1
|
Kren BT, Henzler CM, Ahmed K, Trembley JH. Impact of protein kinase CK2 downregulation and inhibition on oncomir clusters 17 ~ 92 and 106b ~ 25 in prostate, breast, and head and neck cancers. Mol Med 2024; 30:175. [PMID: 39394061 PMCID: PMC11476306 DOI: 10.1186/s10020-024-00937-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 09/13/2024] [Indexed: 10/13/2024] Open
Abstract
BACKGROUND Protein kinase CK2 is a ubiquitous and highly conserved protein Ser/Thr kinase with diverse cell functions. CK2 is upregulated in various cancers and affects numerous aspects of their underlying pathobiology. The important role of microRNAs (miRNAs) referred to as oncomirs is also recognized in various cancers. Elevation of both CK2 and altered miRNA expression in cancers raised the question whether there was a connection between CK2 function and oncomirs in cancer. METHODS PCR array analysis was used to examine the effects of CK2 siRNA-mediated downregulation on miRNA levels in C4-2 prostate cancer cells. We employed prostate cancer, breast cancer, and head and neck squamous cell carcinoma (HNSCC) cells as well as a prostate cancer xenograft orthotopic tumor model to examine the effects of CK2 siRNA-mediated downregulation or chemical inhibition on oncomir cluster miR-17 ~ 92 and miR-106b ~ 25 constituent miRNAs by quantitative reverse-transcriptase stem-loop PCR. Pri-miRNAs were measured in cancer cell lines by quantitative reverse-transcriptase PCR. Protein levels were assessed by western blot. PC3-LN4 prostate cancer orthotopic xenograft tumors and blood were collected from nude mice following repeated treatments with tenfibgen ligand nanocapsules containing RNAi-CK2 or RNAi-Control cargoes. RESULTS PCR array analysis demonstrated effect on a subset of miRNAs following CK2 downregulation; we focused our investigation on CK2 regulation of miR-17 ~ 92 and 106b ~ 25 oncomir clusters. Chemical inhibition or molecular downregulation of CK2 greatly reduced expression of miR-17 ~ 92 and 106b ~ 25 in prostate, breast and head and neck cancer cells in vitro. CK2α and CK2α´ protein levels were significantly correlated with many of the miR-17 ~ 92 and some of the miR-106b ~ 25 constituent members in prostate cancer cells. Decreased pri-miRNA levels for the miR-17 ~ 92 gene cluster transcript were observed for 5 of 6 cancer cell lines tested following CK2 downregulation. Nanocapsule-mediated delivery of RNAi-CK2 reduced CK2 protein expression in orthotopic prostate xenograft tumors and decreased intra-tumoral and serum levels of the oncomirs. CONCLUSIONS Targeting CK2 for the development of new cancer therapies is under active investigation in many laboratories and pharmaceutical companies. Our data suggest a new role for CK2 in cell signaling and survival in multiple cancer types through maintenance of miR-17 ~ 92 and 106b ~ 25 biogenesis.
Collapse
Affiliation(s)
- Betsy T Kren
- Research Service, Minneapolis VA Health Care System, Minneapolis, MN, 55417, USA
| | - Christine M Henzler
- Minnesota Supercomputing Institute, University of Minnesota, 117 Pleasant Street Southeast, Minneapolis, MN, 55455, USA
| | - Khalil Ahmed
- Research Service, Minneapolis VA Health Care System, Minneapolis, MN, 55417, USA
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, 55455, USA
- Department of Urology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Janeen H Trembley
- Research Service, Minneapolis VA Health Care System, Minneapolis, MN, 55417, USA.
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, 55455, USA.
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
2
|
Ghani MU, Shi J, Du Y, Zhong L, Cui H. A comprehensive review on the dynamics of protein kinase CK2 in cancer development and optimizing therapeutic strategies. Int J Biol Macromol 2024; 280:135814. [PMID: 39306165 DOI: 10.1016/j.ijbiomac.2024.135814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/18/2024] [Accepted: 09/18/2024] [Indexed: 10/13/2024]
Abstract
Protein kinase 2 (CK2) is an enzyme ubiquitously present and exhibits extensive kinase activity. It has been strongly linked to tumor progression through the abnormal phosphorylation of key proteins. Research has consistently demonstrated that CK2 is deregulated in various cancer types, with enhanced protein expression and nuclear distribution in tumor cells. CK2 plays a crucial role in a complex network that promotes cell infiltration, migration, proliferation, apoptosis, and cancer progression through multiple pathways, including PI3K/AKT, JAK2/STAT3, ATF4/CDKN1, and HSP90/Cdc37. In addition to its role in cancer growth, there is mounting evidence that CK2 may also affect the immunological dynamics of cancer by altering immune cell functions within the tumor microenvironment, thus facilitating tumor immune evasion. Recent research has increasingly focused on CK2, recognizing it as a therapeutic objective for oncological interventions. This review will critically examine the structure and signaling pathways of CK2, highlighting the significance of further research aimed at enhancing our understanding of the CK2 machinery. Finally, we conclude by refining therapeutic options, notably transitioning from non-pharmacological techniques to strategic CK2 inhibitor use. This development shortens the path to the desired outcome, establishing a pioneering standard in cancer therapy.
