1
|
Antúnez MP, Marín Montesinos JC, Corduneanu A, Obregón D, Moutailler S, Cabezas-Cruz A. Tick-borne viruses and their risk to public health in the Caribbean: Spotlight on bats as reservoirs in Cuba. Heliyon 2024; 10:e26118. [PMID: 38375245 PMCID: PMC10875593 DOI: 10.1016/j.heliyon.2024.e26118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 02/21/2024] Open
Abstract
In recent decades, tick-borne diseases (TBDs) have surged and expanded globally due to factors like changes in human activities, land use patterns, and climate change, and it have been associated with the emergence of zoonotic diseases. Cuba faces the impact of ticks on human health and the economy. Although Cuba has studied TBDs extensively for the past 50 years, focus on tick-borne viral pathogens affecting humans remains scant. Despite TBDs not currently being a major health concern in Cuba, factors like inadequate clinician awareness, climate conditions, global tick emergence, and evidence of zoonotic pathogens in ticks underscore the importance of enhanced TBD surveillance in the country. Here we revised the available information on ticks as vectors of pathogenic viruses to humans, spotlighting bats as potential reservoirs of tick-borne viruses (TBVs). Ticks on bats have gained interest as potential reservoirs of pathogenic viruses to humans in Cuba and worldwide. Understanding their role in maintaining viruses and their potential transmission to humans is crucial for the implementation of surveillance and control programs to reduce the risk of tick-borne viral diseases and public health management.
Collapse
Affiliation(s)
- Maritza Pupo Antúnez
- Laboratorio de Virología. Departamento de Microbiología y Virología. Facultad de Biología, Universidad de la Habana, C.P. 10400, Plaza de la Revolución, Cuba
| | - José Carlos Marín Montesinos
- Laboratorio de Virología. Departamento de Microbiología y Virología. Facultad de Biología, Universidad de la Habana, C.P. 10400, Plaza de la Revolución, Cuba
| | - Alexandra Corduneanu
- Department of Animal Breeding and Animal Production, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania
- Department of Parasitology and Parasitic Diseases, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca-Napoca, Romania
| | - Dasiel Obregón
- School of Environmental Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Sara Moutailler
- Anses, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, F-94700, France
| | - Alejandro Cabezas-Cruz
- Anses, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, F-94700, France
| |
Collapse
|
2
|
Charles RA, Pow-Brown P, Gordon-Dillon A, Blake L, Nicholls S, Brown-Jordan A, Caruth J, Sant C, Pargass I, Basu A, Albina E, Oura C, Georges K. Completing the Puzzle: A Cluster of Hunting Dogs with Tick-Borne Illness from a Fishing Community in Tobago, West Indies. Pathogens 2024; 13:161. [PMID: 38392899 PMCID: PMC10891510 DOI: 10.3390/pathogens13020161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
Eight hunting dogs were visited by a state veterinarian on the island of Tobago, Trinidad and Tobago, West Indies, as owners reported anorexia and paralysis in five of their dogs. The veterinarian observed a combination of clinical signs consistent with tick-borne illness, including fever, anorexia, anaemia, lethargy and paralysis. Blood and ticks were collected from each dog and submitted to a diagnostic laboratory for analysis. Microscopic analysis revealed a mixed infection of intracytoplasmic organisms consistent with Babesia spp. (erythrocyte) and Ehrlichia spp. (monocyte), respectively, from one dog, while a complete blood count indicated a regenerative anaemia (n = 1; 12.5%), non-regenerative anaemia (n = 4; 50%), neutrophilia (n = 3; 37.5%), lymphocytosis (n = 2; 25%), thrombocytopaenia (n = 3; 37.5%) and pancytopaenia (n = 1; 12.5%). DNA isolated from the eight blood samples and 20 ticks (16 Rhipicephalus sanguineus and 4 Amblyomma ovale) were subjected to conventional PCR and next-generation sequencing of the 16S rRNA and 18S rRNA gene for Anaplasma/Ehrlichia and Babesia/Theileria/Hepatozoon, respectively. The DNA of Ehrlichia spp., closely related to Ehrlichia canis, was detected in the blood of three dogs (37.5%), Anaplasma spp., closely related to Anaplasma marginale, in two (25%), Babesia vogeli in one dog (12.5%) and seven ticks (35%) and Hepatozoon canis and Anaplasma spp., in one tick (5%), respectively. These findings highlight the need to test both the vector and host for the presence of tick-borne pathogens when undertaking diagnostic investigations. Further studies are also warranted to elucidate the susceptibility of canids to Anaplasma marginale.
