1
|
Sönmez AY, Bi Len S, Taştan Y, Nezih Kenanoğlu O, Terzi E. Effects of dietary Astragalus caudiculosus (Boiss & Huet, 1856) supplementation on growth, hematology, antioxidant enzyme activities, and immune responses in rainbow trout (Oncorhynchus mykiss Walbaum, 1792). FISH & SHELLFISH IMMUNOLOGY 2022; 122:366-375. [PMID: 35183741 DOI: 10.1016/j.fsi.2022.02.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/08/2022] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Abstract
The potential dietary utilization of Astragalus caudiculosus (AC) in rainbow trout (Oncorhynchus mykiss) was investigated. Four different fish groups (control, AC1, AC2.5, and AC5) were assigned and received the AC-containing diet for 90 days at the rates of 0, 1, 2.5, and 5%, respectively. Results indicated that the growth performance of the AC supplemented fish improved significantly (P < 0.05). Among non-specific immune parameters examined, while lysozyme activity of the AC supplemented fish increased (P < 0.05), oxidative radical production decreased in AC1 and AC2.5 fish groups (P < 0.05) but did not differ in the AC5 group (P > 0.05) compared to the control. Moreover, myeloperoxidase activity was not affected by the AC supplementation (P > 0.05). All pro-inflammatory and anti-inflammatory cytokine gene expressions, except IL-1β, were up-regulated, especially in the fish groups fed with 2.5 and 5% AC supplemented feed (P < 0.05). AC administration caused an elevation in GPx and G6PDH activities, and a decrease in SOD, CAT, and lipid peroxidation (P < 0.05). Overall, AC extract was found to improve the growth, antioxidant status, and immune response of the fish.
Collapse
Affiliation(s)
- Adem Yavuz Sönmez
- Kastamonu University, Faculty of Fisheries, Department of Basic Sciences, Kastamonu, Turkey.
| | - Soner Bi Len
- Kastamonu University, Faculty of Fisheries, Department of Aquaculture, Kastamonu, Turkey
| | - Yiğit Taştan
- Kastamonu University, Faculty of Fisheries, Department of Aquaculture, Kastamonu, Turkey
| | - Osman Nezih Kenanoğlu
- Kastamonu University, Faculty of Fisheries, Department of Aquaculture, Kastamonu, Turkey
| | - Ertugrul Terzi
- Kastamonu University, Faculty of Fisheries, Department of Aquaculture, Kastamonu, Turkey
| |
Collapse
|
2
|
Method for Isolation of Myxozoan Proliferative Stages from Fish at High Yield and Purity: An Essential Prerequisite for In Vitro, In Vivo and Genomics-Based Research Developments. Cells 2022; 11:cells11030377. [PMID: 35159187 PMCID: PMC8833907 DOI: 10.3390/cells11030377] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/11/2022] [Accepted: 01/17/2022] [Indexed: 12/21/2022] Open
Abstract
Myxozoans are a diverse group of microscopic cnidarian parasites and some representatives are associated with important diseases in fish, in both marine and freshwater aquaculture systems. Research on myxozoans has been largely hampered by the inability to isolate myxozoan parasites from their host tissues. In this study, we developed and optimized a method to isolate the myxozoan proliferative stages of different size and cellularity from fish blood, using DEAE-cellulose ion exchange chromatography. We optimized several parameters and obtained 99–100% parasite purity, as well as high survival and infectivity. Using polyclonal pan-carp blood cell-specific antibodies, we further developed a rapid cytometric assay for quantification of the proliferative stages, not only in highly concentrated DEAE-C isolates but also in dilute conditions in full blood. Early developmental stages of myxozoans are key to parasite proliferation, establishment, and pathology in their hosts. The isolation of these stages not only opens new possibilities for in vivo and in vitro studies, but also for obtaining purified DNA and protein extracts for downstream analyses. Hence, we provide a long-desired tool that will advance the functional research into the mechanisms of host exploitation and immune stimulation/evasion in this group, which could contribute greatly to the development of therapeutic strategies against myxozoans.