Collapse
Affiliation(s)
- Muhammad Usman Ghani
- Medical Research Institute, Southwest University, Chongqing 400715, China; State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
| | - Junbo Shi
- Medical Research Institute, Southwest University, Chongqing 400715, China; State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
| | - Yi Du
- Medical Research Institute, Southwest University, Chongqing 400715, China; State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
| | - Liping Zhong
- State Key Laboratory of Targeting Oncology, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Hongjuan Cui
- Medical Research Institute, Southwest University, Chongqing 400715, China; State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China; Jinfeng Laboratory, Chongqing 401329, China.
| |
Collapse
|
3
|
Wińska P, Wielechowska M, Koronkiewicz M, Borowiecki P. Synthesis and Anticancer Activity of Novel Dual Inhibitors of Human Protein Kinases CK2 and PIM-1. Pharmaceutics 2023; 15:1991. [PMID: 37514177 PMCID: PMC10385865 DOI: 10.3390/pharmaceutics15071991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/05/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
CK2 and PIM-1 are serine/threonine kinases involved in the regulation of many essential processes, such as proliferation, differentiation, and apoptosis. Inhibition of CK2 and PIM-1 kinase activity has been shown to significantly reduce the viability of cancer cells by inducing apoptosis. A series of novel amino alcohol derivatives of parental DMAT were designed and synthesized as potent dual CK2/PIM-1 inhibitors. Concomitantly with the inhibition studies toward recombinant CK2 and PIM-1, the influence of the obtained compounds on the viability of three human carcinoma cell lines, i.e., acute lymphoblastic leukemia (CCRF-CEM), human chronic myelogenous leukemia (K-562), and breast cancer (MCF-7), as well as non-cancerous cells (Vero), was evaluated using an MTT assay. Induction of apoptosis and cell cycle progression after treatment with the most active compound and a lead compound were studied by flow-cytometry-based assay. Additionally, autophagy induction in K-562 cells and intracellular inhibition of CK2 and PIM-1 in all the tested cell lines were evaluated by qualitative/quantitative fluorescence-based assay and Western blot method, respectively. Among the newly developed inhibitors, 1,1,1-trifluoro-3-[(4,5,6,7-tetrabromo-1H-benzimidazol-2-yl)amino]propan-2-ol demonstrates the highest selectivity and the most prominent proapoptotic properties towards the studied cancer cells, especially towards acute lymphoblastic leukemia, in addition to inducing autophagy in K-562 cells.
Collapse
Affiliation(s)
- Patrycja Wińska
- Faculty of Chemistry, Warsaw University of Technology, 00-664 Warsaw, Poland
| | - Monika Wielechowska
- Faculty of Chemistry, Warsaw University of Technology, 00-664 Warsaw, Poland
| | | | - Paweł Borowiecki
- Faculty of Chemistry, Warsaw University of Technology, 00-664 Warsaw, Poland
| |
Collapse
|
4
|
Borad MJ, Bai LY, Richards D, Mody K, Hubbard J, Rha SY, Soong J, McCormick D, Tse E, O'Brien D, Bayat A, Ahn D, Davis SL, Park JO, Oh DY. Silmitasertib plus gemcitabine and cisplatin first-line therapy in locally advanced/metastatic cholangiocarcinoma: A Phase 1b/2 study. Hepatology 2023; 77:760-773. [PMID: 36152015 DOI: 10.1002/hep.32804] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 12/08/2022]
Abstract
BACKGROUND AND AIMS This study aimed to investigate safety and efficacy of silmitasertib, an oral small molecule casein kinase 2 inhibitor, plus gemcitabine and cisplatin (G+C) versus G+C in locally advanced/metastatic cholangiocarcinoma. APPROACH AND RESULTS This work is a Phase 1b/2 study (S4-13-001). In Phase 2, patients received silmitasertib 1000 mg twice daily for 10 days with G+C on Days 1 and 8 of a 21-day cycle. Primary efficacy endpoint was progression-free survival (PFS) in the modified intent-to-treat population (defined as patients who completed at least one cycle of silmitasertib without dose interruption/reduction) from both phases (silmitasertib/G+C n = 55, G+C n = 29). The response was assessed by Response Evaluation Criteria in Solid Tumors v1.1. The median PFS was 11.2 months (95% confidence interval [CI], 7.6, 14.7) versus 5.8 months (95% CI, 3.1, not evaluable [NE]) ( p = 0.0496); 10-month PFS was 