Collapse
Affiliation(s)
- Roxanne A. Charles
- School of Veterinary Medicine, Faculty of Medical Sciences, The University of the West Indies, St. Augustine, Trinidad and Tobago; (P.P.-B.); (L.B.); (C.S.); (I.P.); (A.B.); (C.O.); (K.G.)
| | - Patricia Pow-Brown
- School of Veterinary Medicine, Faculty of Medical Sciences, The University of the West Indies, St. Augustine, Trinidad and Tobago; (P.P.-B.); (L.B.); (C.S.); (I.P.); (A.B.); (C.O.); (K.G.)
| | - Annika Gordon-Dillon
- Animal Health Unit, Division of Food Security, Natural Resources, The Environment and Sustainable Development, Tobago House of Assembly, Milshirv Administrative Complex, Corner Milford & Shirvan Road, Tobago, Trinidad and Tobago; (A.G.-D.); (J.C.)
| | - Lemar Blake
- School of Veterinary Medicine, Faculty of Medical Sciences, The University of the West Indies, St. Augustine, Trinidad and Tobago; (P.P.-B.); (L.B.); (C.S.); (I.P.); (A.B.); (C.O.); (K.G.)
| | - Soren Nicholls
- Department of Preclinical Sciences, Faculty of Medical Sciences, The University of the West Indies, St. Augustine, Trinidad and Tobago; (S.N.); (A.B.-J.)
| | - Arianne Brown-Jordan
- Department of Preclinical Sciences, Faculty of Medical Sciences, The University of the West Indies, St. Augustine, Trinidad and Tobago; (S.N.); (A.B.-J.)
| | - Joanne Caruth
- Animal Health Unit, Division of Food Security, Natural Resources, The Environment and Sustainable Development, Tobago House of Assembly, Milshirv Administrative Complex, Corner Milford & Shirvan Road, Tobago, Trinidad and Tobago; (A.G.-D.); (J.C.)
| | - Candice Sant
- School of Veterinary Medicine, Faculty of Medical Sciences, The University of the West Indies, St. Augustine, Trinidad and Tobago; (P.P.-B.); (L.B.); (C.S.); (I.P.); (A.B.); (C.O.); (K.G.)
| | - Indira Pargass
- School of Veterinary Medicine, Faculty of Medical Sciences, The University of the West Indies, St. Augustine, Trinidad and Tobago; (P.P.-B.); (L.B.); (C.S.); (I.P.); (A.B.); (C.O.); (K.G.)
| | - Asoke Basu
- School of Veterinary Medicine, Faculty of Medical Sciences, The University of the West Indies, St. Augustine, Trinidad and Tobago; (P.P.-B.); (L.B.); (C.S.); (I.P.); (A.B.); (C.O.); (K.G.)
| | - Emmanuel Albina
- Centre de coopération internationale en recherche agronomique pour le développement (CIRAD), DGDRS, 34000 Montpellier, France;
| | - Christopher Oura
- School of Veterinary Medicine, Faculty of Medical Sciences, The University of the West Indies, St. Augustine, Trinidad and Tobago; (P.P.-B.); (L.B.); (C.S.); (I.P.); (A.B.); (C.O.); (K.G.)
| | - Karla Georges
- School of Veterinary Medicine, Faculty of Medical Sciences, The University of the West Indies, St. Augustine, Trinidad and Tobago; (P.P.-B.); (L.B.); (C.S.); (I.P.); (A.B.); (C.O.); (K.G.)
| |
Collapse
|
3
|
Rodríguez-Mallon A, Encinosa Guzmán PE, Bello Y, Domingos A, Antunes S, Kopacek P, Santos AS, Velez R, Perner J, Ledesma Bravo FL, Frantova H, Erhart J, Rodríguez R, Fuentes A, Diago D, Joglar M, Méndez L, Estrada MP. Efficacy of the Vaccine Candidate Based on the P0 Peptide against Dermacentor nitens and Ixodes ricinus Ticks. Pathogens 2023; 12:1365. [PMID: 38003829 PMCID: PMC10675505 DOI: 10.3390/pathogens12111365] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
The control of ticks through vaccination offers a sustainable alternative to the use of chemicals that cause contamination and the selection of resistant tick strains. However, only a limited number of anti-tick vaccines have reached commercial realization. In this sense, an antigen effective against different tick species is a desirable target for developing such vaccines. A peptide derived from the tick P0 protein (pP0) conjugated to a carrier protein has been demonstrated to be effective against the Rhipicephalus microplus, Rhipicephalus sanguineus, and Amblyomma mixtum tick species. The aim of this work was to assess the efficacy of this peptide when conjugated to the Bm86 protein against Dermacentor nitens and Ixodes ricinus ticks. An RNAi experiment using P0 dsRNA from I. ricinus showed a dramatic reduction in the feeding of injected female ticks on guinea pigs. In the follow-up vaccination experiments, rabbits were immunized with the pP0-Bm86 conjugate and challenged simultaneously with larvae, nymphs, and the adults of I. ricinus ticks. In the same way, horses were immunized with the pP0-Bm86 conjugate and challenged with D. nitens larva. The pP0-Bm86 conjugate showed efficacies of 63% and 55% against I. ricinus and D. nitens ticks, respectively. These results, combined with previous reports of efficacy for this conjugate, show the promising potential for its development as a broad-spectrum anti-tick vaccine.
