1
|
Li Y, Liu H, Wang S, Zhang S, Li W, Zhang G, Zhao Y. Rapid screening of xanthine oxidase inhibitors from Ligusticum wallichii by using xanthine oxidase functionalized magnetic metal-organic framework. Anal Bioanal Chem 2024:10.1007/s00216-024-05570-9. [PMID: 39347815 DOI: 10.1007/s00216-024-05570-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/07/2024] [Accepted: 09/23/2024] [Indexed: 10/01/2024]
Abstract
In this study, xanthine oxidase was immobilized for the first time using a novel magnetic metal-organic framework material (Fe3O4-SiO2-NH2@MnO2@ZIF-8-NH2). A ligand fishing method was established to rapidly screen XOD inhibitors from Ligusticum wallichii based on the immobilized XOD. Characterization and properties of the immobilized enzyme revealed its excellent stability and reusability. A ligand was screened from Ligusticum wallichii and identified as ligustilide by ultra-high performance liquid chromatography tandem mass spectrometry. The IC50 value of ligustilide was determined to be 27.70 ± 0.13 μM through in vitro inhibition testing. Furthermore, molecular docking verified that ligustilide could bind to amino acid residues at the active site of XOD. This study provides a rapid and effective method for the preliminary screening of XOD inhibitors from complex natural products and has great potential for further discovery of anti-hyperuricemic compounds.
Collapse
Affiliation(s)
- Yue Li
- School of Science, Xihua University, Chengdu, 610039, China
| | - Hongmei Liu
- School of Science, Xihua University, Chengdu, 610039, China
| | - Sikai Wang
- School of Science, Xihua University, Chengdu, 610039, China
- School of Food and Bioengineering, Xihua University, Chengdu, 610039, China
| | - Sisi Zhang
- School of Science, Xihua University, Chengdu, 610039, China
| | - Wen Li
- School of Science, Xihua University, Chengdu, 610039, China
| | - Guoqi Zhang
- School of Science, Xihua University, Chengdu, 610039, China
| | - Yan Zhao
- School of Science, Xihua University, Chengdu, 610039, China.
- Asymmetric Synthesis and Chiral Technology Key Laboratory of Sichuan Province, Xihua University, Chengdu, 610039, China.
| |
Collapse
|
2
|
Du L, Zong Y, Li H, Wang Q, Xie L, Yang B, Pang Y, Zhang C, Zhong Z, Gao J. Hyperuricemia and its related diseases: mechanisms and advances in therapy. Signal Transduct Target Ther 2024; 9:212. [PMID: 39191722 DOI: 10.1038/s41392-024-01916-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 06/08/2024] [Accepted: 06/27/2024] [Indexed: 08/29/2024] Open
Abstract
Hyperuricemia, characterized by elevated levels of serum uric acid (SUA), is linked to a spectrum of commodities such as gout, cardiovascular diseases, renal disorders, metabolic syndrome, and diabetes, etc. Significantly impairing the quality of life for those affected, the prevalence of hyperuricemia is an upward trend globally, especially in most developed countries. UA possesses a multifaceted role, such as antioxidant, pro-oxidative, pro-inflammatory, nitric oxide modulating, anti-aging, and immune effects, which are significant in both physiological and pathological contexts. The equilibrium of circulating urate levels hinges on the interplay between production and excretion, a delicate balance orchestrated by urate transporter functions across various epithelial tissues and cell types. While existing research has identified hyperuricemia involvement in numerous biological processes and signaling pathways, the precise mechanisms connecting elevated UA levels to disease etiology remain to be fully elucidated. In addition, the influence of genetic susceptibilities and environmental determinants on hyperuricemia calls for a detailed and nuanced examination. This review compiles data from global epidemiological studies and clinical practices, exploring the physiological processes and the genetic foundations of urate transporters in depth. Furthermore, we uncover the complex mechanisms by which the UA induced inflammation influences metabolic processes in individuals with hyperuricemia and the association with its relative disease, offering a foundation for innovative therapeutic approaches and advanced pharmacological strategies.
