1
|
Gopinath S, Hosamani M, Joseph BV, Patil SS. Development of classical swine fever virus E2-protein based indirect ELISA for detection of antibodies against the virus in pigs. Vet Res Commun 2024; 48:3121-3129. [PMID: 39088127 DOI: 10.1007/s11259-024-10482-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 07/24/2024] [Indexed: 08/02/2024]
Abstract
Classical swine fever (CSF) is an economically important and highly contagious disease of pigs caused by CSF virus, genus Pestivirus. Serological diagnosis of the disease is highly valuable for surveillance and thereby containment of spread of the disease. In this study, we have demonstrated the development of CSFV envelope glycoprotein E2-based indirect ELISA (E2-iELISA) for the detection of CSFV specific antibodies. The full-length E2 protein was expressed in E. coli and the purified protein was used as a coating antigen in indirect ELISA for detecting CSFV specific antibodies in pigs. A panel of 506 pig sera samples was used to validate the ELISA and the results were highly comparable to the results obtained with the commercial antibody detection kit (PrioCHECK CSFV Ab kit). The in-house E2-iELISA demonstrated high diagnostic sensitivity (95.4%) and specificity (95.5%), highlighting its potential application for sero-surveillance or monitoring of the disease in the swine population.
Collapse
Affiliation(s)
| | - Madhusudan Hosamani
- ICAR- Indian Veterinary Research Institute, Bengaluru, 560024, Karnataka, India
| | | | - Sharanagouda S Patil
- ICAR- National Institute of Veterinary Epidemiology and Disease Informatics (NIVEDI), Bengaluru, 560064, Karnataka, India.
| |
Collapse
|
2
|
Wang L, Ren J, Wang J, Zhang H, Shi J. Editorial: Advances and insights in the diagnosis of viral infections and vaccines development in animals. Front Microbiol 2024; 15:1443858. [PMID: 39015738 PMCID: PMC11249551 DOI: 10.3389/fmicb.2024.1443858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 06/19/2024] [Indexed: 07/18/2024] Open
Affiliation(s)
- Lihua Wang
- Center on Biologics Development and Evaluation, Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| | - Jingqiang Ren
- Institute of Virology, Wenzhou University, Wenzhou, China
| | - Jianke Wang
- Hebei Veterinary Biotechnology Innovation Center, College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Hewei Zhang
- College of Food and Drugs, Luoyang Polytechnic, Luoyang, Henan, China
| | - Jishu Shi
- Center on Biologics Development and Evaluation, Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| |
Collapse
|
3
|
Manessis G, Frant M, Podgórska K, Gal-Cisoń A, Łyjak M, Urbaniak K, Woźniakowski G, Denes L, Balka G, Nannucci L, Griol A, Peransi S, Basdagianni Z, Mourouzis C, Giusti A, Bossis I. Label-Free Detection of African Swine Fever and Classical Swine Fever in the Point-of-Care Setting Using Photonic Integrated Circuits Integrated in a Microfluidic Device. Pathogens 2024; 13:415. [PMID: 38787267 PMCID: PMC11124021 DOI: 10.3390/pathogens13050415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/11/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024] Open
Abstract
Swine viral diseases have the capacity to cause significant losses and affect the sector's sustainability, a situation further exacerbated by the lack of antiviral drugs and the limited availability of effective vaccines. In this context, a novel point-of-care (POC) diagnostic device incorporating photonic integrated circuits (PICs), microfluidics and information, and communication technology into a single platform was developed for the field diagnosis of African swine fever (ASF) and classical swine fever (CSF). The device targets viral particles and has been validated using oral fluid and serum samples. Sensitivity, specificity, accuracy, precision, positive likelihood ratio (PLR), negative likelihood ratio (NLR), and diagnostic odds ratio (DOR) were calculated to assess the performance of the device, and PCR was the reference method employed. Its sensitivities were 80.97% and 79%, specificities were 88.46% and 79.07%, and DOR values were 32.25 and 14.21 for ASF and CSF, respectively. The proposed POC device and PIC sensors can be employed for the pen-side detection of ASF and CSF, thus introducing novel technological advancements in the field of animal diagnostics. The need for proper validation studies of POC devices is highlighted to optimize animal biosecurity.
Collapse
Affiliation(s)
- Georgios Manessis
- Laboratory of Animal Husbandry, Department of Animal Production, School of Agriculture, Faculty of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (G.M.); (Z.B.)
| | - Maciej Frant
- Department of Swine Diseases, National Veterinary Research Institute, Partyzantów Avenue 57, 24-100 Puławy, Poland; (M.F.); (K.P.); (A.G.-C.); (M.Ł.); (K.U.)
| | - Katarzyna Podgórska
- Department of Swine Diseases, National Veterinary Research Institute, Partyzantów Avenue 57, 24-100 Puławy, Poland; (M.F.); (K.P.); (A.G.-C.); (M.Ł.); (K.U.)
| | - Anna Gal-Cisoń
- Department of Swine Diseases, National Veterinary Research Institute, Partyzantów Avenue 57, 24-100 Puławy, Poland; (M.F.); (K.P.); (A.G.-C.); (M.Ł.); (K.U.)
| | - Magdalena Łyjak
- Department of Swine Diseases, National Veterinary Research Institute, Partyzantów Avenue 57, 24-100 Puławy, Poland; (M.F.); (K.P.); (A.G.-C.); (M.Ł.); (K.U.)
| | - Kinga Urbaniak
- Department of Swine Diseases, National Veterinary Research Institute, Partyzantów Avenue 57, 24-100 Puławy, Poland; (M.F.); (K.P.); (A.G.-C.); (M.Ł.); (K.U.)
| | - Grzegorz Woźniakowski
- Department of Infectious, Invasive Diseases and Veterinary Administration, Faculty of Biological and Veterinary Sciences, Nicolas Copernicus University in Torun, Lwowska 1, 87-100 Torun, Poland;
| | - Lilla Denes
- Department of Pathology, University of Veterinary Medicine Budapest, Istvan Str. 2, 1078 Budapest, Hungary; (L.D.); (G.B.)
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, István Str 2., 1078 Budapest, Hungary
| | - Gyula Balka
- Department of Pathology, University of Veterinary Medicine Budapest, Istvan Str. 2, 1078 Budapest, Hungary; (L.D.); (G.B.)