Collapse
Affiliation(s)
- Alina Rodríguez-Mallon
- Center for Genetic Engineering and Biotechnology (CIGB), 31st Avenue and 190, Havana 10600, Cuba; (P.E.E.G.); (F.L.L.B.); (D.D.); (M.J.); (M.P.E.)
| | - Pedro E. Encinosa Guzmán
- Center for Genetic Engineering and Biotechnology (CIGB), 31st Avenue and 190, Havana 10600, Cuba; (P.E.E.G.); (F.L.L.B.); (D.D.); (M.J.); (M.P.E.)
| | - Yamil Bello
- Center for Genetic Engineering and Biotechnology (CIGB), 31st Avenue and 190, Havana 10600, Cuba; (P.E.E.G.); (F.L.L.B.); (D.D.); (M.J.); (M.P.E.)
| | - Ana Domingos
- Global Health and Tropical Medicine, GHTM, Associate Laboratory in Translation and Innovation towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, UNL, Rua da Junqueira 100, 1349-008 Lisboa, Portugal; (A.D.); (S.A.)
| | - Sandra Antunes
- Global Health and Tropical Medicine, GHTM, Associate Laboratory in Translation and Innovation towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, UNL, Rua da Junqueira 100, 1349-008 Lisboa, Portugal; (A.D.); (S.A.)
| | - Petr Kopacek
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 37005 České Budějovice, Czech Republic; (P.K.); (J.P.); (H.F.)
| | - Ana Sofia Santos
- Centro de Estudos de Vetores e Doenças Infeciosas Dr. Francisco Cambournac, Instituto Nacional de Saúde Doutor Ricardo Jorge (CEVDI-INSA), 2965-575 Águas de Moura, Portugal; (A.S.S.); (R.V.)
- Instituto de Saúde Ambiental, Faculdade de Medicina, Universidade de Lisboa, 1649-004 Lisboa, Portugal
| | - Rita Velez
- Centro de Estudos de Vetores e Doenças Infeciosas Dr. Francisco Cambournac, Instituto Nacional de Saúde Doutor Ricardo Jorge (CEVDI-INSA), 2965-575 Águas de Moura, Portugal; (A.S.S.); (R.V.)
| | - Jan Perner
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 37005 České Budějovice, Czech Republic; (P.K.); (J.P.); (H.F.)
| | - Frank L. Ledesma Bravo
- Center for Genetic Engineering and Biotechnology (CIGB), 31st Avenue and 190, Havana 10600, Cuba; (P.E.E.G.); (F.L.L.B.); (D.D.); (M.J.); (M.P.E.)
| | - Helena Frantova
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 37005 České Budějovice, Czech Republic; (P.K.); (J.P.); (H.F.)
| | - Jan Erhart
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 37005 České Budějovice, Czech Republic; (P.K.); (J.P.); (H.F.)
| | - Rafmary Rodríguez
- National Laboratory of Parasitology, Avenue San Antonio-Rincón, Km 1 1/2, Artemisa 32500, Cuba; (R.R.); (A.F.)
| | - Alier Fuentes
- National Laboratory of Parasitology, Avenue San Antonio-Rincón, Km 1 1/2, Artemisa 32500, Cuba; (R.R.); (A.F.)
| | - David Diago
- Center for Genetic Engineering and Biotechnology (CIGB), 31st Avenue and 190, Havana 10600, Cuba; (P.E.E.G.); (F.L.L.B.); (D.D.); (M.J.); (M.P.E.)
| | - Marisdania Joglar
- Center for Genetic Engineering and Biotechnology (CIGB), 31st Avenue and 190, Havana 10600, Cuba; (P.E.E.G.); (F.L.L.B.); (D.D.); (M.J.); (M.P.E.)
| | - Luis Méndez
- National Laboratory of Parasitology, Avenue San Antonio-Rincón, Km 1 1/2, Artemisa 32500, Cuba; (R.R.); (A.F.)
| | - Mario Pablo Estrada
- Center for Genetic Engineering and Biotechnology (CIGB), 31st Avenue and 190, Havana 10600, Cuba; (P.E.E.G.); (F.L.L.B.); (D.D.); (M.J.); (M.P.E.)
