1
|
Oliveira ADS, Pereira JG, Nunes GT, Sousa Junior IPD, Sarmento DJDS, Lopes JIF, Amorim Filho L, Paula VSD. Prevalence and investigation of Cytomegalovirus (HCMV) in blood donors from the main blood establishment in Rio de Janeiro/Brazil. Braz J Infect Dis 2025; 29:104508. [PMID: 39922051 PMCID: PMC11848753 DOI: 10.1016/j.bjid.2025.104508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 12/17/2024] [Accepted: 01/17/2025] [Indexed: 02/10/2025] Open
Abstract
BACKGROUND Human Cytomegalovirus (HCMV) remains a significant cause of morbidity and mortality among pregnant women and immunocompromised patients. HCMV transmission can occur through blood transfusions and typically results in asymptomatic infections in newborns and young individuals or causes symptoms like infectious mononucleosis when symptomatic infections arise. HCMV infection poses a notable risk to transfusion recipients, particularly in vulnerable groups such as premature newborns and immunosuppressed patients. The risk persists even after prophylaxis ends, especially in patients who undergo organ transplantation and receive blood or blood products from a seropositive donor while being seronegative themselves (D+/R-). MATERIALS AND METHODS Here, we investigated the serological and molecular prevalence of HCMV among 980 blood donors from the main blood bank in Rio de Janeiro, Brazil, using chemiluminescence and real-time PCR (TaqMan). The data underwent univariate, bivariate, and multivariate statistical analyses using the SPSS program, version 20.0. RESULTS The average age of donors was 38.53 years, with a majority being male (53.9 %). The prevalence of cytomegalovirus was 88.5 %, and HCMV DNA was detected in 1.2 % of the samples. DISCUSSION Given that there are approximately 100,000 blood donations per year, this prevalence rate is considerably high compared to that in developed countries. These findings underscore the critical need for ongoing surveillance and molecular testing to ensure the safety of blood supplies.
Collapse
Affiliation(s)
- Agildo da Silva Oliveira
- Instituto Estadual de Hematologia Arthur de Siqueira Cavalcanti/HEMORIO, Rio de Janeiro, RJ, Brazil; Instituto Oswaldo Cruz (Fiocruz), Laboratório de Virologia Molecular e Parasitologia, Rio de Janeiro, RJ, Brazil
| | - Jéssica Gonçalves Pereira
- Instituto Oswaldo Cruz (Fiocruz), Laboratório de Virologia Molecular e Parasitologia, Rio de Janeiro, RJ, Brazil
| | - Gabrielle Tantos Nunes
- Instituto Estadual de Hematologia Arthur de Siqueira Cavalcanti/HEMORIO, Rio de Janeiro, RJ, Brazil; Instituto Oswaldo Cruz (Fiocruz), Laboratório de Virologia Molecular e Parasitologia, Rio de Janeiro, RJ, Brazil
| | | | - Dmitry José de Santana Sarmento
- Universidade Estadual da Paraíba, Faculdade de Odontologia, Departamento de Diagnóstico Oral, Araruna, PB, Brazil; Centro Universitário Facisa (UNIFACISA), Departamento de Medicina, Campina Grande, PB Brazil
| | | | - Luiz Amorim Filho
- Instituto Estadual de Hematologia Arthur de Siqueira Cavalcanti/HEMORIO, Rio de Janeiro, RJ, Brazil
| | - Vanessa Salete de Paula
- Instituto Oswaldo Cruz (Fiocruz), Laboratório de Virologia Molecular e Parasitologia, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
2
|
Li J, Wang Y, Wang L, Qu Y, Zhou W, Zhong H, Xi D, Tang N, He F. Low expression of miR-1929-3p mediates murine cytomegalovirus-induced fibrosis in cardiac fibroblasts via targeting endothelin a receptor/NLRP3 inflammasome pathway. In Vitro Cell Dev Biol Anim 2023; 59:179-192. [PMID: 37002490 DOI: 10.1007/s11626-022-00742-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 11/22/2022] [Indexed: 04/03/2023]
Abstract
MicroRNAs are crucial in the development of myocardial remodeling in hypertension. Low miR-1929-3p expression induced by murine cytomegalovirus (MCMV) infection is closely related to hypertensive myocardial remodeling. This study investigated the molecular mechanism of miR-1929-3p-induced myocardial remodeling after MCMV infection. We modeled MCMV-infected mouse cardiac fibroblasts (MMCFs) as the primary cell model. First, MCMV infection reduced the expression of miR-1929-3p and increased the mRNA and protein expression of its target gene endothelin receptor type A (ETAR) in mouse cardiac fibroblasts (MCFs), which demonstrated an internal relationship with myocardial fibrosis (MF) based on high proliferation, phenotypic transformation (α-SMA), and collagen expression in MMCFs. The transfection of the miR-1929-3p mimic downregulated the high expression of ETAR and alleviated these adverse effects in MMCFs. Inversely, these effects were exacerbated by the miR-1929-3p inhibitor. Second, the transfection of endothelin receptor type A over-expressed adenovirus (adETAR) reversed these positive effects of the miR-1929-3p mimic on MF improvement. Third, the transfection of adETAR exhibited a strong inflammatory response in MMCFs with increased expression of NOD-like receptors pyrin domain containing 3 (NLRP3) and increased secretion of interleukin-18. However, we found that the ETAR antagonist BQ123 and the selected NLRP3 inflammasome inhibitor MCC950 effectively eliminated the inflammatory response induced by both MCMV infection and miR-1929-3p inhibitor. Moreover, the MCF supernatant was related to cardiomyocyte hypertrophy. Our findings suggest that MCMV infection promotes MF by inducing the downregulation of miR-1929-3p and the high expression of ETAR, which activates NLRP3 inflammasomes in MCFs.