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, István Str 2., 1078 Budapest, Hungary
| | - Lapo Nannucci
- Dipartimento di Scienze e Tecnologie Agrarie Alimentari Ambientali e Forestali, Università Degli Studi di Firenze, Piazzale delle Cascine 18, 50144 Florence, Italy;
| | - Amadeu Griol
- Nanophotonics Technology Center, Universitat Politècnica de València, Camino de Vera s/n Building 8F, 46022 Valencia, Spain;
| | - Sergio Peransi
- DAS Photonics SL, Camino de Vera, s/n, Building 8F 2nd-Floor, 46022 Valencia, Spain;
| | - Zoitsa Basdagianni
- Laboratory of Animal Husbandry, Department of Animal Production, School of Agriculture, Faculty of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (G.M.); (Z.B.)
| | - Christos Mourouzis
- Cyprus Research and Innovation Centre Ltd. (CyRIC), 28th Octovriou Ave 72, Off. 301, Engomi, 2414 Nicosia, Cyprus; (C.M.); (A.G.)
| | - Alessandro Giusti
- Cyprus Research and Innovation Centre Ltd. (CyRIC), 28th Octovriou Ave 72, Off. 301, Engomi, 2414 Nicosia, Cyprus; (C.M.); (A.G.)
| | - Ioannis Bossis
- Laboratory of Animal Husbandry, Department of Animal Production, School of Agriculture, Faculty of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (G.M.); (Z.B.)
| |
Collapse
|
4
|
Bohórquez JA, Muñoz-Aguilera A, Lanka S, Coronado L, Rosell R, Alberch M, Maddox CW, Ganges L. Development of a new loop-mediated isothermal amplification test for the sensitive, rapid, and economic detection of different genotypes of Classical swine fever virus. Front Cell Infect Microbiol 2024; 14:1372166. [PMID: 38686097 PMCID: PMC11056584 DOI: 10.3389/fcimb.2024.1372166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/01/2024] [Indexed: 05/02/2024] Open
Abstract
Background Classical swine fever virus (CSFV) remains one of the most important pathogens in animal health. Pathogen detection relies on viral RNA extraction followed by RT-qPCR. Novel technologies are required to improve diagnosis at the point of care. Methods A loop-mediated isothermal amplification (LAMP) PCR technique was developed, with primers designed considering all reported CSFV genotypes. The reaction was tested using both fluorometric and colorimetric detection, in comparison to the gold standard technique. Viral strains from three circulating CSFV genotypes were tested, as well as samples from infected animals. Other pathogens were also tested, to determine the LAMP specificity. Besides laboratory RNA extraction methods, a heating method for RNA release, readily available for adaptation to field conditions was evaluated. Results Three primer sets were generated, with one of them showing better performance. This primer set proved capable of maintaining optimal performance at a wide range of amplification temperatures (60°C - 68°C). It was also able to detect CSFV RNA from the three genotypes tested. The assay was highly efficient in detection of samples from animals infected with field strains from two different genotypes, with multiple matrices being detected using both colorimetric and fluorometric methods. The LAMP assay was negative for all the unrelated pathogens tested, including Pestiviruses. The only doubtful result in both fluorometric and colorimetric LAMP was against the novel Pestivirus italiaense, ovine Italy Pestivirus (OVPV), which has proven to have cross-reaction with multiple CSFV diagnostic techniques. However, it is only possible to detect the OVPV in a doubtful result if the viral load is higher than 10000 viral particles. Conclusion The results from the present study show that LAMP could be an important addition to the currently used molecular diagnostic techniques for CSFV. This technique could be used in remote locations, given that it can be adapted for successful use with minimal equipment and minimally invasive samples. The joined use of novel and traditional diagnostic techniques could prove to be a useful alternative to support the CSF control.
Collapse
Affiliation(s)
- Jose Alejandro Bohórquez
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Adriana Muñoz-Aguilera
- WOAH Reference Laboratory for Classical Swine Fever, IRTA-CReSA, Barcelona, Spain
- Unitat mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Universitat Autònoma de Barcelona (UAB), Bellaterra, Barcelona, Spain
- WOAH Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), Barcelona, Spain
- Instituto Colombiano Agropecuario (ICA), Bogotá, DC, Colombia
| | - Saraswathi Lanka
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Liani Coronado
- WOAH Reference Laboratory for Classical Swine Fever, IRTA-CReSA, Barcelona, Spain
- Unitat mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Universitat Autònoma de Barcelona (UAB), Bellaterra, Barcelona, Spain
- WOAH Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), Barcelona, Spain
| | - Rosa Rosell
- WOAH Reference Laboratory for Classical Swine Fever, IRTA-CReSA, Barcelona, Spain
- Unitat mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Universitat Autònoma de Barcelona (UAB), Bellaterra, Barcelona, Spain
- WOAH Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), Barcelona, Spain
- Departament d’Acció Climàtica, Alimentació i Agenda Rural, Generalitat de Catalunya, Barcelona, Spain
| | - Mònica Alberch
- WOAH Reference Laboratory for Classical Swine Fever, IRTA-CReSA, Barcelona, Spain
- Unitat mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Universitat Autònoma de Barcelona (UAB), Bellaterra, Barcelona, Spain
- WOAH Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), Barcelona, Spain
| | - Carol W. Maddox
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Llilianne Ganges
- WOAH Reference Laboratory for Classical Swine Fever, IRTA-CReSA, Barcelona, Spain
- Unitat mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Universitat Autònoma de Barcelona (UAB), Bellaterra, Barcelona, Spain
- WOAH Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), Barcelona, Spain
| |
Collapse
|
5
|
Huynh LT, Sohn EJ, Park Y, Kim J, Shimoda T, Hiono T, Isoda N, Hong SH, Lee HN, Sakoda Y. Development of a dual immunochromatographic test strip to detect E2 and E rns antibodies against classical swine fever. Front Microbiol 2024; 15:1383976. [PMID: 38666258 PMCID: PMC11043574 DOI: 10.3389/fmicb.2024.1383976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
Background It is essential to consider a practical antibody test to successfully implement marker vaccines and validate vaccination efficacy against classical swine fever virus (CSFV). The test should include a serological antibody assay, combined with a tool for differentiating infected from vaccinated animals (DIVA). The immunochromatographic test strip (ICS) has been exclusively designed for detecting CSFV E2 antibodies while lacking in detecting Erns antibodies, which can be employed and satisfy DIVA strategy. This study developed a novel ICS for detecting CSFV E2/Erns dual-antibody. The effectiveness of ICS in evaluating the DIVA capability of two novel chimeric pestivirus vaccine candidates was assessed. Methods Recombinant E2 or Erns protein was transiently expressed in the plant benthamiana using Agrobacterium tumefaciens. ICS was subsequently assembled, and goat anti-rabbit IgG and recombinant CSFV E2 or Erns protein were plated onto the nitrocellulose membrane as control and test lines, respectively. The sensitivity and specificity of ICS were evaluated using sera with different neutralizing antibody titers or positive for antibodies against CSFV and other pestiviruses. The coincidence rates for detecting E2 and Erns antibodies between ICS and commercial enzyme-linked immunosorbent assay (ELISA) kits were also computed. ICS performance for DIVA capability was evaluated using sera from pigs vaccinated with conventional vaccine or chimeric vaccine candidates. Results E2 and Erns proteins were successfully expressed in N. benthamiana-produced recombinant proteins. ICS demonstrated high sensitivity in identifying CSFV E2 and Erns antibodies, even at the low neutralizing antibody titers. No cross-reactivity with antibodies from other pestiviruses was confirmed using ICS. There were high agreement rates of 93.0 and 96.5% between ICS and two commercial ELISA kits for E2 antibody testing. ICS also achieved strong coincidence rates of 92.9 and 89.3% with two ELISA kits for Erns antibody detection. ICS confirmed the absence of CSFV Erns-specific antibodies in sera from pigs vaccinated with chimeric vaccine candidates. Conclusion E2 and Erns proteins derived from the plant showed great potential and can be used to engineer a CSFV E2/Erns dual-antibody ICS. The ICS was also highly sensitive and specific for detecting CSFV E2 and Erns antibodies. Significantly, ICS can fulfill the DIVA concept by incorporating chimeric vaccine candidates.