| |
Collapse
|
4
|
Piloto-Sardiñas E, Foucault-Simonin A, Wu-Chuang A, Mateos-Hernández L, Marrero-Perera R, Abuin-Denis L, Roblejo-Arias L, Díaz-Corona C, Zając Z, Kulisz J, Woźniak A, Moutailler S, Corona-González B, Cabezas-Cruz A. Dynamics of Infections in Cattle and Rhipicephalus microplus: A Preliminary Study. Pathogens 2023; 12:998. [PMID: 37623958 PMCID: PMC10458817 DOI: 10.3390/pathogens12080998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/26/2023] Open
Abstract
Tick-borne pathogens (TBPs) pose a significant threat to livestock, including bovine species. This study aimed to investigate TBPs in cattle and ticks across four sampling points, utilizing real-time microfluidic PCR. The results revealed that Rhipicephalus microplus ticks were found infesting all animals. Among the detected TBPs in cattle, Anaplasma marginale was the most frequently identified, often as a single infection, although mixed infections involving Rickettsia felis, uncharacterized Rickettsia sp., and Anaplasma sp. were also observed. In ticks, A. marginale was predominant, along with R. felis, Rickettsia sp., and Ehrlichia sp. It is noteworthy that although A. marginale consistently infected all cattle during various sampling times, this pathogen was not detected in all ticks. This suggests a complex dynamic of pathogen acquisition by ticks. A phylogenetic analysis focused on the identification of Anaplasma species using amplified 16S rDNA gene fragments revealed the presence of A. marginale and Anaplasma platys strains in bovines. These findings underscore the presence of multiple TBPs in both cattle and ticks, with A. marginale being the most prevalent. Understanding the dynamics and phylogenetics of TBPs is crucial for developing effective control strategies to mitigate tick-borne diseases in livestock.
Collapse
Affiliation(s)
- Elianne Piloto-Sardiñas
- ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort 94700, France; (E.P.-S.); (A.F.-S.); (A.W.-C.); (L.M.-H.); (L.A.-D.)
- Direction of Animal Health, National Center for Animal and Plant Health, Carretera de Tapaste y Autopista Nacional, Apartado Postal 10, San José de las Lajas 32700, Mayabeque, Cuba; (R.M.-P.); (L.R.-A.); (C.D.-C.)
| | - Angélique Foucault-Simonin
- ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort 94700, France; (E.P.-S.); (A.F.-S.); (A.W.-C.); (L.M.-H.); (L.A.-D.)
| | - Alejandra Wu-Chuang
- ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort 94700, France; (E.P.-S.); (A.F.-S.); (A.W.-C.); (L.M.-H.); (L.A.-D.)
| | - Lourdes Mateos-Hernández
- ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort 94700, France; (E.P.-S.); (A.F.-S.); (A.W.-C.); (L.M.-H.); (L.A.-D.)
| | - Roxana Marrero-Perera
- Direction of Animal Health, National Center for Animal and Plant Health, Carretera de Tapaste y Autopista Nacional, Apartado Postal 10, San José de las Lajas 32700, Mayabeque, Cuba; (R.M.-P.); (L.R.-A.); (C.D.-C.)
| | - Lianet Abuin-Denis
- ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort 94700, France; (E.P.-S.); (A.F.-S.); (A.W.-C.); (L.M.-H.); (L.A.-D.)
| | - Lisset Roblejo-Arias
- Direction of Animal Health, National Center for Animal and Plant Health, Carretera de Tapaste y Autopista Nacional, Apartado Postal 10, San José de las Lajas 32700, Mayabeque, Cuba; (R.M.-P.); (L.R.-A.); (C.D.-C.)
| | - Cristian Díaz-Corona
- Direction of Animal Health, National Center for Animal and Plant Health, Carretera de Tapaste y Autopista Nacional, Apartado Postal 10, San José de las Lajas 32700, Mayabeque, Cuba; (R.M.-P.); (L.R.-A.); (C.D.-C.)
| | - Zbigniew Zając
- Department of Biology and Parasitology, Medical University of Lublin, Radziwiłłowska 11 St., 20-080 Lublin, Poland; (Z.Z.); (J.K.); (A.W.)
| | - Joanna Kulisz
- Department of Biology and Parasitology, Medical University of Lublin, Radziwiłłowska 11 St., 20-080 Lublin, Poland; (Z.Z.); (J.K.); (A.W.)
| | - Aneta Woźniak
- Department of Biology and Parasitology, Medical University of Lublin, Radziwiłłowska 11 St., 20-080 Lublin, Poland; (Z.Z.); (J.K.); (A.W.)
| | - Sara Moutailler
- ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort 94700, France; (E.P.-S.); (A.F.-S.); (A.W.-C.); (L.M.-H.); (L.A.-D.)
| | - Belkis Corona-González
- Direction of Animal Health, National Center for Animal and Plant Health, Carretera de Tapaste y Autopista Nacional, Apartado Postal 10, San José de las Lajas 32700, Mayabeque, Cuba; (R.M.-P.); (L.R.-A.); (C.D.-C.)
| | - Alejandro Cabezas-Cruz
- ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort 94700, France; (E.P.-S.); (A.F.-S.); (A.W.-C.); (L.M.-H.); (L.A.-D.)
