
Significant challenges to poultry health are posed by chicken anemia virus (CAV), which induces immunosuppression and causes increased susceptibility to secondary infections. The effective management and containment of CAV within poultry stocks require precise and prompt diagnosis. However, a deficiency persists in the availability of low-cost, rapid, and portable CAV detection devices. In this study, an immunochromatographic lateral-flow test strip-based assay was developed for CAV detection using in-house generated monoclonal antibodies (MABs) against CAV viral protein 1 (VP1). The recombinant truncated VP1 protein (Δ60VP1), with amino acid residues 1 to 60 of the native protein deleted, was produced via a prokaryotic expression system and utilized for immunizing BALB/c mice. Subsequently, high-affinity MABs against Δ60VP1 were generated and screened using conventional hybridoma technology combined with serial dilution assays. Two MABs, MAB1, and MAB3, both binding to distinct epitopes of Δ60VP1, were selected for the development of a lateral-flow assay. Sensitivity analysis demonstrated that the Δ60VP1 antigen could be detected by our homemade lateral-flow assay at concentrations as low as 625 ng/mL, and this sensitivity was maintained for at least 6 mo. The assay exhibited high specificity, as evidenced by its lack of reactivity with surrogate recombinant proteins and the absence of cross-reactivity with other chicken viruses and viral antigens. Comparative analysis with quantitative PCR data demonstrated substantial agreement, with a Kappa coefficient of 0.66, utilizing a sample set comprising 305 clinical chicken serum samples. In conclusion, the first lateral-flow assay for CAV detection was developed in this study, utilizing 2 specific anti-VP1 MABs. It is characterized by simplicity, rapidity, sensitivity, and specificity.
Collapse
Affiliation(s)
- Kitipong Angsujinda
- Aquatic Resources Research Institute, Chulalongkorn University, Bangkok 10330, Thailand
| | - Wisuttiya Peala
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Akekarach Sittidech
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Saruda Wanganurakkul
- Veterinary Research and Development Center (Eastern Region), Department of Livestock Development, Chonburi 20220, Thailand
| | - Timothy J Mahony
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Sheng-Fan Wang
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Duncan R Smith
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom 73170, Thailand
| | | | - Nanthika Khongchareonporn
- Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Bangkok 10330, Thailand; Center of Excellence for Food and Water Risk Analysis, Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, 10330 Bangkok, Thailand
| | - Wanchai Assavalapsakul
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
4
|
Adedeji AJ, Shittu I, Akanbi OB, Asala OO, Adole JA, Okewole PA, Ijale GO, Kabantiyok D, Idoko F, Shallmizhili JJ, Abdu PA, Pewan SB. First report of co-infections of Marek's disease virus and chicken infectious anaemia virus in poultry flocks in Nigeria. Vet Anim Sci 2024; 23:100339. [PMID: 38406258 PMCID: PMC10884768 DOI: 10.1016/j.vas.2024.100339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024] Open
Abstract
Marek's disease (MD) and chicken infectious anaemia (CIA) are viral immunosuppressive diseases of poultry caused by the MD virus (MDV) and CIA virus (CIAV) respectively. Despite vaccination against MD, the incidence of the disease in vaccinated poultry flocks in Nigeria persists. However, underlying factors like co-infection with CIAV have not been investigated in the country. This study was designed to investigate possible co-infections of MDV and CIAV in poultry flocks in Nigeria. In 2016, tumorous tissue samples were collected from suspected cases of MD at necropsy in Jos, Plateau State, Nigeria. The samples collected were fixed in formalin for histopathological examination, genomic DNA was extracted from a second part and analysed by polymerase chain reaction (PCR), targeting the meq and VP1 genes of the MDV and CIAV, respectively. The histology results revealed that the cutaneous and proventricular lymphomas were characterized by large numbers of mononuclear cellular infiltrates admixed with heterophils. The PCR results revealed that MDV was detected in 66.7% (16/24), CIAV in 45.8% (11/24), and co-infections of MDV and CIAV were detected in 45.8% (11/24) of the samples analysed. In addition, co-infections of MD and CIA were recorded in 100% (6/6) and 27.7% (5/18) of broilers and layer/pullet' samples respectively. Phylogenetic analysis of the meq gene sequences revealed that the Nigerian MDV clusters with very virulent MDV from Egypt and Italy. While, CIAV sequences were genotype II and genotype III and clustered with CIAVs from Cameroon and China. This is the first report of co-infections of MD and CIA in Nigeria.