Collapse
Affiliation(s)
- Loc Tan Huynh
- Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
- Faculty of Veterinary Medicine, College of Agriculture, Can Tho University, Can Tho, Vietnam
| | - Eun-Ju Sohn
- BioApplications, Inc., Pohang, Gyeongsangbuk, Republic of Korea
| | - Youngmin Park
- BioApplications, Inc., Pohang, Gyeongsangbuk, Republic of Korea
| | - Juhun Kim
- BioApplications, Inc., Pohang, Gyeongsangbuk, Republic of Korea
| | | | - Takahiro Hiono
- Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
- One Health Research Center, Hokkaido University, Sapporo, Hokkaido, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, Japan
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Hokkaido, Japan
| | - Norikazu Isoda
- Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
- One Health Research Center, Hokkaido University, Sapporo, Hokkaido, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, Japan
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Hokkaido, Japan
| | - Sung-Hee Hong
- Celltrix Co., Ltd., Seongnam, Gyeonggi, Republic of Korea
| | - Ha-Na Lee
- Celltrix Co., Ltd., Seongnam, Gyeonggi, Republic of Korea
| | - Yoshihiro Sakoda
- Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
- One Health Research Center, Hokkaido University, Sapporo, Hokkaido, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, Japan
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Hokkaido, Japan
| |
Collapse
|
6
|
Tran DH, Tran HT, Vo B, Than TT, Nguyen VT, Le VP, Phung H. Enhancing classical swine fever virus identification: the advantages of Field-LAMP testing. Aust Vet J 2024; 102:67-73. [PMID: 37875328 DOI: 10.1111/avj.13297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/22/2023] [Accepted: 10/07/2023] [Indexed: 10/26/2023]
Abstract
Classical swine fever virus (CSFV) identification has witnessed significant advancements with the development of rapid reverse-transcription loop-mediated isothermal amplification (RT-LAMP) assays. However, conventional RT-LAMP assays for CSFV diagnosis are hindered by a laborious RNA extraction step. Moreover, the need for thermal incubators and expensive micropipettes has limited their application in field settings. Addressing these challenges, our study presents a groundbreaking solution-an electro-free and point-of-care (POC) tool known as the field-LAMP assay-for the rapid clinical detection of CSFV. By eliminating the RNA extraction requirement, advancing the colorimetric read-out and lyophilized reaction reagents, our field-LAMP assay streamlines the diagnostic process, saving valuable time and effort. This novel approach also overcomes the dependency on electric-dependent thermal incubators and expensive micropipettes, making it practical and accessible for use in the field. The successful development of the field-LAMP assay marks a significant milestone in CSFV detection. This electro-free and POC tool offers several advantages, including its ability to deliver rapid results without compromising accuracy, facilitating prompt response and containment measures.
Collapse
Affiliation(s)
- D H Tran
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| | - H T Tran
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| | - Btt Vo
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| | - T T Than
- College of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - V T Nguyen
- Institute of Veterinary Science and Technology, Hanoi, Vietnam
| | - V P Le
- College of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - Htt Phung
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| |
Collapse
|
7
|
Flores-Contreras EA, Carrasco-González JA, Linhares DCL, Corzo CA, Campos-Villalobos JI, Henao-Díaz A, Melchor-Martínez EM, Iqbal HMN, González-González RB, Parra-Saldívar R, González-González E. Emergent Molecular Techniques Applied to the Detection of Porcine Viruses. Vet Sci 2023; 10:609. [PMID: 37888561 PMCID: PMC10610968 DOI: 10.3390/vetsci10100609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/16/2023] [Accepted: 09/17/2023] [Indexed: 10/28/2023] Open
Abstract
Molecular diagnostic tests have evolved very rapidly in the field of human health, especially with the arrival of the recent pandemic caused by the SARS-CoV-2 virus. However, the animal sector is constantly neglected, even though accurate detection by molecular tools could represent economic advantages by preventing the spread of viruses. In this regard, the swine industry is of great interest. The main viruses that affect the swine industry are described in this review, including African swine fever virus (ASFV), porcine reproductive and respiratory syndrome virus (PRRSV), porcine epidemic diarrhea virus (PEDV), and porcine circovirus (PCV), which have been effectively detected by different molecular tools in recent times. Here, we describe the rationale of molecular techniques such as multiplex PCR, isothermal methods (LAMP, NASBA, RPA, and PSR) and novel methods such as CRISPR-Cas and microfluidics platforms. Successful molecular diagnostic developments are presented by highlighting their most important findings. Finally, we describe the barriers that hinder the large-scale development of affordable, accessible, rapid, and easy-to-use molecular diagnostic tests. The evolution of diagnostic techniques is critical to prevent the spread of viruses and the development of viral reservoirs in the swine industry that impact the possible development of future pandemics and the world economy.
Collapse
Affiliation(s)
- Elda A. Flores-Contreras
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Nuevo Leon, Mexico; (E.A.F.-C.); (E.M.M.-M.); (H.M.N.I.)
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey 64849, Nuevo Leon, Mexico
| | | | - Daniel C. L. Linhares
- Veterinary Diagnostic and Production Animal Medicine Department, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA;
| | - Cesar A. Corzo
- Veterinary Population Medicine Department, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55455, USA;
| | | | | | - Elda M. Melchor-Martínez
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Nuevo Leon, Mexico; (E.A.F.-C.); (E.M.M.-M.); (H.M.N.I.)
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey 64849, Nuevo Leon, Mexico
| | - Hafiz M. N. Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Nuevo Leon, Mexico; (E.A.F.-C.); (E.M.M.-M.); (H.M.N.I.)
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey 64849, Nuevo Leon, Mexico
| | - Reyna Berenice González-González
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Nuevo Leon, Mexico; (E.A.F.-C.); (E.M.M.-M.); (H.M.N.I.)
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey 64849, Nuevo Leon, Mexico
| | - Roberto Parra-Saldívar
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Nuevo Leon, Mexico; (E.A.F.-C.); (E.M.M.-M.); (H.M.N.I.)