Collapse
Grants
- 82002339, 81820108020 National Natural Science Foundation of China (National Science Foundation of China)
- 82002339, 81820108020 National Natural Science Foundation of China (National Science Foundation of China)
- 82002339, 81820108020 National Natural Science Foundation of China (National Science Foundation of China)
- 82002339, 81820108020 National Natural Science Foundation of China (National Science Foundation of China)
- 82002339, 81820108020 National Natural Science Foundation of China (National Science Foundation of China)
- 82002339, 81820108020 National Natural Science Foundation of China (National Science Foundation of China)
- 82002339, 81820108020 National Natural Science Foundation of China (National Science Foundation of China)
- 82002339, 81820108020 National Natural Science Foundation of China (National Science Foundation of China)
- 82002339, 81820108020 National Natural Science Foundation of China (National Science Foundation of China)
- 82002339, 81820108020 National Natural Science Foundation of China (National Science Foundation of China)
Collapse
Affiliation(s)
- Lin Du
- Sports Medicine Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
- Institute of Sports Medicine, Shantou University Medical College, Shantou, 515041, China
| | - Yao Zong
- Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, WA, 6009, Australia
| | - Haorui Li
- Sports Medicine Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
- Institute of Sports Medicine, Shantou University Medical College, Shantou, 515041, China
| | - Qiyue Wang
- Sports Medicine Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
- Institute of Sports Medicine, Shantou University Medical College, Shantou, 515041, China
| | - Lei Xie
- Sports Medicine Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
- Institute of Sports Medicine, Shantou University Medical College, Shantou, 515041, China
| | - Bo Yang
- Sports Medicine Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
- Institute of Sports Medicine, Shantou University Medical College, Shantou, 515041, China
| | - Yidan Pang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Changqing Zhang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| | - Zhigang Zhong
- Sports Medicine Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China.
- Institute of Sports Medicine, Shantou University Medical College, Shantou, 515041, China.
| | - Junjie Gao
- Sports Medicine Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China.
- Institute of Sports Medicine, Shantou University Medical College, Shantou, 515041, China.
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| |
Collapse
|
3
|
Sun Q, Yu W, Gong M, Ma J, Liu G, Mei T, Luo X. Xanthine oxidase immobilized cellulose membrane-based colorimetric biosensor for screening and detecting the bioactivity of xanthine oxidase inhibitors. Int J Biol Macromol 2024; 275:133450. [PMID: 38944077 DOI: 10.1016/j.ijbiomac.2024.133450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 06/13/2024] [Accepted: 06/24/2024] [Indexed: 07/01/2024]
Abstract
Xanthine oxidase (XO) is a typical target for hyperuricemia and gout, for which there are only three commercial xanthine oxidase inhibitors (XOIs): febuxostat, topiroxostat and allopurinol. However, these inhibitors have problems such as low bioactivity and several side effects. Therefore, the development of novel XOIs with high bioactivity for the treatment of hyperuricemia and gout is urgently needed. In this work we constructed a XO immobilized cellulose membrane colorimetric biosensor (XNCM) by the TEMPO oxidation, amide bond coupling and nitro blue tetrazolium chloride (NBT) loading method. As expected, the XNCM was able to detect xanthine, with high selectivity and sensitivity by colorimetric method with a distinctive color change from yellow to purple, which can be easily observed by the naked-eye in just 8 min without any complex instrumentation. In addition, the XNCM sensor performed screening of 21 different compounds and have been successfully pre-screened out XOIs with biological activity. Most importantly, the XNCM was able to quantitatively detect the IC50 values of two commercial inhibitors (febuxostat and allopurinol). All the results confirmed that the XNCM is a simple and effective tool which can be used for the accelerated screening of XOIs and has the potential to uncover additional XOIs.
Collapse
Affiliation(s)
- Qi Sun
- School of Chemistry and Environmental Engineering, Hubei key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory of Novel Biomass-based Environmental and Energy Materials in Petroleum, Wuhan Institute of Technology, Wuhan 430205, PR China
| | - Wenlong Yu
- School of Chemistry and Environmental Engineering, Hubei key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory of Novel Biomass-based Environmental and Energy Materials in Petroleum, Wuhan Institute of Technology, Wuhan 430205, PR China
| | - Mixue Gong
- School of Chemistry and Environmental Engineering, Hubei key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory of Novel Biomass-based Environmental and Energy Materials in Petroleum, Wuhan Institute of Technology, Wuhan 430205, PR China
| | - Jingfang Ma
- School of Chemistry and Environmental Engineering, Hubei key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory of Novel Biomass-based Environmental and Energy Materials in Petroleum, Wuhan Institute of Technology, Wuhan 430205, PR China
| | - Genyan Liu
- School of Chemistry and Environmental Engineering, Hubei key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory of Novel Biomass-based Environmental and Energy Materials in Petroleum, Wuhan Institute of Technology, Wuhan 430205, PR China.