Collapse
Affiliation(s)
- Jiayi Li
- Department of Pathophysiology, Key Laboratory of Education Ministry of Xinjiang Endemic and Ethnic Diseases, Medical College of Shihezi University, 59 North 2Nd Road, Shihezi, 832002, Xinjiang, China
| | - Yongjia Wang
- Department of Pathophysiology, Key Laboratory of Education Ministry of Xinjiang Endemic and Ethnic Diseases, Medical College of Shihezi University, 59 North 2Nd Road, Shihezi, 832002, Xinjiang, China
| | - LaMei Wang
- Department of Pathophysiology, Key Laboratory of Education Ministry of Xinjiang Endemic and Ethnic Diseases, Medical College of Shihezi University, 59 North 2Nd Road, Shihezi, 832002, Xinjiang, China
| | - Yuanyuan Qu
- Department of Respiratory Medicine, the First Affiliated Hospital of Medical College of Shihezi University, Shihezi, China
| | - Wei Zhou
- Department of Pathophysiology, Key Laboratory of Education Ministry of Xinjiang Endemic and Ethnic Diseases, Medical College of Shihezi University, 59 North 2Nd Road, Shihezi, 832002, Xinjiang, China
| | - Hua Zhong
- Department of Pathophysiology, Key Laboratory of Education Ministry of Xinjiang Endemic and Ethnic Diseases, Medical College of Shihezi University, 59 North 2Nd Road, Shihezi, 832002, Xinjiang, China
| | - DongMei Xi
- Department of Pathophysiology, Key Laboratory of Education Ministry of Xinjiang Endemic and Ethnic Diseases, Medical College of Shihezi University, 59 North 2Nd Road, Shihezi, 832002, Xinjiang, China
| | - Na Tang
- Department of Pathophysiology, Key Laboratory of Education Ministry of Xinjiang Endemic and Ethnic Diseases, Medical College of Shihezi University, 59 North 2Nd Road, Shihezi, 832002, Xinjiang, China.
| | - Fang He
- Department of Pathophysiology, Key Laboratory of Education Ministry of Xinjiang Endemic and Ethnic Diseases, Medical College of Shihezi University, 59 North 2Nd Road, Shihezi, 832002, Xinjiang, China.
| |
Collapse
|
3
|
De Groof TWM, Elder EG, Siderius M, Heukers R, Sinclair JH, Smit MJ. Viral G Protein-Coupled Receptors: Attractive Targets for Herpesvirus-Associated Diseases. Pharmacol Rev 2021; 73:828-846. [PMID: 33692148 DOI: 10.1124/pharmrev.120.000186] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Herpesviruses are ubiquitous pathogens that establish lifelong, latent infections in their host. Spontaneous reactivation of herpesviruses is often asymptomatic or clinically manageable in healthy individuals, but reactivation events in immunocompromised or immunosuppressed individuals can lead to severe morbidity and mortality. Moreover, herpesvirus infections have been associated with multiple proliferative cardiovascular and post-transplant diseases. Herpesviruses encode viral G protein-coupled receptors (vGPCRs) that alter the host cell by hijacking cellular pathways and play important roles in the viral life cycle and these different disease settings. In this review, we discuss the pharmacological and signaling properties of these vGPCRs, their role in the viral life cycle, and their contribution in different diseases. Because of their prominent role, vGPCRs have emerged as promising drug targets, and the potential of vGPCR-targeting therapeutics is being explored. Overall, these vGPCRs can be considered as attractive targets moving forward in the development of antiviral, cancer, and/or cardiovascular disease treatments. SIGNIFICANCE STATEMENT: In the last decade, herpesvirus-encoded G protein-coupled receptors (GPCRs) have emerged as interesting drug targets with the growing understanding of their critical role in the viral life cycle and in different disease settings. This review presents the pharmacological properties of these viral receptors, their role in the viral life cycle and different diseases, and the emergence of therapeutics targeting viral GPCRs.