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey 64849, Nuevo Leon, Mexico
| | - Everardo González-González
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Nuevo Leon, Mexico; (E.A.F.-C.); (E.M.M.-M.); (H.M.N.I.)
| |
Collapse
|
8
|
Wang L, Madera R, Li Y, Gladue DP, Borca MV, McIntosh MT, Shi J. Development of Porcine Monoclonal Antibodies with In Vitro Neutralizing Activity against Classical Swine Fever Virus from C-Strain E2-Specific Single B Cells. Viruses 2023; 15:v15040863. [PMID: 37112845 PMCID: PMC10145741 DOI: 10.3390/v15040863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 03/30/2023] Open
Abstract
Neutralizing antibodies (nAbs) can be used before or after infection to prevent or treat viral diseases. However, there are few efficacious nAbs against classical swine fever virus (CSFV) that have been produced, especially the porcine-originated nAbs. In this study, we generated three porcine monoclonal antibodies (mAbs) with in vitro neutralizing activity against CSFV, aiming to facilitate the development of passive antibody vaccines or antiviral drugs against CSFV that offer the advantages of stability and low immunogenicity. Pigs were immunized with the C-strain E2 (CE2) subunit vaccine, KNB-E2. At 42 days post vaccination (DPV), CE2-specific single B cells were isolated via fluorescent-activated cell sorting (FACS) baited by Alexa Fluor™ 647-labeled CE2 (positive), goat anti-porcine IgG (H + L)-FITC antibody (positive), PE mouse anti-pig CD3ε (negative) and PE mouse anti-pig CD8a (negative). The full coding region of IgG heavy (H) chains and light (L) chains was amplified by reverse transcription-polymerase chain reaction (RT-PCR). Overall, we obtained 3 IgG H chains, 9 kappa L chains and 36 lambda L chains, which include three paired chains (two H + κ and one H + λ). CE2-specific mAbs were successfully expressed in 293T cells with the three paired chains. The mAbs exhibit potent neutralizing activity against CSFVs. They can protect ST cells from infections in vitro with potent IC50 values from 14.43 µg/mL to 25.98 µg/mL for the CSFV C-strain, and 27.66 µg/mL to 42.61 µg/mL for the CSFV Alfort strain. This study is the first report to describe the amplification of whole-porcine IgG genes from single B cells of KNB-E2-vaccinated pig. The method is versatile, sensitive, and reliable. The generated natural porcine nAbs can be used to develop long-acting and low-immunogenicity passive antibody vaccine or anti-CSFV agents for CSF control and prevention.
Collapse
Affiliation(s)
- Lihua Wang
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; (R.M.); (Y.L.)
- Correspondence: (L.W.); (J.S.); Tel.: +1-(785)-706-3796 (L.W.); +1-(785)-532-4506 (J.S.)
| | - Rachel Madera
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; (R.M.); (Y.L.)
| | - Yuzhen Li
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; (R.M.); (Y.L.)
| | - Douglas P. Gladue
- Department of Agriculture, Agricultural Research Service, Plum Island Animal Disease Center, Greenport, NY 11944, USA; (D.P.G.); (M.V.B.)
| | - Manuel V. Borca
- Department of Agriculture, Agricultural Research Service, Plum Island Animal Disease Center, Greenport, NY 11944, USA; (D.P.G.); (M.V.B.)
| | - Michael T. McIntosh
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32611, USA;
- Child Health Research Institute, Department of Pediatrics, University of Florida, Gainesville, FL 32611, USA
| | - Jishu Shi
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; (R.M.); (Y.L.)
- Correspondence: (L.W.); (J.S.); Tel.: +1-(785)-706-3796 (L.W.); +1-(785)-532-4506 (J.S.)
| |
Collapse
|
9
|
Yi W, Wang H, Qin H, Wang Q, Guo R, Wen G, Pan Z. Construction and efficacy of a new live chimeric C-strain vaccine with DIVA characteristics against classical swine fever. Vaccine 2023; 41:2003-2012. [PMID: 36803898 DOI: 10.1016/j.vaccine.2023.02.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/21/2023]
Abstract
To develop the new classical swine fever (CSF) vaccine candidate with differentiating infected vaccinated animals (DIVA) characteristics, a chimeric CSF virus (CSFV) was constructed based on an infectious cDNA clone of the CSF vaccine C-strain. The 5'- and 3'-untranslated regions (UTRs) and partial E2 region (residues 690-860) of the C-strain were substituted with the corresponding regions of bovine viral diarrhoea virus (BVDV) to construct the chimeric cDNA clone pC/bUTRs-tE2. The chimeric virus rC/bUTRs-tE2 was generated by several passages of pC/bUTRs-tE2-transfected PK15 cells. Stable growth and genetic properties of rC/bUTRs-tE2 were obtained after 30 serial passages. Compared to parental rC/bUTRs-tE2 (1st passage), two residue mutations (M834K and M979K) located in E2 in rC/bUTRs-tE2 P30 were observed. Compared to the C-strain, rC/bUTRs-tE2 exhibited unchanged cell tropism and decreased plaque-forming ability. Substituting the C-strain UTRs with the BVDV UTRs resulted in significantly increased viral replication in PK15 cells. Compared to CSFV Erns-positive and BVDV tE2-negative antibody responses induced by the CSF vaccine C-strain, immunization of rabbits and piglets with rC/bUTRs-tE2 resulted in serological profiles of CSFV Erns- and BVDV tE2-positive antibodies, which are used to serologically discriminate pigs that are clinically infected and vaccinated. Vaccination of piglets with rC/bUTRs-tE2 conferred complete protection against lethal CSFV challenge. Our results suggest that rC/bUTRs-tE2 is a promising new CSF marker vaccine candidate.