Collapse
Affiliation(s)
| | | | - Olatunde B. Akanbi
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, University of Ilorin, Nigeria
| | | | | | | | - Gabriel O. Ijale
- Federal Ministry of Agriculture and Rural Development, Abuja, Nigeria
| | | | - Felix Idoko
- National Veterinary Research Institute Vom, Nigeria
| | | | - Paul A. Abdu
- Faculty of Veterinary Medicine, Ahmadu Bello University Zaria, Nigeria
| | | |
Collapse
|
5
|
Huang J, Zhang Y, Cheng A, Wang M, Liu M, Zhu D, Chen S, Zhao X, Yang Q, Wu Y, Zhang S, Ou X, Mao S, Gao Q, Sun D, Tian B, Yin Z, Jia R. Duck Circovirus genotype 2 ORF3 protein induces apoptosis through the mitochondrial pathway. Poult Sci 2023; 102:102533. [PMID: 36848756 PMCID: PMC9984893 DOI: 10.1016/j.psj.2023.102533] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 12/26/2022] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
Duck circovirus genotype 2 (DuCV2) belongs to the genus Circovirus, family Circoviridae. It can generally cause lymphocyte atrophy and necrosis in ducks, which leads to immunosuppression. The function of the DuCV2 open reading frame 3 (ORF3) protein in viral pathogenesis in host cells remains unclear. Therefore, a series of studies based on ORF3 of the isolate DuCV GH01 strain (belonging to DuCV2) were carried out in duck embryo fibroblasts (DEFs) in this study. The results showed that the ORF3 protein could induce nuclear shrinkage and fragmentation in DEFs. Chromosomal DNA breakage was observed by TUNEL assay. The expression levels of caspase-related genes showed that ORF3 primarily promoted caspase 3 and caspase 9 expression. Furthermore, the protein expression levels of cleaved caspase 3 and cleaved caspase 9 in DEFs were enhanced by ORF3. Thus, ORF3 may activate the mitochondrial apoptosis pathway. When the 20 amino acid residues at the C-terminus of ORF3 (ORF3ΔC20) were deleted, the apoptosis rates were decreased. Moreover, compared to ORF3, ORF3ΔC20 downregulated the mRNA levels of cytochrome c (Cyt c), poly ADP-ribose polymerase (PARP) and apoptosis protease activating factor 1 (Apaf-1), which are the key molecules in the mitochondrial apoptotic pathway. Further study showed that ORF3ΔC20 could reduce the mitochondrial membrane potential (MMP). This study suggested that the DuCV2 ORF3 protein may primarily activate apoptosis through the mitochondrial pathway in DEFs, and this function is ORF3 C20 dependent.
Collapse
Affiliation(s)
- Juan Huang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China,Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China
| | - Yanting Zhang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China,Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Anchun Cheng
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China,Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China
| | - Mingshu Wang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China,Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China
| | - Mafeng Liu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China,Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China
| | - Dekang Zhu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China,Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China
| | - Shun Chen
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China,Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China
| | - Xinxin Zhao
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China,Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China
| | - Qiao Yang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China,Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China
| | - Ying Wu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China,Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China
| | - Shaqiu Zhang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China,Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China
| | - Xumin Ou
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China,Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China
| | - Sai Mao
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China,Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China
| | - Qun Gao
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China,Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China
| | - Di Sun
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China,Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China
| | - Bin Tian
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China,Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China
| | - Zhongqiong Yin
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China
| | - Renyong Jia
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China.
| |
Collapse
|
6
|
Detection of Gyrovirus galga 1 in Cryopreserved Organs from Two Commercial Broiler Flocks in Japan. Viruses 2022; 14:v14071590. [PMID: 35891569 PMCID: PMC9319249 DOI: 10.3390/v14071590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/12/2022] [Accepted: 07/20/2022] [Indexed: 02/04/2023] Open
Abstract
Gyrovirus galga 1 (GyVg1, previously recognized as avian gyrovirus 2), which was first reported in chicken in 2011, is a new member of the genus Gyrovirus. The presence of GyVg1 has also been confirmed in different regions of Europe, South America, Africa, and Asia, indicating its global distribution. However, because there are no reports of examining the distribution of GyVg1 in animals in Japan, the epidemiology of this virus is unknown. In this study, we attempted to retrospectively detect GyVg1 in cryopreserved chicken materials derived from different two commercial broiler flocks in 1997. The GyVg1 genome was detected in organ materials derived from both flocks by PCR. GyVg1 detected in both flocks was classified into four genetic groups by analyzing the nucleotide sequences of the detected PCR products. These results suggest that diverse GyVg1 strains were present in commercial chicken flocks as early as 1997 in Japan.