Collapse
|
3
|
Xie J, Li M, Ye W, Shan J, Zhao X, Duan Y, Liu Y, Unger BH, Cheng Y, Zhang W, Wu N, Xia XQ. Sinomenine Hydrochloride Ameliorates Fish Foodborne Enteritis via α7nAchR-Mediated Anti-Inflammatory Effect Whilst Altering Microbiota Composition. Front Immunol 2021; 12:766845. [PMID: 34887862 PMCID: PMC8650311 DOI: 10.3389/fimmu.2021.766845] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/02/2021] [Indexed: 02/06/2023] Open
Abstract
Foodborne intestinal inflammation is a major health and welfare issue in aquaculture. To prevent enteritis, various additives have been incorporated into the fish diet. Considering anti-inflammatory immune regulation, an effective natural compound could potentially treat or prevent intestinal inflammation. Our previous study has revealed galantamine’s effect on soybean induced enteritis (SBMIE) and has highlighted the possible role of the cholinergic anti-inflammatory pathway in the fish gut. To further activate the intestinal cholinergic related anti-inflammatory function, α7nAchR signaling was considered. In this study, sinomenine, a typical agonist of α7nAChR in mammals, was tested to treat fish foodborne enteritis via its potential anti-inflammation effect using the zebrafish foodborne enteritis model. After sinomenine’s dietary inclusion, results suggested that there was an alleviation of intestinal inflammation at a pathological level. This outcome was demonstrated through the improved morphology of intestinal villi. At a molecular level, SN suppressed inflammatory cytokines’ expression (especially for tnf-α) and upregulated anti-inflammation-related functions (indicated by expression of il-10, il-22, and foxp3a). To systematically understand sinomenine’s intestinal effect on SBMIE, transcriptomic analysis was done on the SBMIE adult fish model. DEGs (sinomenine vs soybean meal groups) were enriched in GO terms related to the negative regulation of lymphocyte/leukocyte activation and alpha-beta T cell proliferation, as well as the regulation of lymphocyte migration. The KEGG pathways for glycolysis and insulin signaling indicated metabolic adjustments of α7nAchR mediated anti-inflammatory effect. To demonstrate the immune cells’ response, in the SBMIE larva model, inflammatory gatherings of neutrophils, macrophages, and lymphocytes caused by soybean meal could be relieved significantly with the inclusion of sinomenine. This was consistent within the sinomenine group as CD4+ or Foxp3+ lymphocytes were found with a higher proportion at the base of mucosal folds, which may suggest the Treg population. Echoing, the sinomenine group’s 16s sequencing result, there were fewer enteritis-related TM7, Sphingomonas and Shigella, but more Cetobacterium, which were related to glucose metabolism. Our findings indicate that sinomenine hydrochloride could be important in the prevention of fish foodborne enteritis at both immune and microbiota levels.
Collapse
Affiliation(s)
- Jiayuan Xie
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Ming Li
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| | - Weidong Ye
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Junwei Shan
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| | - Xuyang Zhao
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| | - You Duan
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yuhang Liu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| | | | - Yingyin Cheng
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Wanting Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Nan Wu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xiao-Qin Xia
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| |
Collapse
|
4
|
Holzer AS, Piazzon MC, Barrett D, Bartholomew JL, Sitjà-Bobadilla A. To React or Not to React: The Dilemma of Fish Immune Systems Facing Myxozoan Infections. Front Immunol 2021; 12:734238. [PMID: 34603313 PMCID: PMC8481699 DOI: 10.3389/fimmu.2021.734238] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/01/2021] [Indexed: 11/13/2022] Open
Abstract
Myxozoans are microscopic, metazoan, obligate parasites, belonging to the phylum Cnidaria. In contrast to the free-living lifestyle of most members of this taxon, myxozoans have complex life cycles alternating between vertebrate and invertebrate hosts. Vertebrate hosts are primarily fish, although they are also reported from amphibians, reptiles, trematodes, mollusks, birds and mammals. Invertebrate hosts include annelids and bryozoans. Most myxozoans are not overtly pathogenic to fish hosts, but some are responsible for severe economic losses in fisheries and aquaculture. In both scenarios, the interaction between the parasite and the host immune system is key to explain such different outcomes of this relationship. Innate immune responses contribute to the resistance of certain fish strains and species, and the absence or low levels of some innate and regulatory factors explain the high pathogenicity of some infections. In many cases, immune evasion explains the absence of a host response and allows the parasite to proliferate covertly during the first stages of the infection. In some infections, the lack of an appropriate regulatory response results in an excessive inflammatory response, causing immunopathological consequences that are worse than inflicted by the parasite itself. This review will update the available information about the immune responses against Myxozoa, with special focus on T and B lymphocyte and immunoglobulin responses, how these immune effectors are modulated by different biotic and abiotic factors, and on the mechanisms of immune evasion targeting specific immune effectors. The current and future design of control strategies for myxozoan diseases is based on understanding this myxozoan-fish interaction, and immune-based strategies such as improvement of innate and specific factors through diets and additives, host genetic selection, passive immunization and vaccination, are starting to be considered.