Collapse
Affiliation(s)
- Weicheng Yi
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Hao Wang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Huan Qin
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China; Laboratory, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430015, China
| | - Qin Wang
- World Organisation for Animal Health Reference Laboratory for Classical Swine Fever, China Institute of Veterinary Drug Control, Beijing 100081, China
| | - Rui Guo
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Guoyuan Wen
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Zishu Pan
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
10
|
A Novel Blocking Enzyme-Linked Immunosorbent Assay Based on a Biotinylated Nanobody for the Rapid and Sensitive Clinical Detection of Classical Swine Fever Virus Antibodies. Microbiol Spectr 2023; 11:e0299622. [PMID: 36688674 PMCID: PMC9927282 DOI: 10.1128/spectrum.02996-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Monoclonal and polyclonal antibodies are mostly used for the development of traditional enzyme-linked immunosorbent assays (ELISAs), but the use of certain conventional antibodies may be limited by their low yield, the difficulty of their isolation, and their high cost. Heavy-chain antibodies derived from camelids with naturally missing light chains can overcome these deficiencies and are an excellent alternative to conventional antibodies. In this study, a nanobody (Nb)-AviTag fusion protein was constructed, and the feasibility of its use as a high-sensitivity probe in a blocking ELISA (bELISA) for classical swine fever virus (CSFV) was investigated. The CSFV E2 recombinant protein expressed by the CHO expression system exhibited good reactogenicity and immunogenicity and induced the production of high CSFV antibody levels in rabbits. Three different clones of Nbs were successfully isolated using a phage display system in alpaca, and an Nb1-AviTag fusion protein was successfully expressed using an Escherichia coli expression system. The purified Nb1-AviTag fusion protein was then biotinylated in vitro to obtain Nb1-biotin. A novel bELISA was developed for the detection of CSFV antibodies in clinical serum using Nb1-biotin as a probe. The cutoff value of bELISA was 32.18%, the sensitivity of bELISA was higher than that of the bELISA kit with IDEXX antibody, and the coincidence rate was 94.7%. A rapid, low-cost, highly sensitive and highly specific CSFV E2 antibody-based bELISA method was successfully established and can be used for the serological evaluation of CSFV E2 subunit vaccines and the ELISA-based diagnosis of CSFV infection. IMPORTANCE Currently, the epidemic situation of classical swine fever (CSF) is sporadic, and cases of atypical swine fever are on the rise in China. Therefore, it is necessary to accurately eliminate suspected cases by using highly sensitive and specific diagnostic techniques. In our study, a rapid, low-cost, highly sensitivity, highly reliable and reproducible, and highly specific classical swine fever virus (CSFV) E2 antibody-based blocking ELISA method was successfully established by using the phage display system and the Nb1-AviTag fusion expression platform. It provides a new technique for serological evaluation of CSFV vaccines and ELISA-based diagnosis of CSFV infection.
Collapse
|
11
|
Xia YJ, Xu L, Zhao JJ, Li YX, Wu RZ, Song XP, Zhao QZ, Liu YB, Wang Q, Zhang QY. Development of a quadruple PCR-based gene microarray for detection of vaccine and wild-type classical swine fever virus, African swine fever virus and atypical porcine pestivirus. Virol J 2022; 19:201. [PMID: 36447230 PMCID: PMC9708128 DOI: 10.1186/s12985-022-01933-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/24/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Classical swine fever (CSF), African swine fever (ASF), and atypical porcine pestivirus (APPV) are acute, virulent, and contagious viral diseases currently hampering the pig industry in China, which result in mummification or stillbirths in piglets and mortality in pigs. Diagnostic assays for the differentiation of infection and vaccination of CSFV, in addition to the detection of ASFV and APPV, are urgently required for better prevention, control, and elimination of these viral diseases in China. METHODS A quadruple PCR-based gene microarray assay was developed in this study to simultaneously detect wild-type and vaccine CSFV strains, ASFV and APPV according to their conserved regions. Forty-two laboratory-confirmed samples, including positive samples of 10 other swine viral diseases, were tested using this assay to confirm its high specificity. RESULTS This assay's limit of detections (LODs) for the wild-type and vaccine CSFV were 6.98 and 6.92 copies/µL. LODs for ASFV and APPV were 2.56 × 10 and 1.80 × 10 copies/µL, respectively. When compared with standard RT-PCR or qPCR for CSFV (GB/T 26875-2018), ASFV (MARR issue No.172), or APPV (CN108611442A) using 219 clinical samples, the coincidence was 100%. The results showed that this assay with high sensitivity could specifically distinguish ASFV, APPV, and CSFV, including CSFV infection and immunization. CONCLUSION This assay provides a practical, simple, economic, and reliable test for the rapid detection and accurate diagnosis of the three viruses and may have good prospects for application in an epidemiological investigation, prevention, and control and elimination of these three diseases.
Collapse
Affiliation(s)
- Ying-ju Xia
- grid.418540.cChina Institute of Veterinary Drug Control, Beijing, 100081 People’s Republic of China
| | - Lu Xu
- grid.418540.cChina Institute of Veterinary Drug Control, Beijing, 100081 People’s Republic of China
| | - Jun-jie Zhao
- grid.418540.cChina Institute of Veterinary Drug Control, Beijing, 100081 People’s Republic of China
| | - Yuan-xi Li
- grid.418540.cChina Institute of Veterinary Drug Control, Beijing, 100081 People’s Republic of China
| | - Rui-zhi Wu
- grid.418540.cChina Institute of Veterinary Drug Control, Beijing, 100081 People’s Republic of China
| | - Xiang-peng Song
- grid.418540.cChina Institute of Veterinary Drug Control, Beijing, 100081 People’s Republic of China
| | - Qi-zu Zhao
- grid.418540.cChina Institute of Veterinary Drug Control, Beijing, 100081 People’s Republic of China
| | - Ye-bing Liu
- grid.418540.cChina Institute of Veterinary Drug Control, Beijing, 100081 People’s Republic of China
| | - Qin Wang
- grid.418540.cChina Institute of Veterinary Drug Control, Beijing, 100081 People’s Republic of China
| | - Qian-yi Zhang
- grid.418540.cChina Institute of Veterinary Drug Control, Beijing, 100081 People’s Republic of China
| |
Collapse
|
12
|
Wang L, Mi S, Madera R, Li Y, Gong W, Tu C, Shi J. A Novel Competitive ELISA for Specifically Measuring and Differentiating Immune Responses to Classical Swine Fever C-Strain Vaccine in Pigs. Viruses 2022; 14:1544. [PMID: 35891524 PMCID: PMC9315997 DOI: 10.3390/v14071544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/07/2022] [Accepted: 07/13/2022] [Indexed: 11/17/2022] Open
Abstract
Classical swine fever can be controlled effectively by vaccination with C-strain vaccine. In this study, we developed a novel competitive enzyme-linked immunosorbent assay (cELISA) based on a C-strain Erns specific monoclonal antibody (mAb 1504), aiming to serologically measure immune responses to C-strain vaccine in pigs, and finally to make the C-strain become a DIVA-compatible vaccine. The cELISA system was established based on the strategy that mAb 1504 will compete with the C-strain induced antibodies in the pig serum to bind the C-strain Erns protein. The cELISA was optimized and was further evaluated by testing different categories of pig sera. It can efficiently differentiate C-strain immunized from wild-type CSFV-infected pigs and lacks cross-reaction with other common swine viruses and viruses in genus Pestivirus such as Bovine viral diarrhea virus (BVDV). The C-strain antibody can be tested in pigs 7-14 days post vaccination with this cELISA. The sensitivity and specificity of the established cELISA were 100% (95% confidence interval: 95.60 to 100%) and 100% (95% confidence interval: 98.30 to 100%), respectively. This novel cELISA is a reliable tool for specifically measuring and differentiating immune responses to C-strain vaccine in pigs. By combining with the wild-type CSFV-specific infection tests, it can make the C-strain have DIVA capability.