| | - Tao Mei
- Key Laboratory of Polymer Materials, Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, PR China.
| | - Xiaogang Luo
- School of Chemistry and Environmental Engineering, Hubei key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory of Novel Biomass-based Environmental and Energy Materials in Petroleum, Wuhan Institute of Technology, Wuhan 430205, PR China.
| |
Collapse
|
4
|
Rameshbabu S, Alehaideb Z, Alghamdi SS, Suliman RS, Almourfi F, Yacoob SAM, Venkataraman A, Messaoudi S, Matou-Nasri S. Identification of Anastatica hierochuntica L. Methanolic-Leaf-Extract-Derived Metabolites Exhibiting Xanthine Oxidase Inhibitory Activities: In Vitro and In Silico Approaches. Metabolites 2024; 14:368. [PMID: 39057691 PMCID: PMC11278686 DOI: 10.3390/metabo14070368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/06/2024] [Accepted: 06/12/2024] [Indexed: 07/28/2024] Open
Abstract
There is a growing interest in the discovery of novel xanthine oxidase inhibitors for gout prevention and treatment with fewer side effects. This study aimed to identify the xanthine oxidase (XO) inhibitory potential and drug-likeness of the metabolites present in the methanolic leaf extract of Anastatica (A.) hierochuntica L. using in vitro and in silico models. The extract-derived metabolites were identified by liquid-chromatography-quadrupole-time-of-flight-mass-spectrometry (LC-QTOF-MS). Molecular docking predicted the XO inhibitory activity of the identified metabolites and validated the best scored in vitro XO inhibitory activities for experimental verification, as well as predictions of their anticancer, pharmacokinetic, and toxic properties; oral bioavailability; and endocrine disruption using SwissADMET, PASS, ProTox-II, and Endocrine Disruptome web servers. A total of 12 metabolites, with a majority of flavonoids, were identified. Rutin, quercetin, and luteolin flavonoids demonstrated the highest ranked docking scores of -12.39, -11.15, and -10.43, respectively, while the half-maximal inhibitory concentration (IC50) values of these metabolites against XO activity were 11.35 µM, 11.1 µM, and 21.58 µM, respectively. In addition, SwissADMET generated data related to the physicochemical properties and drug-likeness of the metabolites. Similarly, the PASS, ProTox-II, and Endocrine Disruptome prediction models stated the safe and potential use of these natural compounds. However, in vivo studies are necessary to support the development of the prominent and promising therapeutic use of A. hierochuntica methanolic-leaf-extract-derived metabolites as XO inhibitors for the prevention and treatment of hyperuricemic and gout patients. Furthermore, the predicted findings of the present study open a new paradigm for these extract-derived metabolites by revealing novel oncogenic targets for the potential treatment of human malignancies.
Collapse
Affiliation(s)
- Saranya Rameshbabu
- PG & Research Department of Biotechnology, Mohamed Sathak College of Arts and Science, Chennai 600119, India; (S.R.); (S.A.M.Y.)
| | - Zeyad Alehaideb
- Department of Core Medical Research Facility and Platform, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS), Ministry of National Guard Health Affairs (MNGHA), Riyadh 11481, Saudi Arabia; (Z.A.); (F.A.)
| | - Sahar S. Alghamdi
- Department of Pharmaceutical Sciences, College of Pharmacy, KSAU-HS, MNGHA, Riyadh 11481, Saudi Arabia;
| | - Rasha S. Suliman
- Department of Pharmacy, Fatima College of Health Sciences, Abu Dhabi P.O. Box 3798, United Arab Emirates;
| | - Feras Almourfi
- Department of Core Medical Research Facility and Platform, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS), Ministry of National Guard Health Affairs (MNGHA), Riyadh 11481, Saudi Arabia; (Z.A.); (F.A.)
| | - Syed Ali Mohamed Yacoob
- PG & Research Department of Biotechnology, Mohamed Sathak College of Arts and Science, Chennai 600119, India; (S.R.); (S.A.M.Y.)