| |
Collapse
|
5
|
Charles RA, Bermúdez S, Banović P, Alvarez DO, Díaz-Sánchez AA, Corona-González B, Etter EMC, Rodríguez González I, Ghafar A, Jabbar A, Moutailler S, Cabezas-Cruz A. Ticks and Tick-Borne Diseases in Central America and the Caribbean: A One Health Perspective. Pathogens 2021; 10:1273. [PMID: 34684222 PMCID: PMC8538257 DOI: 10.3390/pathogens10101273] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/22/2021] [Accepted: 09/27/2021] [Indexed: 11/16/2022] Open
Abstract
Ticks have complex life cycles which involve blood-feeding stages found on wild and domestic animals, with humans as accidental hosts. At each blood-feeding stage, ticks can transmit and/or acquire pathogens from their hosts. Therefore, the circulation of tick-borne pathogens (TBPs), especially the zoonotic ones, should be studied in a multi-layered manner, including all components of the chain of infections, following the 'One Health' tenets. The implementation of such an approach requires coordination among major stakeholders (such as veterinarians, physicians, acarologists, and researchers) for the identification of exposure and infection risks and application of effective prevention measures. In this review, we summarize our current knowledge on the epidemiology of tick-borne diseases in Central America and the Caribbean and the challenges associated with the implementation of 'One Health' surveillance and control programs in the region.
Collapse
Affiliation(s)
- Roxanne A Charles
- Department of Basic Veterinary Sciences, School of Veterinary Medicine, Faculty of Medical Sciences, University of the West Indies, St. Augustine, Trinidad and Tobago
| | - Sergio Bermúdez
- Department of Medical Entomology, Gorgas Memorial Institute for Health Research, Panama 0816-02593, Panama
| | - Pavle Banović
- Ambulance for Lyme Borreliosis and Other Tick-Borne Diseases, Pasteur Institute Novi Sad, 21000 Novi Sad, Serbia
- Department of Microbiology with Parasitology and Immunology, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia
| | | | | | - Belkis Corona-González
- Department of Animal Health, National Center for Animal and Plant Health, Carretera de Tapaste y Autopista Nacional, Apartado Postal 10, San José de las Lajas, Mayabeque 32700, Cuba
| | - Eric Marcel Charles Etter
- CIRAD, UMR ASTRE, Petit-Bourg, 97170 Guadeloupe, France
- ASTRE, University de Montpellier, CIRAD, INRAE, 34398 Montpellier, France
| | - Islay Rodríguez González
- Department of Mycology-Bacteriology, Institute of Tropical Medicine Pedro Kourí, Marianao 13, Havana 10400, Cuba
| | - Abdul Ghafar
- Department of Veterinary Biosciences, Melbourne Veterinary School, the University of Melbourne, Werribee, VIC 3030, Australia
| | - Abdul Jabbar
- Department of Veterinary Biosciences, Melbourne Veterinary School, the University of Melbourne, Werribee, VIC 3030, Australia
| | - Sara Moutailler
- Anses, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, 94700 Maisons-Alfort, France
| | - Alejandro Cabezas-Cruz
- Anses, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, 94700 Maisons-Alfort, France
| |
Collapse
|
6
|
Encinosa Guzmán PE, Fernández Cuétara C, Cano Argüelles AL, Fuentes Castillo A, García Martínez Y, Rodríguez Fernández R, Fernández Afonso Y, Bello Soto Y, González Alfaro Y, Méndez L, Díaz García A, Estrada MP, Rodríguez-Mallon A. Characterization of two Cuban colonies of Rhipicephalus microplus ticks. VETERINARY PARASITOLOGY- REGIONAL STUDIES AND REPORTS 2021; 25:100591. [PMID: 34474784 DOI: 10.1016/j.vprsr.2021.100591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 05/10/2021] [Accepted: 05/16/2021] [Indexed: 11/30/2022]
Abstract
Rhipicephalus microplus (Canestrini, 1888) is one of the species with medical and economic relevance that has been reported in the list of Cuban tick species. Some morphological characterizations about the R. microplus species in Cuba have been published; however, molecular studies are lacking. Molecular phylogenetic analyses have grouped R. annulatus, R. australis and three clades of R. microplus in a complex named R. microplus. The present study aimed to characterize two R. microplus tick isolates, established as colonies at the Cuban National Laboratory of Parasitology. Morphological characterization of adult specimens was carried out by using Scanning Electron Microscopy. The sequences of mitochondrial genes: 12S rRNA, 16S rRNA and the subunit I of cytochrome c oxidase (coxI) and one nuclear sequence: internal transcribed spacer 2 (its2) were used for phylogenetic analyses. The life cycle under laboratory conditions for both isolates was also characterized. Tick specimens of both colonies showed morphological characteristics comparable with those distinctive for the R. microplus species. Phylogenies based on mitochondrial gene sequences identified congruently the Cuban tick colonies within the clade A of R. microplus. The life cycle of both isolates under laboratory conditions lasted 65 ± 5 days and the reproductive performance of female ticks of each colony also were similar with approximately 2500 larvae obtained from fully engorged female ticks. This study constitutes the first molecular characterization of ticks from the R. microplus species in Cuba.