Collapse
Affiliation(s)
- Timo W M De Groof
- In Vivo Cellular and Molecular Imaging Laboratory (ICMI), Vrije Universiteit Brussel, Brussels, Belgium (T.W.M.D.G.); Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom (E.G.E., J.H.S.); Division of Medicinal Chemistry, Faculty of Sciences, Amsterdam Institute for Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (M.S., R.H., M.J.S.); and QVQ Holding B.V., Utrecht, The Netherlands (R.H.)
| | - Elizabeth G Elder
- In Vivo Cellular and Molecular Imaging Laboratory (ICMI), Vrije Universiteit Brussel, Brussels, Belgium (T.W.M.D.G.); Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom (E.G.E., J.H.S.); Division of Medicinal Chemistry, Faculty of Sciences, Amsterdam Institute for Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (M.S., R.H., M.J.S.); and QVQ Holding B.V., Utrecht, The Netherlands (R.H.)
| | - Marco Siderius
- In Vivo Cellular and Molecular Imaging Laboratory (ICMI), Vrije Universiteit Brussel, Brussels, Belgium (T.W.M.D.G.); Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom (E.G.E., J.H.S.); Division of Medicinal Chemistry, Faculty of Sciences, Amsterdam Institute for Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (M.S., R.H., M.J.S.); and QVQ Holding B.V., Utrecht, The Netherlands (R.H.)
| | - Raimond Heukers
- In Vivo Cellular and Molecular Imaging Laboratory (ICMI), Vrije Universiteit Brussel, Brussels, Belgium (T.W.M.D.G.); Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom (E.G.E., J.H.S.); Division of Medicinal Chemistry, Faculty of Sciences, Amsterdam Institute for Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (M.S., R.H., M.J.S.); and QVQ Holding B.V., Utrecht, The Netherlands (R.H.)
| | - John H Sinclair
- In Vivo Cellular and Molecular Imaging Laboratory (ICMI), Vrije Universiteit Brussel, Brussels, Belgium (T.W.M.D.G.); Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom (E.G.E., J.H.S.); Division of Medicinal Chemistry, Faculty of Sciences, Amsterdam Institute for Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (M.S., R.H., M.J.S.); and QVQ Holding B.V., Utrecht, The Netherlands (R.H.)
| | - Martine J Smit
- In Vivo Cellular and Molecular Imaging Laboratory (ICMI), Vrije Universiteit Brussel, Brussels, Belgium (T.W.M.D.G.); Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom (E.G.E., J.H.S.); Division of Medicinal Chemistry, Faculty of Sciences, Amsterdam Institute for Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (M.S., R.H., M.J.S.); and QVQ Holding B.V., Utrecht, The Netherlands (R.H.)
| |
Collapse
|
5
|
miR-1929-3p Overexpression Alleviates Murine Cytomegalovirus-Induced Hypertensive Myocardial Remodeling by Suppressing Ednra/NLRP3 Inflammasome Activation. BIOMED RESEARCH INTERNATIONAL 2020; 2020:6653819. [PMID: 33457411 PMCID: PMC7787724 DOI: 10.1155/2020/6653819] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 12/12/2020] [Indexed: 12/18/2022]
Abstract
MicroRNAs (miRNAs) play crucial roles in the development of essential hypertension (EH). Previously, we found that the expression of miR-1929-3p was decreased in C57BL/6 mice with hypertension induced by murine cytomegalovirus (MCMV). In this study, we explored the role of miR-1929-3p in hypertension myocardial remodeling in MCMV-infected mice. First, we measured MCMV DNA and host IgG and IgM after infection and determined the expression of miR-1929-3p and its target gene endothelin A receptor (Ednra) mRNA in the myocardium of mice. Then, we performed invasive blood pressure (BP) monitoring. Heart-to-body weight ratio (HW/BW%), along with mRNA levels of B-type natriuretic peptide (BNP) and beta myosin heavy chain (β-MHC), revealed myocardial remodeling. Hematoxylin/eosin and Masson's trichrome staining indicated morphological changes in the myocardium. Cardiac function was assessed via echocardiography. Moreover, MCMV-infected mice were injected with recombinant adeno-associated virus- (rAAV-) miR-1929-3p overexpression vector. Immunohistochemistry and western blotting showed the expression of Ednra and the activation of NOD-like receptor pyrin domain containing 3 (NLRP3) inflammasome. And enzyme-linked immunosorbent assay (ELISA) revealed the concentrations of endothelin-1 (ET-1), interleukin-1β (IL-1β), and interleukin-18 (IL-18). In this study, we found that decreased expression of miR-1929-3p in MCMV-infected mice induced high BP and further development of myocardial remodeling cardiac function injury through increased expression of Ednra. Strikingly, overexpression of miR-1929-3p ameliorated these pathological changes of the heart. The positive effect was shown to be associated with inhibition of NLRP3 inflammasome activation and decreased expression of key proinflammatory cytokine IL-1β. Collectively, these results indicate that miR-1929-3p overexpression may effectively alleviate EH myocardial remodeling by suppressing Ednra/NLRP3 inflammasome activation in MCMV-infected mice.
Collapse
|