Collapse
|
7
|
Wang XW, Feng J, Jin JX, Zhu XJ, Sun AJ, Liu HY, Wang JJ, Wang R, Yang X, Chen L, Liao YF, Zhuang GQ. Molecular Epidemiology and Pathogenic Characterization of Novel Chicken Infectious Anemia Viruses in Henan Province of China. Front Vet Sci 2022; 9:871826. [PMID: 35419450 PMCID: PMC8995968 DOI: 10.3389/fvets.2022.871826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 03/07/2022] [Indexed: 12/02/2022] Open
Abstract
Chicken infectious anemia (CIA) is an immunosuppressive disease caused by the chicken infectious anemia virus (CIAV) resulting in heavy economic losses once an outbreak is established. This study conducted a systematic analysis of the epidemiology and pathology of CIA in Henan province, China. A total of 437 clinical tissue samples and 120 poultry disease-related live attenuated vaccines were collected during 2017–2020; of which 45 were positive for CIAV nucleic acid, with a positive rate of 8.08%. Our results showed that genome sequence similarity among a total of 12 CIAV isolates was high, and ranged from 97.1 to 99.3%, and their similarity to the vaccine strains Cux-1 and Del-Ros ranged from 97.8 to 98.6%. However, There were mutations in the locus of the major capsid proteins VP1, VP2, and VP3 among all isolates. The subsequent sequence analysis indicated that the isolates of HN-4 and HN-8 showed genetic recombination and follow up animal experiments revealed that HN-4 might be a pathogenic strain. Our results reveal that both field infection and non-CIAV vaccines contamination promote the epidemiology of CIAV in China and some dominant epidemic viruses have undergone recombination and evolution. This study provides important information to help with the prevention and control of CIAV in the poultry industry.
Collapse
Affiliation(s)
- Xin-Wei Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Jie Feng
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Jia-Xin Jin
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Xiao-Jing Zhu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Ai-Jun Sun
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Hua-Yuan Liu
- Wolong Animal's Sanitation Administration, Nanyang, China
| | - Jing-Jing Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Rui Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Xia Yang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Lu Chen
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Yi-Fei Liao
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Guo-Qing Zhuang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
- *Correspondence: Guo-Qing Zhuang
| |
Collapse
|
8
|
Fehér E, Bali K, Kaszab E, Ihász K, Jakab S, Nagy B, Ursu K, Farkas SL, Bányai K. A novel gyrovirus in a common pheasant (Phasianus colchicus) with poult enteritis and mortality syndrome. Arch Virol 2022; 167:1349-1353. [PMID: 35306591 PMCID: PMC9038835 DOI: 10.1007/s00705-022-05417-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/06/2022] [Indexed: 01/15/2023]
Abstract
A novel gyrovirus was detected in an intestinal specimen of a common pheasant that died due to poult enteritis and mortality syndrome. The genome of the pheasant-associated gyrovirus (PAGyV) is 2353 nucleotides (nt) long and contains putative genes for the VP1, VP2, and VP3 proteins in an arrangement that is typical for gyroviruses. Gyrovirus-specific motifs were identified in both the coding region and the intergenic region of the PAGyV genome. The VP1 of PAGyV shares up to 67.6% pairwise nt sequence identity with reference sequences and forms a distinct branch in the phylogenetic tree. Thus, according to the recently described species demarcation criteria, PAGyV belongs to a novel species in the genus Gyrovirus, family Anelloviridae, for which we propose the name "Gyrovirus phaco 1".
Collapse
Affiliation(s)
- Enikő Fehér
- Veterinary Medical Research Institute, Hungária krt 21, Budapest, 1143, Hungary.