Collapse
Affiliation(s)
- Pedro E Encinosa Guzmán
- Animal Biotechnology Department, Center for Genetic Engineering and Biotechnology (CIGB), 31st Avenue and 190, P.O. Box 6162, Havana 10600, Cuba
| | - Claudia Fernández Cuétara
- Animal Biotechnology Department, Center for Genetic Engineering and Biotechnology (CIGB), 31st Avenue and 190, P.O. Box 6162, Havana 10600, Cuba
| | - Ana Laura Cano Argüelles
- Animal Biotechnology Department, Center for Genetic Engineering and Biotechnology (CIGB), 31st Avenue and 190, P.O. Box 6162, Havana 10600, Cuba
| | - Alier Fuentes Castillo
- National Laboratory of Parasitology, Avenue San Antonio-Rincón, Km 1 1/2, Artemisa CP32500, Cuba
| | - Yuselys García Martínez
- Animal Biotechnology Department, Center for Genetic Engineering and Biotechnology (CIGB), 31st Avenue and 190, P.O. Box 6162, Havana 10600, Cuba
| | | | - Yilian Fernández Afonso
- Centro de Estudios Avanzados de Cuba, Km 1 1/2 Carretera de San Antonio, Valle Grande, La Lisa, Habana CP17100, Cuba
| | - Yami Bello Soto
- Animal Biotechnology Department, Center for Genetic Engineering and Biotechnology (CIGB), 31st Avenue and 190, P.O. Box 6162, Havana 10600, Cuba
| | - Yorexis González Alfaro
- Centro de Estudios Avanzados de Cuba, Km 1 1/2 Carretera de San Antonio, Valle Grande, La Lisa, Habana CP17100, Cuba
| | - Luis Méndez
- National Laboratory of Parasitology, Avenue San Antonio-Rincón, Km 1 1/2, Artemisa CP32500, Cuba
| | - Angelina Díaz García
- Centro de Estudios Avanzados de Cuba, Km 1 1/2 Carretera de San Antonio, Valle Grande, La Lisa, Habana CP17100, Cuba
| | - Mario Pablo Estrada
- Animal Biotechnology Department, Center for Genetic Engineering and Biotechnology (CIGB), 31st Avenue and 190, P.O. Box 6162, Havana 10600, Cuba
| | - Alina Rodríguez-Mallon
- Animal Biotechnology Department, Center for Genetic Engineering and Biotechnology (CIGB), 31st Avenue and 190, P.O. Box 6162, Havana 10600, Cuba.
| |
Collapse
|
7
|
Couto J, Seixas G, Stutzer C, Olivier NA, Maritz-Olivier C, Antunes S, Domingos A. Probing the Rhipicephalusbursa Sialomes in Potential Anti-Tick Vaccine Candidates: A Reverse Vaccinology Approach. Biomedicines 2021; 9:363. [PMID: 33807386 PMCID: PMC8067113 DOI: 10.3390/biomedicines9040363] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/26/2021] [Accepted: 03/28/2021] [Indexed: 11/16/2022] Open
Abstract
In the wake of the 'omics' explosion of data, reverse vaccinology approaches are being applied more readily as an alternative for the discovery of candidates for next generation diagnostics and vaccines. Promising protective antigens for the control of ticks and tick-borne diseases can be discovered by mining available omics data for immunogenic epitopes. The present study aims to explore the previously obtained Rhipicephalus bursa sialotranscriptome during both feeding and Babesia infection, to select antigenic targets that are either membrane-associated or a secreted protein, as well as unique to the ectoparasite and not present in the mammalian host. Further, they should be capable of stimulating T and B cells for a potential robust immune response, and be non-allergenic or toxic to the host. From the R. bursa transcriptome, 5706 and 3025 proteins were identified as belonging to the surfaceome and secretome, respectively. Following a reverse genetics immunoinformatics pipeline, nine preferred candidates, consisting of one transmembrane-related and eight secreted proteins, were identified. These candidates showed a higher predicted antigenicity than the Bm86 antigen, with no homology to mammalian hosts and exposed regions. Only four were functionally annotated and selected for further in silico analysis, which examined their protein structure, surface accessibility, flexibility, hydrophobicity, and putative linear B and T-cell epitopes. Regions with overlapping coincident epitopes groups (CEGs) were evaluated to select peptides that were further analyzed for their physicochemical characteristics, potential allergenicity, toxicity, solubility, and potential propensity for crystallization. Following these procedures, a set of three peptides from the three R. bursa proteins were selected. In silico results indicate that the designed epitopes could stimulate a protective and long-lasting immune response against those tick proteins, reflecting its potential as anti-tick vaccines. The immunogenicity of these peptides was evaluated in a pilot immunization study followed by tick feeding to evaluate its impact on tick behavior and pathogen transmission. Combining in silico methods with in vivo immunogenicity evaluation enabled the screening of vaccine candidates prior to expensive infestation studies on the definitive ovine host animals.