| | - Anuradha Venkataraman
- PG & Research Department of Biochemistry, Mohamed Sathak College of Arts and Science, Chennai 600119, India;
| | - Safia Messaoudi
- Department of Forensic Science, College of Criminal Justice, Naif Arab University for Security Sciences, Riyadh 11452, Saudi Arabia;
| | - Sabine Matou-Nasri
- Department of Blood and Cancer Research, KAIMRC, KSAU-HS, MNGHA, Riyadh 11481, Saudi Arabia
- Department of Biosciences, Faculty of the School of Systems Biology, George Mason University, Manassas, VA 22030, USA
| |
Collapse
|
5
|
Li C, Wu C, Li F, Xu W, Zhang X, Huang Y, Xia D. Targeting Neutrophil Extracellular Traps in Gouty Arthritis: Insights into Pathogenesis and Therapeutic Potential. J Inflamm Res 2024; 17:1735-1763. [PMID: 38523684 PMCID: PMC10960513 DOI: 10.2147/jir.s460333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/07/2024] [Indexed: 03/26/2024] Open
Abstract
Gouty arthritis (GA) is an immune-mediated disorder characterized by severe inflammation due to the deposition of monosodium urate (MSU) crystals in the joints. The pathophysiological mechanisms of GA are not yet fully understood, and therefore, the identification of effective therapeutic targets is of paramount importance. Neutrophil extracellular traps (NETs), an intricate structure of DNA scaffold, encompassing myeloperoxidase, histones, and elastases - have gained significant attention as a prospective therapeutic target for gouty arthritis, due to their innate antimicrobial and immunomodulatory properties. Hence, exploring the therapeutic potential of NETs in gouty arthritis remains an enticing avenue for further investigation. During the process of gouty arthritis, the formation of NETs triggers the release of inflammatory cytokines, thereby contributing to the inflammatory response, while MSU crystals and cytokines are sequestered and degraded by the aggregation of NETs. Here, we provide a concise summary of the inflammatory processes underlying the initiation and resolution of gouty arthritis mediated by NETs. Furthermore, this review presents an overview of the current pharmacological approaches for treating gouty arthritis and summarizes the potential of natural and synthetic product-based inhibitors that target NET formation as novel therapeutic options, alongside elucidating the intrinsic challenges of these inhibitors in NETs research. Lastly, the limitations of HL-60 cell as a suitable substitute of neutrophils in NETs research are summarized and discussed. Series of recommendations are provided, strategically oriented towards guiding future investigations to effectively address these concerns. These findings will contribute to an enhanced comprehension of the interplay between NETs and GA, facilitating the proposition of innovative therapeutic strategies and novel approaches for the management of GA.
Collapse
Affiliation(s)
- Cantao Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Chenxi Wu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Fenfen Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Wenjing Xu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Xiaoxi Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Yan Huang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Daozong Xia
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| |
Collapse
|
6
|
Jiang X, Liu W, Li Y, Zhu W, Liu H, Wen Y, Bai R, Luo X, Zhang G, Zhao Y. WO 3 nanosheets with peroxidase-like activity and carbon dots based ratiometric fluorescent strategy for xanthine oxidase activity sensing and inhibitor screening. Talanta 2024; 267:125129. [PMID: 37666084 DOI: 10.1016/j.talanta.2023.125129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/23/2023] [Accepted: 08/25/2023] [Indexed: 09/06/2023]
Abstract
The abnormal level of xanthine oxidase (XOD) often causes pathological changes, which are related to a series of diseases. Herein, a novel and sensitive ratiometric fluorescent sensing platform based on WO3 nanosheets and carbon dots (CDs) was constructed to detect XOD activity for the first time. Under the catalytic oxidation of xanthine by XOD, hydrogen peroxide (H2O2) was generated. In the presence of H2O2, WO3 nanosheets were able to catalyze the oxidation of o-phenylenediamine to generate 2,3-diaminophenazine (DAP) with a yellow fluorescence signal at 570 nm due to its great peroxidase-like activity. The oxidation product DAP was capable of quenching the fluorescence of CDs at 430 nm through the inner filter effect. Therefore, the fluorescence intensity ratio F570/F430 can be used for quantitative analysis of XOD activity. This assay displayed good linear relationships in the range of 0.005-0.05 U/L and 0.5-40 U/L with a detection limit of 0.002 U/L. In addition, this ratiometric fluorescent sensing platform was successfully applied to the determination of XOD in human serum samples and XOD inhibitor screening, demonstrating significant potential in disease diagnosis and drug-screening applications.