Collapse
Affiliation(s)
- Lihua Wang
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; (R.M.); (Y.L.)
| | - Shijiang Mi
- Key Laboratory of Zoonoses Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130012, China; (S.M.); (W.G.); (C.T.)
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130012, China
| | - Rachel Madera
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; (R.M.); (Y.L.)
| | - Yuzhen Li
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; (R.M.); (Y.L.)
| | - Wenjie Gong
- Key Laboratory of Zoonoses Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130012, China; (S.M.); (W.G.); (C.T.)
| | - Changchun Tu
- Key Laboratory of Zoonoses Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130012, China; (S.M.); (W.G.); (C.T.)
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130012, China
| | - Jishu Shi
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; (R.M.); (Y.L.)
| |
Collapse
|
13
|
Development and validation of an in vitro titrimetric method for determination of classical swine fever viruses in PK-15 cells. J Immunol Methods 2022; 508:113321. [PMID: 35839841 DOI: 10.1016/j.jim.2022.113321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 06/30/2022] [Accepted: 07/11/2022] [Indexed: 11/22/2022]
Abstract
Classical swine fever (CSF) is a highly contagious notifiable disease of pigs caused by CSF virus of Flaviviridae family. Previously, lapinized vaccines were used for the disease control, which has now been replaced with cell culture vaccines. Determination of virus titre is the key factor for development and quality control testing of classical swine fever (CSF) cell culture vaccines. Since CSFV is a non- cytopathic virus, an accurate method for the titration of this virus in cell culture has not yet been reported. Here we present a full proof method of titration of CSF cell culture viruses employing Fluorescent Antibody Technique (FAT) in 24 well plate cover slip culture of PK-15 cells. CSFV monoclonal antibodies (Mab) used in the test bind to the CSF virus particles in the cell cytoplasm of the infected cells and the immune-fluorescence signal is produced by subsequent binding of FITC conjugate with Mab. In this newly developed method, apple green fluorescence is observed in the cytoplasm of the infected cells as the virus multiplies only in the cytoplasm. The nucleus as well as the uninfected cells cytoplasm is stained red without any traces of green fluorescence. Thus, the test clearly differentiates a CSFV infected cell from the uninfected cells in the vicinity, if any, and also from the uninfected controls. The test can also quantify the accurate titres of CSF live viruses in the cell culture vaccines and hence it has wide application in routine virus titration applied for manufacturing of CSF cell culture vaccines, determination of accurate multiplicity of infection (m.o.i.) during infection and quality control of vaccines by the testing laboratories.
Collapse
|
14
|
Emadi A, Abdolmohammadi Khiav L, Lotfi M, Soleimani S, Dadar M. Development of an in-house Indirect ELISA for detection of bovine viral diarrhoea virus antibodies in bovine sera. J Virol Methods 2022; 308:114576. [PMID: 35810995 DOI: 10.1016/j.jviromet.2022.114576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/04/2022] [Accepted: 07/06/2022] [Indexed: 12/01/2022]
Abstract
Bovine viral diarrhoea virus (BVDV) infection is a worldwide distributed animal disease. BVDV is the causal agent of congenital defects, diarrhea, reproductive failure, and contaminating biological products. Virus Neutralization test (VNT) as a gold standard method is used for detection of BVDV. Although this assay is very sensitive and specific, it has disadvantages including requires to an experienced person and cell culture facilities. VNT is time-consuming. It is important to design a method that does not have the mentioned disadvantages. So, in-house indirect enzyme linked immunosorbent assay (i-ELISA) was developed for laboratories where it is not possible to perform VNT. The system was made using NADL strain of BVDV and MDBK cell line. This ELISA system was compared with a commercial ELISA kit using 99 bovine sera. Coefficient of variation (CV) was calculated 3.9% and 4.8% for the positive and negative control, respectively for the designed i-ELISA system. The sensitivity, specificity, and accuracy of i-ELISA system was 88%, 53.6%, and 70.7% respectively. Based on our result correlation between in- house and commercial ELISA kit for detection of antibody against BVDV in bovine sera was significant (Kappa coefficient =0.41, p < 0.05). Results of the present study suggested that an in-house ELISA as an affordable and confident system for primary screening of the sera used for biological product.
Collapse
Affiliation(s)
- Anahita Emadi
- Department of Bacterial vaccines Quality Control Department, Razi vaccine and Serum Research Institute, Karaj, Iran.
| | - Lida Abdolmohammadi Khiav
- Department of Anaerobic Vaccine Research and Production, Specialized Clostridia Research Laboratory, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization, Karaj, Iran.
| | - Mohsen Lotfi
- Department of Viral vaccines Quality Control Department, Razi vaccine and Serum Research Institute, Karaj, Iran
| | - Sina Soleimani
- Department of Bio bank, Razi vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization, Karaj, Iran.
| | - Maryam Dadar
- Razi vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization, Karaj, Iran.
| |
Collapse
|
15
|
Muasya D, Van Leeuwen J, Gitau G, McKenna S, Heider L, Muraya J. Evaluation of antibody and antigen cross-reaction in Kenyan dairy cattle naturally infected with two pestiviruses: Bovine viral diarrhea virus and classical swine fever virus. Vet World 2022; 15:1290-1296. [PMID: 35765487 PMCID: PMC9210842 DOI: 10.14202/vetworld.2022.1290-1296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 04/07/2022] [Indexed: 11/16/2022] Open
Abstract
Background and Aim: Bovine viral diarrhea virus (BVDV) and classical swine fever virus (CSFV) are important pathogens of cattle and pigs, respectively, and belong to the genus Pestivirus. As CSFV has been shown to infect cattle, it can create diagnostic challenges of BVDV results through possible cross-reactivity where cattle could be exposed to pigs and CSFV. This study aimed to determine the possible cross-reactivity of BVDV and CSFV enzyme-linked immunosorbent assay (ELISA) results for antigen (Ag) and antibody (Ab) among smallholder dairy cattle in Kenya. Materials and Methods: This was a cross-sectional study based on a single visit to farms to collect serum samples and other descriptive farm-level and animal-level information. Testing for BVDV Ag and Ab was conducted on serum samples from 320 dairy cows and heifers, with CSFV Ag and Ab testing conducted on a subset of 133 and 74 serum samples, respectively. CSFV testing was based on BVDV test results and the availability of enough sample volume from farms that kept pigs. The Ag and Ab tests utilized IDEXX ELISA for both BVDV and CSFV. Results: For the 74 samples with Ab tests for both viruses, 40 (54.0%) were BVDV Ab positive, while 63 (85.1%) were CSFV Ab positive. Of the 40 BVDV Ab positive samples, 36 cattle (90.0%) tested positive for CSFV Ab. However, of the 34 BVDV Ab negative samples, 27 (79.4%) were CSFV Ab test-positive. For the 133 samples with Ag tests for both viruses, 125 (94.0%) were BVDV Ag positive, while 2 (1.5%) samples were CSFV Ag positive. None of the eight BVDV Ag negative samples was positive for CSFV Ag and only two (1.6%) of the 125 BVDV Ag positive samples were positive for CSFV Ag. Conclusion: The results indicate either substantial cross-reactivity of the two Ab ELISA tests, or reactivity with some other protein in the samples that led to the positive Ab test results. There was only limited evidence for cross-reactivity of the two Ag ELISA tests. We recommend that Pestivirus genus cross-reactivity be considered when interpreting BVDV ELISA results in cattle, more for Ab than Ag tests. Further research is needed to clarify the levels of cross-reactivity between BVDV and other Pestivirus Ag and Ab tests from animals on mixed-species farms.