56.1% (95% CI, 38.8%, 70.2%) versus 22.2% (95% CI, 1.8%, 56.7%); and median overall survival was 17.4 months (95% CI, 13.4, 25.7) versus 14.9 months (95% CI, 9.9, NE) with silmitasertib/G+C versus G+C. Overall response rate was 34.0% versus 30.8%; the disease control rate was 86.0% versus 88.5% with silmitasertib/G+C versus G+C. Almost all silmitasertib/G+C (99%) and G+C (93%) patients reported at least one treatment emergent adverse event (TEAE). The most common TEAEs (all grades) with silmitasertib/G+C versus G+C were diarrhea (70% versus 13%), nausea (59% vs. 30%), fatigue (47% vs. 47%), vomiting (39% vs. 7%), and anemia (39% vs. 30%). Twelve patients (10%) discontinued treatment because of TEAEs during the study. CONCLUSIONS Silmitasertib/G+C demonstrated promising preliminary evidence of efficacy for the first-line treatment of patients with locally advanced/metastatic cholangiocarcinoma.
Collapse
Affiliation(s)
- Mitesh J Borad
- Center for Individualized Medicine, Liver and Biliary Cancer Research Program and Cancer Cell , Gene and Virus Therapy Lab, Mayo Clinic Arizona , Scottsdale , Arizona , USA
| | - Li-Yuan Bai
- China Medical University Hospital, and China Medical University , Taichung , Taiwan
| | - Donald Richards
- Texas Oncology-Tyler, US Oncology Research , Tyler , Texas , USA
| | - Kabir Mody
- Division of Hematology and Oncology , Mayo Clinic Jacksonville , Jacksonville , Florida , USA
| | - Joleen Hubbard
- Department of Medical Oncology , Mayo Clinic Rochester , Rochester , Minnesota , USA
| | - Sun Young Rha
- Yonsei Cancer Center , Yonsei University College of Medicine , Seoul , South Korea
| | - John Soong
- Clinical Operations , Senhwa Biosciences Corporation , San Diego , California , USA
| | - Daniel McCormick
- Clinical Operations , Senhwa Biosciences Corporation , San Diego , California , USA
| | - Emmett Tse
- Clinical Operations , Senhwa Biosciences Corporation , San Diego , California , USA
| | - Daniel O'Brien
- Department of Quantitative Health Sciences , Mayo Clinic , Rochester , Minnesota , USA
| | - Ahmad Bayat
- Regulatory Affairs , Amarex Clinical Research , Germantown , Maryland , USA
| | - Daniel Ahn
- Division of Hematology/Medical Oncology, Department of Internal Medicine , Mayo Clinic Arizona , Phoenix , Arizona , USA
| | - S Lindsey Davis
- Division of Medical Oncology , University of Colorado Cancer Center , Aurora , Colorado , USA
| | - Joon Oh Park
- Division of Hematology-Oncology , Samsung Medical Centre, Sungkyunkwan University School of Medicine , Seoul , South Korea
| | - Do-Youn Oh
- Cancer Research Institute , Seoul National University Hospital, Seoul National University College of Medicine, Integrated Major in Innovative Medical Science, Seoul National University Graduate School , Seoul , South Korea
| |
Collapse
|
5
|
Trembley JH, Kren BT, Afzal M, Scaria GA, Klein MA, Ahmed K. Protein kinase CK2 – diverse roles in cancer cell biology and therapeutic promise. Mol Cell Biochem 2022; 478:899-926. [PMID: 36114992 PMCID: PMC9483426 DOI: 10.1007/s11010-022-04558-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/01/2022] [Indexed: 11/29/2022]
Abstract
The association of protein kinase CK2 (formerly casein kinase II or 2) with cell growth and proliferation in cells was apparent at early stages of its investigation. A cancer-specific role for CK2 remained unclear until it was determined that CK2 was also a potent suppressor of cell death (apoptosis); the latter characteristic differentiated its function in normal versus malignant cells because dysregulation of both cell growth and cell death is a universal feature of cancer cells. Over time, it became evident that CK2 exerts its influence on a diverse range of cell functions in normal as well as in transformed cells. As such, CK2 and its substrates are localized in various compartments of the cell. The dysregulation of CK2 is documented in a wide range of malignancies; notably, by increased CK2 protein and activity levels with relatively moderate change in its RNA abundance. High levels of CK2 are associated with poor prognosis in multiple cancer types, and CK2 is a target for active research and testing for cancer therapy. Aspects of CK2 cellular roles and targeting in cancer are discussed in the present review, with focus on nuclear and mitochondrial functions and prostate, breast and head and neck malignancies.