Collapse
Affiliation(s)
- Xinxin Jiang
- School of Science, Xihua University, Chengdu, 610039, China
| | - Weiping Liu
- Department of Clinical Laboratory, Zigong First People's Hospital, Zigong, 643000, Sichuan, China
| | - Yue Li
- School of Science, Xihua University, Chengdu, 610039, China
| | - Wanglisha Zhu
- School of Science, Xihua University, Chengdu, 610039, China
| | - Hongmei Liu
- School of Science, Xihua University, Chengdu, 610039, China
| | - Yulu Wen
- School of Science, Xihua University, Chengdu, 610039, China
| | - Ruyu Bai
- School of Science, Xihua University, Chengdu, 610039, China
| | - Xiaojun Luo
- School of Science, Xihua University, Chengdu, 610039, China.
| | - Guoqi Zhang
- School of Science, Xihua University, Chengdu, 610039, China.
| | - Yan Zhao
- School of Science, Xihua University, Chengdu, 610039, China.
| |
Collapse
|
7
|
Hao SH, Ye LY, Yang C. The landscape of pathophysiology guided therapeutic strategies for gout treatment. Expert Opin Pharmacother 2023; 24:1993-2003. [PMID: 38037803 DOI: 10.1080/14656566.2023.2291073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 11/30/2023] [Indexed: 12/02/2023]
Abstract
INTRODUCTION Gout is a common autoinflammatory disease caused by hyperuricemia with acute and/or chronic inflammation as well as tissue damage. Currently, urate-lowering therapy (ULT) and anti-inflammatory therapy are used as first-line strategies for gout treatment. However, traditional drugs for gout treatment exhibit some unexpected side effects and are not suitable for certain patients due to their comorbidity with other chronic disease. AREAS COVERED In this review, we described the pathophysiology of hyperuricemia and monosodium urate (MSU) crystal induced inflammatory response during gout development in depth and comprehensively summarized the advances in the investigation of promising ULT drugs as well as anti-inflammatory drugs that might be safer and more effective for gout treatment. EXPERT OPINION New drugs that are developed based on these molecular mechanisms exhibited great efficacy on reduction of disease burden both in vitro and in vivo, implying their potential for clinical application. Moreover, hyperthermia also showed regulation effect on MSU crystals formation and the signaling pathways involved in inflammation.
Collapse
Affiliation(s)
- Sai Heng Hao
- Department of Hematology of First Affiliated Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Lin Yan Ye
- Department of Hematology of First Affiliated Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Chang Yang
- Department of Hematology of First Affiliated Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
8
|
Song D, Zhao H, Wang L, Wang F, Fang L, Zhao X. Ethanol extract of Sophora japonica flower bud, an effective potential dietary supplement for the treatment of hyperuricemia. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
9
|
Song D, Xie C, Yang R, Ma A, Zhao H, Zou F, Zhang X, Zhao X. An application of citric acid as a carrier for solid dispersion to improve the dissolution and uric acid-lowering effect of kaempferol. INTERNATIONAL JOURNAL OF FOOD ENGINEERING 2023. [DOI: 10.1515/ijfe-2022-0214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Abstract
Kaempferol (KPF) is a flavonoid compound, which has a variety of pharmacological activities, and widely exists in daily diet. However, its application is limited due to poor solubility. Citric acid (CA) is a common food additive with high solubility. In this study, solid dispersion (SD) was prepared with CA as the carrier to improve the solubility of KPF. KPF-CA-SD (weight ratio 1:20) was obtained by ultrasonic for 20 min at 40 °C. The in vitro dissolution of KPF in SD was increased from about 50% to more than 80%. The physicochemical characterizations were analyzed by X-ray diffraction, differential scanning calorimetry, Fourier transform infrared spectroscopy, and scanning electron microscope. In hyperuricemia mice, KPF-SD (equivalent to 100 mg/kg KPF) can effectively reduce serum uric acid and exert nephroprotective effects. In conclusion, the preparation of SD with CA might provide a safe and effective selection to facilitate application of KPF in food and medicine.