Collapse
Affiliation(s)
- Joana Couto
- Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Rua da Junqueira, 100, 1349-008 Lisboa, Portugal; (G.S.); (A.D.)
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa (GHTM-IHMT-UNL), Rua da Junqueira, 100, 1349-008 Lisboa, Portugal
| | - Gonçalo Seixas
- Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Rua da Junqueira, 100, 1349-008 Lisboa, Portugal; (G.S.); (A.D.)
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa (GHTM-IHMT-UNL), Rua da Junqueira, 100, 1349-008 Lisboa, Portugal
| | - Christian Stutzer
- Division of Genetics, Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria 0002, South Africa; (C.S.); (C.M.-O.)
| | - Nicholas A. Olivier
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria 0002, South Africa;
- Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0002, South Africa
| | - Christine Maritz-Olivier
- Division of Genetics, Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria 0002, South Africa; (C.S.); (C.M.-O.)
| | - Sandra Antunes
- Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Rua da Junqueira, 100, 1349-008 Lisboa, Portugal; (G.S.); (A.D.)
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa (GHTM-IHMT-UNL), Rua da Junqueira, 100, 1349-008 Lisboa, Portugal
| | - Ana Domingos
- Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Rua da Junqueira, 100, 1349-008 Lisboa, Portugal; (G.S.); (A.D.)
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa (GHTM-IHMT-UNL), Rua da Junqueira, 100, 1349-008 Lisboa, Portugal
| |
Collapse
|
8
|
Springer A, Shuaib YA, Isaa MH, Ezz-Eldin MIE, Osman AY, Yagoub IA, Abdalla MA, Bakiet AO, Mohmed-Noor SET, Schaper S, Rieß R, Dobler G, Strube C, Bakkes DK, Chitimia-Dobler L. Tick Fauna and Associated Rickettsia, Theileria, and Babesia spp. in Domestic Animals in Sudan (North Kordofan and Kassala States). Microorganisms 2020; 8:E1969. [PMID: 33322349 PMCID: PMC7763929 DOI: 10.3390/microorganisms8121969] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/02/2020] [Accepted: 12/09/2020] [Indexed: 11/25/2022] Open
Abstract
Ticks and tick-borne diseases (TBDs) have a major economic impact on animal production worldwide. In the present study, 2410 ticks were collected from January to August 2017 from livestock and other domestic animals in North Kordofan and Kassala, Sudan, for species identification and investigation of Rickettsia spp. and piroplasms, either individually or as pools containing up to 10 ticks by molecular methods. In total, 13 tick species were identified by morphology and 16S rDNA sequencing. The most frequent tick species were Hyalomma impeltatum (24.90%), Rhipicephalus evertsi evertsi (18.84%), Amblyomma lepidum (16.06%), and Rhipicephalus camicasi (12.49%). A pan-Rickettsia real-time PCR revealed an overall minimum infection rate (MIR) with Rickettsia spp. of 5.64% (136 positive tick pools/2410 total ticks). Rickettsia africae and Rickettsia aeschlimannii were the most frequently identified species by sequencing. Furthermore, the following highly pathogenic livestock parasites were detected: Theileria annulata, Theileria lestoquardi, Theileria equi, and Babesia caballi. The present study documented Rhipicephalus afranicus as well as Rickettsia conorii israelensis, Rickettsia massiliae, and Babesia pecorum for the first time in Sudan. These findings are significant for the animal production sector as well as in terms of One Health, as the detected Rickettsia spp. can cause serious illness in humans.
Collapse
Affiliation(s)
- Andrea Springer
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hanover, Germany;
| | - Yassir Adam Shuaib
- College of Veterinary Medicine, Sudan University of Science and Technology, Hilat Kuku, Khartoum North 13321, Sudan; (Y.A.S.); (M.A.A.); (A.O.B.)
| | - Makarim Habib Isaa
- Veterinary Research Institute, Soba, Khartoum 11121, Sudan; (M.H.I.); (I.A.Y.)
| | | | - Abdinasir Yusuf Osman
- The Royal Veterinary College, University of London, Hawkshead Lane, North Mymms, Hatfield AL9 7TA, Hertfordshire, UK;
| | - Idris Ahmed Yagoub
- Veterinary Research Institute, Soba, Khartoum 11121, Sudan; (M.H.I.); (I.A.Y.)
| | - Mohamed Abdalsalam Abdalla
- College of Veterinary Medicine, Sudan University of Science and Technology, Hilat Kuku, Khartoum North 13321, Sudan; (Y.A.S.); (M.A.A.); (A.O.B.)
| | - Amel Omer Bakiet
- College of Veterinary Medicine, Sudan University of Science and Technology, Hilat Kuku, Khartoum North 13321, Sudan; (Y.A.S.); (M.A.A.); (A.O.B.)
| | | | - Sabine Schaper
- Bundeswehr Institute of Microbiology, 80937 Munich, Germany; (S.S.); (R.R.); (G.D.); (L.C.-D.)
| | - Ramona Rieß
- Bundeswehr Institute of Microbiology, 80937 Munich, Germany; (S.S.); (R.R.); (G.D.); (L.C.-D.)
| | - Gerhard Dobler
- Bundeswehr Institute of Microbiology, 80937 Munich, Germany; (S.S.); (R.R.); (G.D.); (L.C.-D.)