Collapse
Affiliation(s)
- Janeen H Trembley
- Research Service, Minneapolis VA Health Care System, Minneapolis, MN, 55417, USA.
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, 55455, USA.
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, 55455, USA.
| | - Betsy T Kren
- Research Service, Minneapolis VA Health Care System, Minneapolis, MN, 55417, USA
| | - Muhammad Afzal
- Department of Biochemistry, Riphah International University, Islamabad, Pakistan
| | - George A Scaria
- Hematology/Oncology Section, Primary Care Service Line, Minneapolis VA Health Care System, Minneapolis, MN, 55417, USA
| | - Mark A Klein
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, 55455, USA
- Hematology/Oncology Section, Primary Care Service Line, Minneapolis VA Health Care System, Minneapolis, MN, 55417, USA
- Department of Medicine, Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Khalil Ahmed
- Research Service, Minneapolis VA Health Care System, Minneapolis, MN, 55417, USA.
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, 55455, USA.
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, 55455, USA.
- Department of Urology, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
6
|
CSNK2 in cancer: pathophysiology and translational applications. Br J Cancer 2022; 126:994-1003. [PMID: 34773100 PMCID: PMC8980014 DOI: 10.1038/s41416-021-01616-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 09/29/2021] [Accepted: 10/22/2021] [Indexed: 12/13/2022] Open
Abstract
Protein kinase CSNK2 (CK2) is a pleiotropic serine/threonine kinase frequently dysregulated in solid and hematologic malignancies. To consolidate a wide range of biological and clinically oriented data from this unique kinase in cancer, this systematic review summarises existing knowledge from in vitro, in vivo and pre-clinical studies on CSNK2 across 24 different human cancer types. CSNK2 mRNA transcripts, protein levels and activity were found to be routinely upregulated in cancer, and commonly identified phosphotargets included AKT, STAT3, RELA, PTEN and TP53. Phenotypically, it frequently influenced evasion of apoptosis, enhancement of proliferation, cell invasion/metastasis and cell cycle control. Clinically, it held prognostic significance across 14 different cancers, and its inhibition in xenograft experiments resulted in a positive treatment response in 12. In conjunction with commentary on preliminary studies of CSNK2 inhibitors in humans, this review harmonises an extensive body of CSNK2 data in cancer and reinforces its emergence as an attractive target for cancer therapy. Continuing to investigate CSNK2 will be crucial to advancing our understanding of CSNK2 biology, and offers the promise of important new discoveries scientifically and clinically.
Collapse
|
7
|
Protein kinase CK2 inhibition as a pharmacological strategy. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2021; 124:23-46. [PMID: 33632467 DOI: 10.1016/bs.apcsb.2020.09.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
CK2 is a constitutively active Ser/Thr protein kinase which phosphorylates hundreds of substrates. Since they are primarily related to survival and proliferation pathways, the best-known pathological roles of CK2 are in cancer, where its targeting is currently being considered as a possible therapy. However, CK2 activity has been found instrumental in many other human pathologies, and its inhibition will expectably be extended to different purposes in the near future. Here, after a description of CK2 features and implications in diseases, we analyze the different inhibitors and strategies available to target CK2, and update the results so far obtained by their in vivo application.