| | - Krisztina Bali
- Veterinary Medical Research Institute, Hungária krt 21, Budapest, 1143, Hungary
| | - Eszter Kaszab
- Veterinary Medical Research Institute, Hungária krt 21, Budapest, 1143, Hungary
| | - Katalin Ihász
- Veterinary Medical Research Institute, Hungária krt 21, Budapest, 1143, Hungary
| | - Szilvia Jakab
- Veterinary Medical Research Institute, Hungária krt 21, Budapest, 1143, Hungary
| | - Borbála Nagy
- Veterinary Medical Research Institute, Hungária krt 21, Budapest, 1143, Hungary
| | - Krisztina Ursu
- Veterinary Diagnostic Directorate, National Food Chain Safety Office, Tábornok utca 2, Budapest, 1143, Hungary
| | - Szilvia L Farkas
- University of Veterinary Medicine, István utca 2, Budapest, 1078, Hungary
| | - Krisztián Bányai
- Veterinary Medical Research Institute, Hungária krt 21, Budapest, 1143, Hungary.,University of Veterinary Medicine, István utca 2, Budapest, 1078, Hungary
| |
Collapse
|
9
|
Yuan S, Yan T, Huang L, Hao X, Zhao M, Zhang S, Zhou D, Cheng Z. Cross-species pathogenicity of gyrovirus 3 in experimentally infected chickens and mice. Vet Microbiol 2021; 261:109191. [PMID: 34385005 DOI: 10.1016/j.vetmic.2021.109191] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 08/01/2021] [Indexed: 11/26/2022]
Abstract
Gyrovirus 3 (GyV3) has been identified in humans and other hosts, suggesting its cross-species pathogenicity, which poses an increased public health risk. In the current study, we established chicken and mouse models of GyV3 infection. We found that GyV3 induced persistent infections, characterized by viremia, aplastic anemia, immunosuppression, and systematic lymphocytic inflammation, in both species. Kinetic viral loads and antigen expression demonstrated rapid viral replication and broad tissue tropism of GyV3 in both models. The highest viral loads and the strongest antigen immunostaining were present in bone marrow and cerebrum in both chickens and mice, indicating that these are target tissues for GyV3. Genetic diversity analysis of VP1 in infected chickens and mice showed that GyV3 adapts to new hosts via rapid evolution of the hypervariable region of the gene encoding the structural protein VP1. Overall, our results indicate that GyV3 is a cross-species pathogenic virus; therefore, more attention needs to be paid to high levels of GyV3-induced neurotropism and aplastic anemia as a public health risk.
Collapse
Affiliation(s)
- Shiyu Yuan
- College of Veterinary Medicine, Shandong Agricultural University, Tai`an, 271018, China
| | - Tianxing Yan
- College of Veterinary Medicine, Shandong Agricultural University, Tai`an, 271018, China
| | - Libo Huang
- College of Veterinary Medicine, Shandong Agricultural University, Tai`an, 271018, China
| | - Xiaojing Hao
- Qingdao Husbandry and Veterinary Institute, Qingdao, 266000, China
| | - Manda Zhao
- Department of Animal Science and Technology, Vocational-technical School of Husbandry and Veterinary Medicine, Weifang, 261061, China
| | - Shicheng Zhang
- College of Veterinary Medicine, Shandong Agricultural University, Tai`an, 271018, China
| | - Defang Zhou
- College of Veterinary Medicine, Shandong Agricultural University, Tai`an, 271018, China
| | - Ziqiang Cheng
- College of Veterinary Medicine, Shandong Agricultural University, Tai`an, 271018, China.
| |
Collapse
|
10
|
Zhang Y, Zhang X, Cheng A, Wang M, Yin Z, Huang J, Jia R. Apoptosis Triggered by ORF3 Proteins of the Circoviridae Family. Front Cell Infect Microbiol 2021; 10:609071. [PMID: 33604306 PMCID: PMC7884757 DOI: 10.3389/fcimb.2020.609071] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 12/21/2020] [Indexed: 12/16/2022] Open
Abstract
Apoptosis, a form of the programmed cell death, is an indispensable defense mechanism regulating cellular homeostasis and is triggered by multiple stimuli. Because of the regulation of apoptosis in cellular homeostasis, viral proteins with apoptotic activity are particular foci of on antitumor therapy. One representative viral protein is the open reading frame 3 (ORF3) protein, also named as apoptin in the Circoviridae chicken anemia virus (CAV), and has the ability to induce tumor-specific apoptosis. Proteins encoded by ORF3 in other circovirus species, such as porcine circovirus (PCV) and duck circovirus (DuCV), have also been reported to induce apoptosis, with subtle differences in apoptotic activity based on cell types. This article is aimed at reviewing the latest research advancements in understanding ORF3 protein-mediated apoptosis mechanisms of Circoviridae from three perspectives: subcellular localization, interactions with host proteins, and participation in multiple apoptotic signaling pathways, providing a scientific basis for circovirus pathogenesis and a reference on its potential anticancer function.
Collapse
Affiliation(s)
- Yanting Zhang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xingcui Zhang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Anchun Cheng
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mingshu Wang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhongqiong Yin
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Juan Huang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Renyong Jia
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|