- Department of Parasitology, University of Hohenheim, 70599 Stuttgart, Germany
| | - Christina Strube
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hanover, Germany;
| | - Deon K. Bakkes
- Gertrud Theiler Tick Museum, Onderstepoort Veterinary Research, Pretoria 0001, South Africa;
- Evolutionary Genomics Group, Department of Botany and Zoology, Stellenbosch University, Matieland, 7602 Stellenbosch, South Africa
| | - Lidia Chitimia-Dobler
- Bundeswehr Institute of Microbiology, 80937 Munich, Germany; (S.S.); (R.R.); (G.D.); (L.C.-D.)
| |
Collapse
|
9
|
Cordeiro MD, Silva CBD, Navarrete MG, Roque E, Fonseca AHD. First serological detection of Borrelia spp. in dogs in western Cuba. ACTA ACUST UNITED AC 2020; 29:e014020. [PMID: 33295375 DOI: 10.1590/s1984-29612020104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 09/17/2020] [Indexed: 11/21/2022]
Abstract
This study aimed to verify the presence of IgG antibodies against Borrelia burgdorferi sensu lato (s.l) in domestic dogs in western Cuba. Serum samples were analyzed by indirect enzyme-linked immunosorbent assay (ELISA), using crude antigens of a B. burgdorferi strain of North American origin. To verify the presence of Borrelia spp., deoxyribonucleic acid (DNA) extracted from individual blood samples was analyzed by nested-PCR, with markers targeted for amplification of portions of the flagellin B gene (flaB) present in Borrelia spirochetes. Ticks were also collected through inspection of the animals. Sera from 93 of 176 (52.84%) dogs were reactive to the indirect ELISA. Geographic prevalence varied from 54.35% (25/46) in Boyeros, 44.44% (20/45) in Cotorro, 66.67% (22/33) in Habana del Este, and 50% (26/52) in San José de las Lajas. There was no statistical difference between these tested variables. No blood samples analyzed were positive for the Borrelia flaB gene.
Collapse
Affiliation(s)
- Matheus Dias Cordeiro
- Departamento de Epidemiologia e Saúde Pública, Instituto de Veterinária, Universidade Federal Rural do Rio de Janeiro - UFRRJ, Seropédica, RJ, Brasil
| | - Claudia Bezerra da Silva
- Departamento de Epidemiologia e Saúde Pública, Instituto de Veterinária, Universidade Federal Rural do Rio de Janeiro - UFRRJ, Seropédica, RJ, Brasil
| | - Maylin Gonzalez Navarrete
- Departamento de Prevención, Facultad de Medicina Veterinaria, Universidad Agraria de La Habana - UNAH, Mayabeque, Cuba
| | - Eugênio Roque
- Departamento de Prevención, Facultad de Medicina Veterinaria, Universidad Agraria de La Habana - UNAH, Mayabeque, Cuba
| | - Adivaldo Henrique da Fonseca
- Departamento de Epidemiologia e Saúde Pública, Instituto de Veterinária, Universidade Federal Rural do Rio de Janeiro - UFRRJ, Seropédica, RJ, Brasil
| |
Collapse
|
10
|
Systematic Review of Ticks and Tick-Borne Pathogens of Small Ruminants in Pakistan. Pathogens 2020; 9:pathogens9110937. [PMID: 33187238 PMCID: PMC7696454 DOI: 10.3390/pathogens9110937] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 01/09/2023] Open
Abstract
Ticks and tick-borne diseases (TTBDis) are a major constraint to the health and production of small ruminants in Pakistan. Despite being the subject of intermittent studies over the past few decades, comprehensive information on the epidemiology and control of TTBDis is lacking. Herein, we have systematically reviewed the current knowledge on TTBDis of small ruminants in Pakistan. Critical appraisal of the selected 71 articles published between 1947 to 2020 revealed that morphological examination had been the most widely used method for the identification of TTBDis in Pakistan. Tick fauna comprise at least 40 species, mainly belonging to Haemaphysalis, Hyalomma and Rhipicephalus. The prevalence of ticks is the highest in summer (June–September) and it is also higher in goats than sheep. Anaplasma, Babesia and Theileria spp. are the major tick-borne pathogens (TBPs), and their prevalence is usually higher in sheep than goats. Spatio-temporal distribution, genetic diversity and control of ticks and TBPs of small ruminants as well as the competence of tick vectors for various TBPs remain to be explored. Therefore, coordinated and focused investigations are required to fill knowledge gaps in these areas to maximise the health, production and welfare of small ruminants and minimise economic losses associated with TTBDis in Pakistan.
Collapse
|