Collapse
Affiliation(s)
- Daniel Muasya
- Department of Health Management, Atlantic Veterinary College, University of Prince Edward Island (UPEI), Charlottetown, Prince Edward Island, Canada; Department of Clinical Studies, Faculty of Veterinary Medicine, University of Nairobi, Nairobi, Kenya
| | - John Van Leeuwen
- Department of Health Management, Atlantic Veterinary College, University of Prince Edward Island (UPEI), Charlottetown, Prince Edward Island, Canada
| | - George Gitau
- Department of Clinical Studies, Faculty of Veterinary Medicine, University of Nairobi, Nairobi, Kenya
| | - Shawn McKenna
- Department of Health Management, Atlantic Veterinary College, University of Prince Edward Island (UPEI), Charlottetown, Prince Edward Island, Canada
| | - Luke Heider
- Department of Health Management, Atlantic Veterinary College, University of Prince Edward Island (UPEI), Charlottetown, Prince Edward Island, Canada
| | - Joan Muraya
- Department of Clinical Studies, Faculty of Veterinary Medicine, University of Nairobi, Nairobi, Kenya
| |
Collapse
|
16
|
Clemmons EA, Alfson KJ, Dutton JW. Transboundary Animal Diseases, an Overview of 17 Diseases with Potential for Global Spread and Serious Consequences. Animals (Basel) 2021; 11:2039. [PMID: 34359167 PMCID: PMC8300273 DOI: 10.3390/ani11072039] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 12/21/2022] Open
Abstract
Animals provide food and other critical resources to most of the global population. As such, diseases of animals can cause dire consequences, especially disease with high rates of morbidity or mortality. Transboundary animal diseases (TADs) are highly contagious or transmissible, epidemic diseases, with the potential to spread rapidly across the globe and the potential to cause substantial socioeconomic and public health consequences. Transboundary animal diseases can threaten the global food supply, reduce the availability of non-food animal products, or cause the loss of human productivity or life. Further, TADs result in socioeconomic consequences from costs of control or preventative measures, and from trade restrictions. A greater understanding of the transmission, spread, and pathogenesis of these diseases is required. Further work is also needed to improve the efficacy and cost of both diagnostics and vaccines. This review aims to give a broad overview of 17 TADs, providing researchers and veterinarians with a current, succinct resource of salient details regarding these significant diseases. For each disease, we provide a synopsis of the disease and its status, species and geographic areas affected, a summary of in vitro or in vivo research models, and when available, information regarding prevention or treatment.
Collapse
Affiliation(s)
- Elizabeth A. Clemmons
- Southwest National Primate Research Center, Texas Biomedical Research Institute, 8715 W. Military Drive, San Antonio, TX 78227, USA;
| | - Kendra J. Alfson
- Texas Biomedical Research Institute, 8715 W. Military Drive, San Antonio, TX 78227, USA
| | - John W. Dutton
- Southwest National Primate Research Center, Texas Biomedical Research Institute, 8715 W. Military Drive, San Antonio, TX 78227, USA;
| |
Collapse
|
17
|
Babikian HY, Jha RK, Truong QL, Nguyen LT, Babikyan Y, Nguyen HT, To TL, Agus A. Novel formulation with essential oils as a potential agent to minimize African swine fever virus transmission in an in vivo trial in swine. Vet World 2021; 14:1853-1866. [PMID: 34475709 PMCID: PMC8404136 DOI: 10.14202/vetworld.2021.1853-1866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 06/02/2021] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND AND AIM African swine fever (ASF) is currently the most prevalent disease in swine. The disease is spreading throughout primary swine-producing countries with heavy losses in population and revenue. To date, no successful vaccines or medications have been reported. This study aimed to design and develop a blend of natural essential oils and test its efficacy against the ASF virus (ASFV) in swine. MATERIALS AND METHODS We attempted to develop a natural oil blend formulation (NOBF) and determine its efficacy against the ASFV. This study follows on from a previously published in vitro study that reported that the NOBF has anti-ASFV properties. A study was designed using 21 healthy piglets of triple-cross (Landrace + Yorkshire + Durok) crossbred pathogen-free pigs with an average weight of 15 kg. The study consisted of NOBF-incubated, NOBF, positive control, and negative control groups. The NOBF groups were administered NOBF (80 mL/ton mixed in drinking water) beginning 10 days before the challenge and continuing throughout the experiment. The positive and negative control pigs consumed regular drinking water. The pigs were challenged by a sublethal dose of pure isolate ASFV strain Vietnam National University of Agriculture-ASFV-L01/HN/04/19 inoculation with 103.5 HAD50/dose through the intramuscular route. There were sic pigs in each group, three pigs directly IM challenged, and three pigs were considered cohoused pigs. RESULTS Both challenged (three) and cohoused (three) pigs in the positive control showed clinical signs of ASFV infection, as detected by real-time polymerase chain reaction (RT-PCR) in blood samples, oral swabs, and feces. There was 100% cumulative mortality, that is, both challenged and contact pigs died in the positive control group on day 20 of infection. No signs of infection or mortality were observed in the NOBF-incubated group. The challenged pigs in the NOBF-direct challenge group showed clinical signs and mortality, whereas no clinical signs or symptoms occurred in the cohoused pigs. The immunoglobulin G (IgG) level of the contact pigs was the highest in the treatment group and the lowest in the positive control group. The IgM level of the contact pigs in the treatment groups was the lowest, whereas that of the positive control was the highest. The RT-PCR test showed that the ASFV was deactivated in the NOBF-incubated group. The challenged and contact pigs of the positive control group had high Ct values. The challenged pigs of the NOBF group had high Ct values, whereas the contact pigs from the same group and those of the negative control were negative for the ASFV, determined by PCR, in all samples. The comparison of the challenged groups showed that the appearance of the virus was delayed by at least 2 days in the NOBF group compared to the positive control group. CONCLUSION The results showed that NOBF can prevent the spread of the ASFV in a population. Moreover, NOBF can enhance the pig humoral immune system by enhancing IgG levels and reducing IgM levels. This study successfully demonstrated that NOBF is an anti-ASFV agent, which prevents horizontal transmission and enhances pig humoral immunity.