Collapse
|
8
|
Genome Profiling for Aflatoxin B 1 Resistance in Saccharomyces cerevisiae Reveals a Role for the CSM2/SHU Complex in Tolerance of Aflatoxin B 1-Associated DNA Damage. G3-GENES GENOMES GENETICS 2020; 10:3929-3947. [PMID: 32994210 PMCID: PMC7642924 DOI: 10.1534/g3.120.401723] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Exposure to the mycotoxin aflatoxin B1 (AFB1) strongly correlates with hepatocellular carcinoma (HCC). P450 enzymes convert AFB1 into a highly reactive epoxide that forms unstable 8,9-dihydro-8-(N7-guanyl)-9-hydroxyaflatoxin B1 (AFB1-N 7-Gua) DNA adducts, which convert to stable mutagenic AFB1 formamidopyrimidine (FAPY) DNA adducts. In CYP1A2-expressing budding yeast, AFB1 is a weak mutagen but a potent recombinagen. However, few genes have been identified that confer AFB1 resistance. Here, we profiled the yeast genome for AFB1 resistance. We introduced the human CYP1A2 into ∼90% of the diploid deletion library, and pooled samples from CYP1A2-expressing libraries and the original library were exposed to 50 μM AFB1 for 20 hs. By using next generation sequencing (NGS) to count molecular barcodes, we initially identified 86 genes from the CYP1A2-expressing libraries, of which 79 were confirmed to confer AFB1 resistance. While functionally diverse genes, including those that function in proteolysis, actin reorganization, and tRNA modification, were identified, those that function in postreplication DNA repair and encode proteins that bind to DNA damage were over-represented, compared to the yeast genome, at large. DNA metabolism genes also included those functioning in checkpoint recovery and replication fork maintenance, emphasizing the potency of the mycotoxin to trigger replication stress. Among genes involved in postreplication repair, we observed that CSM2, a member of the CSM2 (SHU) complex, functioned in AFB1-associated sister chromatid recombination while suppressing AFB1-associated mutations. These studies thus broaden the number of AFB1 resistance genes and have elucidated a mechanism of error-free bypass of AFB1-associated DNA adducts.
Collapse
|
9
|
CK2 Pro-Survival Role in Prostate Cancer Is Mediated via Maintenance and Promotion of Androgen Receptor and NFκB p65 Expression. Pharmaceuticals (Basel) 2019; 12:ph12020089. [PMID: 31197122 PMCID: PMC6631211 DOI: 10.3390/ph12020089] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 06/05/2019] [Accepted: 06/13/2019] [Indexed: 12/25/2022] Open
Abstract
The prosurvival protein kinase CK2, androgen receptor (AR), and nuclear factor kappa B (NFκB) interact in the function of prostate cells, and there is evidence of crosstalk between these signals in the pathobiology of prostate cancer (PCa). As CK2 is elevated in PCa, and AR and NFκB are involved in the development and progression of prostate cancer, we investigated their interaction in benign and malignant prostate cells in the presence of altered CK2 expression. Our results show that elevation of CK2 levels caused increased levels of AR and NFκB p65 in prostate cells of different phenotypes. Analysis of TCGA PCa data indicated that AR and CK2α RNA expression are strongly correlated. Small molecule inhibition or molecular down-regulation of CK2 caused reduction in AR mRNA expression and protein levels in PCa cells and in orthotopic xenograft tumors by various pathways. Among these, regulation of AR protein stability plays a unifying role in CK2 maintenance of AR protein levels. Our results show induction of various endoplasmic reticulum stress signals after CK2 inhibition, which may play a role in the PCa cell death response. Of note, CK2 inhibition caused loss of cell viability in both parental and enzalutamide-resistant castrate-resistant PCa cells. The present work elucidates the specific link of CK2 to the pathogenesis of PCa in association with AR and NFκB expression; further, the observation that inhibition of CK2 can exert a growth inhibitory effect on therapy-resistant PCa cells emphasizes the potential utility of CK2 inhibition in patients who are on enzalutamide treatment for advanced cancer.
Collapse
|
10
|
Thiazole- and selenazole-comprising high-affinity inhibitors possess bright microsecond-scale photoluminescence in complex with protein kinase CK2. Bioorg Med Chem 2018; 26:5062-5068. [PMID: 30217463 DOI: 10.1016/j.bmc.2018.09.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/30/2018] [Accepted: 09/03/2018] [Indexed: 12/14/2022]
Abstract
A previously disclosed protein kinase (PK) CK2-selective inhibitor 4-(2-amino-1,3-thiazol-5-yl)benzoic acid (ATB) and its selenium-containing counterpart (ASB) revealed remarkable room temperature phosphorescence when bound to the ATP pocket of the protein kinase CK2. Conjugation of these fragments with a mimic of CK2 substrate peptide resulted in bisubstrate inhibitors with increased affinity towards the kinase. Attachment of the fluorescent acceptor dye 5-TAMRA to the conjugates led to significant enhancement of intensity of long-lifetime (microsecond-scale) photoluminescence of both sulfur- and selenium-containing compounds. The developed photoluminescent probes make possible selective determination of the concentration of CK2 in cell lysates and characterization of CK2 inhibitors by means of time-gated measurement of photoluminescence.
Collapse
|
11
|
An Updated View on an Emerging Target: Selected Papers from the 8th International Conference on Protein Kinase CK2. Pharmaceuticals (Basel) 2017; 10:ph10020033. [PMID: 28333082 PMCID: PMC5490390 DOI: 10.3390/ph10020033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 03/21/2017] [Accepted: 03/21/2017] [Indexed: 12/27/2022] Open
|