Collapse
Affiliation(s)
- Astrid S Holzer
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czechia
| | - M Carla Piazzon
- Fish Pathology Group, Institute of Aquaculture Torre de la Sal - Consejo Superior de Investigaciones Científicas (IATS-CSIC), Castellón, Spain
| | - Damien Barrett
- Department of Microbiology, Oregon State University, Corvallis, OR, United States
| | - Jerri L Bartholomew
- Department of Microbiology, Oregon State University, Corvallis, OR, United States
| | - Ariadna Sitjà-Bobadilla
- Fish Pathology Group, Institute of Aquaculture Torre de la Sal - Consejo Superior de Investigaciones Científicas (IATS-CSIC), Castellón, Spain
| |
Collapse
|
5
|
Habiba MM, Hussein EE, Ashry AM, El-Zayat AM, Hassan AM, El-Shehawi AM, Sewilam H, Van Doan H, Dawood MA. Dietary Cinnamon Successfully Enhanced the Growth Performance, Growth Hormone, Antibacterial Capacity, and Immunity of European Sea Bass ( Dicentrarchus labrax). Animals (Basel) 2021; 11:2128. [PMID: 34359255 PMCID: PMC8300298 DOI: 10.3390/ani11072128] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 12/31/2022] Open
Abstract
Dietary cinnamon has several bioactive compounds with growth-promoting and immunomodulation potential and is suggested for finfish species. This study evaluated the inclusion of cinnamon at 0, 10, 15, and 20 g/kg in European sea bass (Dicentrarchus labrax) diets. After 90 days, the highest final weight, weight gain, specific growth rate, protein efficiency ratio, and the lowest feed conversion ratio were seen in fish treated with 10 g/kg (p < 0.05). Further, the measured growth hormone in the blood indicated that fish treated with 10 g/kg had a higher level than fish 0 and 20 g/kg. After the feeding trial, fish treated with cinnamon at varying levels had higher lipid content than fish before the feeding trial (p < 0.05). Lower Vibrio spp. and Faecal Coliform counts were observed in fish treated with cinnamon than fish fed a cinnamon-free diet (p < 0.05). The hematocrit level was markedly (p < 0.05) increased in fish fed cinnamon at 10 g/kg compared to the control without significant differences with fish fed 15 and 20 g/kg. Hemoglobin was significantly increased in fish treated with cinnamon at 10, 15, and 20 g/kg compared to fish fed a cinnamon-free diet (p < 0.05). Red and white blood cells (RBCs and WBCs) were meaningfully (p < 0.05) increased in fish treated with cinnamon compared with the control. Markedly, fish treated with cinnamon had higher serum total lipids than the control with the highest value in fish treated with 15 g/kg (p < 0.05). The lysozyme activity was markedly higher in fish treated with 15 g cinnamon/kg than fish fed 0, 10, and 20 g/kg (p < 0.05). Moreover, phagocytic activity was significantly higher in fish treated with cinnamon at 10, and 15 g/kg than fish fed 0 and 20 g/kg (p < 0.05). In conclusion, dietary cinnamon is suggested at 10-15 g/kg for achieving the high production and wellbeing of European sea bass.
Collapse
Affiliation(s)
- Mahmoud M. Habiba
- National Institute of Oceanography and Fisheries, NIOF, Cairo 11865, Egypt; (M.M.H.); (A.M.A.)
| | - Ebtehal E. Hussein
- Department of Poultry and Fish Production, Faculty of Agriculture, Menoufia University, Shebin El-Kom 32516, Egypt;
| | - Ahmed M. Ashry
- National Institute of Oceanography and Fisheries, NIOF, Cairo 11865, Egypt; (M.M.H.); (A.M.A.)
| | - Ahmed M. El-Zayat
- Department of Fish Production, Faculty of Agriculture, Al-Azhar University, Nasr City, Cairo 11865, Egypt;
| | - Aziza M. Hassan
- Department of Biotechnology, College of Science, Taif University, Taif P.O. Box 11099, Saudi Arabia; (A.M.H.); (A.M.E.-S.)
| | - Ahmed M. El-Shehawi
- Department of Biotechnology, College of Science, Taif University, Taif P.O. Box 11099, Saudi Arabia; (A.M.H.); (A.M.E.-S.)
| | - Hani Sewilam
- The Center for Applied Research on the Environment and Sustainability, The American University in Cairo, Cairo 11835, Egypt;
- Department of Engineering Hydrology, RWTH Aachen University, 52062 Aachen, Germany
| | - Hien Van Doan
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
- Innovative Agriculture Research Center, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Mahmoud A.O. Dawood
- The Center for Applied Research on the Environment and Sustainability, The American University in Cairo, Cairo 11835, Egypt;
- Department of Animal Production, Faculty of Agriculture, Kafrelsheikh University, Kafrelsheikh 33512, Egypt
| |
Collapse
|