Collapse
Affiliation(s)
| | - Rajeev Kumar Jha
- Department of Research and Development, PT. Rhea Natural Sciences, Indonesia
| | - Quang Lam Truong
- Key laboratory of Veterinary Biotechnology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - Lan Thi Nguyen
- Key laboratory of Veterinary Biotechnology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - Yusef Babikyan
- Department of Technical Research and Development, PT. Central Proteina Prima, Jakarta, Indonesia
| | - Hoa Thi Nguyen
- Key laboratory of Veterinary Biotechnology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - Thanh Long To
- Key laboratory of Veterinary Biotechnology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - Ali Agus
- Faculty of Animal Science, University of Gajah Mada, Yogyakarta, Indonesia
| |
Collapse
|
18
|
Jelsma T, Post J, van den Born E, Segers R, Kortekaas J. Assessing the Protective Dose of a Candidate DIVA Vaccine against Classical Swine Fever. Vaccines (Basel) 2021; 9:vaccines9050483. [PMID: 34068610 PMCID: PMC8151196 DOI: 10.3390/vaccines9050483] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/30/2021] [Accepted: 05/04/2021] [Indexed: 11/30/2022] Open
Abstract
Classical swine fever is a highly contagious and deadly disease in swine. The disease can be controlled effectively by vaccination with an attenuated virus known as the “Chinese” (C)-strain. A single vaccination with the C-strain provides complete protection against highly virulent isolates within days after vaccination, making it one of the most efficacious veterinary vaccines ever developed. A disadvantage of the C-strain is that vaccinated animals cannot be serologically differentiated from animals that are infected with wild-type Classical swine fever virus. Previously, a C-strain-based vaccine with a stable deletion in the E2 structural glycoprotein was developed, which allows for differentiation between infected and vaccinated animals (DIVA). The resulting vaccine, which we named C-DIVA, is compatible with a commercial E2 ELISA, modified to render it suitable as a DIVA test. In the present work, three groups of eight piglets were vaccinated with escalating doses of the C-DIVA vaccine and challenged two weeks after vaccination. One group of four unvaccinated piglets served as controls. Piglets were monitored for clinical signs until three weeks after challenge and blood samples were collected to monitor viremia, leukocyte and thrombocyte levels, and antibody responses. The presence of challenge virus RNA in oropharyngeal swabs was investigated to first gain insight into the potential of C-DIVA to prevent shedding. The results demonstrate that a single vaccination with 70 infectious virus particles of C-DIVA protects pigs from the highly virulent Brescia strain.
Collapse
Affiliation(s)
- Tinka Jelsma
- Wageningen Bioveterinary Research, 8221 RA Lelystad, The Netherlands; (T.J.); (J.P.)
| | - Jacob Post
- Wageningen Bioveterinary Research, 8221 RA Lelystad, The Netherlands; (T.J.); (J.P.)
| | | | - Ruud Segers
- MSD Animal Health, 5830 AA Boxmeer, The Netherlands; (E.v.d.B.); (R.S.)
| | - Jeroen Kortekaas
- Wageningen Bioveterinary Research, 8221 RA Lelystad, The Netherlands; (T.J.); (J.P.)
- Laboratory of Virology, Wageningen University, 6708 PB Wageningen, The Netherlands
- Correspondence: ; Tel.: +31-6-20919110
| |
Collapse
|
19
|
Truong QL, Nguyen LT, Babikian HY, Jha RK, Nguyen HT, To TL. Natural oil blend formulation as an anti-African swine fever virus agent in in vitro primary porcine alveolar macrophage culture. Vet World 2021; 14:794-802. [PMID: 33935430 PMCID: PMC8076445 DOI: 10.14202/vetworld.2021.794-802] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/08/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND AND AIM African swine fever is one of the severe pathogens of swine. It has a significant impact on production and economics. So far, there are no known remedies, such as vaccines or drugs, reported working successfully. In the present study, the natural oil blend formulation's (NOBF) efficacy was evaluated against ASFV in vitro using porcine alveolar macrophages (PAMs) cells of swine. MATERIALS AND METHODS The capacity of NOBF against the ASFV was tested in vitro. The NOBF combines Eucalyptus globulus, Pinus sylvestris, and Lavandula latifolia. We used a 2-fold serial dilution to test the NOBF formulation dose, that is, 105 HAD50/mL, against purified lethal dose of African swine in primary PAMs cells of swine. The PAM cells survival, real-time polymerase chain reaction (PCR) test, and hemadsorption (HAD) observation were performed to check the NOBF efficacy against ASFV. RESULTS The in vitro trial results demonstrated that NOBF up to dilution 13 or 0.000625 mL deactivates the lethal dose 105 HAD50 of ASFV. There was no HAD (Rosetta formation) up to dilution 12 or 0.00125 mL of NOBF. The Ct value obtained by running real-time PCR of the NOBF group at 96 h post-infection was the same as the initial value or lower (25), whereas the Ct value of positive controls increased several folds (17.84). CONCLUSION The in vitro trial demonstrated that NOBF could deactivate the ASFV. The NOBF has the potential to act as anti-ASFV agent in the field. The next step is to conduct in vivo level trial to determine its efficacy.
Collapse
Affiliation(s)
- Quang Lam Truong
- Key Laboratory of Veterinary Biotechnology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - Lan Thi Nguyen
- Key Laboratory of Veterinary Biotechnology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - Haig Yousef Babikian
- Department of Research and Development, PT. Rhea Natural Sciences, Jakarta, Indonesia
| | - Rajeev Kumar Jha
- Department of Research and Development, PT. Rhea Natural Sciences, Jakarta, Indonesia
| | - Hoa Thi Nguyen
- Key Laboratory of Veterinary Biotechnology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - Thanh Long To
- Key Laboratory of Veterinary Biotechnology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi, Vietnam
| |
Collapse
|
20
|
Shi J, Wang L, McVey DS. Of pigs and men: the best-laid plans for prevention and control of swine fevers. Anim Front 2021; 11:6-13. [PMID: 33575093 PMCID: PMC7863345 DOI: 10.1093/af/vfaa052] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Jishu Shi
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS
| | - Lihua Wang
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS
| | - David Scott McVey
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska Lincoln, VBS, Lincoln, NE
| |
Collapse
|
21
|
Classical Swine Fever: A Truly Classical Swine Disease. Pathogens 2020; 9:pathogens9090745. [PMID: 32927731 PMCID: PMC7560091 DOI: 10.3390/pathogens9090745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/09/2020] [Accepted: 09/09/2020] [Indexed: 11/26/2022] Open
|