Collapse
Affiliation(s)
- Danni Song
- School of Traditional Chinese Material Medica , Shenyang Pharmaceutical University , Shenyang 110016 , China
| | - Changqing Xie
- Faculty of Functional Food and Wine , Shenyang Pharmaceutical University , Shenyang 110016 , China
| | - Rong Yang
- Faculty of Functional Food and Wine , Shenyang Pharmaceutical University , Shenyang 110016 , China
| | - Aijinxiu Ma
- Faculty of Functional Food and Wine , Shenyang Pharmaceutical University , Shenyang 110016 , China
| | - Honghui Zhao
- Faculty of Functional Food and Wine , Shenyang Pharmaceutical University , Shenyang 110016 , China
| | - Fengmao Zou
- School of Traditional Chinese Material Medica , Shenyang Pharmaceutical University , Shenyang 110016 , China
| | - Xiangrong Zhang
- Faculty of Functional Food and Wine , Shenyang Pharmaceutical University , Shenyang 110016 , China
| | - Xu Zhao
- Faculty of Functional Food and Wine , Shenyang Pharmaceutical University , Shenyang 110016 , China
| |
Collapse
|
10
|
Peng W, Liu F, Zhang L, Zhang L, Li J. Design, synthesis, and evaluation of tricyclic compounds containing phenyl-tetrazole as XOR inhibitors. Eur J Med Chem 2023; 246:114947. [PMID: 36462435 DOI: 10.1016/j.ejmech.2022.114947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/18/2022] [Accepted: 11/19/2022] [Indexed: 11/29/2022]
Abstract
Based on analyses of the interaction between febuxostat and xanthine oxidoreductase (XOR), tetrazole was used to replace the carboxyl-thiazole fragment of febuxostat using a bioelectronic isosteric strategy. Three series of compounds were designed. The inhibitory activity against XOR of all compounds was evaluated and their structure-activity relationships determined. The inhibitory activity against XOR of compounds I was weak, with a half-maximal inhibitory concentration (IC50) value > 10 μmol, whereas the inhibitory activity of compounds II and III was increased significantly, among which compounds IIIa (IC50 = 26.3 ± 1.21 nM) and IIIc (IC50 = 29.3 ± 0.88 nM) were the best. Molecular docking showed that tetrazole could enter the active cavity instead of a carboxyl group and retain most of the interaction between febuxostat and XOR. For compounds III, the hydrogen bonds with Asn768 and Thr1010 of XOR were absent, but some new interactions were introduced to improve potency. A potassium oxazinate/hypoxanthine-induced model of acute hyperuricemia in mice also showed a significant hypouricemia effect of compounds IIIa, IIIc, and IIIe (P < 0.01), which was consistent with the results of inhibition in vitro. In conclusion, we identified a promising XOR inhibitor and provided new ideas for the design of XOR inhibitors.
Collapse
Affiliation(s)
- Wen Peng
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, PR China
| | - Fuyao Liu
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, PR China
| | - Lei Zhang
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, PR China
| | - Liying Zhang
- Key Laboratory of Traditional Chinese Medicine Research & Development of Hebei Province, Institute of Traditional Chinese Medicine, Chengde Medical University, Chengde, 067000, PR China.
| | - Jing Li
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, PR China.
| |
Collapse
|
11
|
Huang J, Lin Z, Wang Y, Ding X, Zhang B. Wuling San Based on Network Pharmacology and in vivo Evidence Against Hyperuricemia via Improving Oxidative Stress and Inhibiting Inflammation. Drug Des Devel Ther 2023; 17:675-690. [PMID: 36911073 PMCID: PMC9994669 DOI: 10.2147/dddt.s398625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/12/2023] [Indexed: 03/06/2023] Open
Abstract
Background Hyperuricemia (HUA) is a major public health issue with a high prevalence worldwide. Wuling San (WLS) is an effective treatment for HUA. However, the active compounds and the related mechanism are unclear. In this study, we aimed to explore the active compounds and the underlying pharmacological mechanisms of WLS against HUA. Methods First, a network pharmacology approach was used to detect active compounds of WLS, and potential targets and signaling pathways involved in the treatment of HUA were predicted. Then, a molecular docking strategy was used to predict the affinity between active compounds and key targets. Finally, to verify the prediction, the HUA rat model was established. Results 49 active compounds with 108 common targets were obtained. Besides, cerevisterol, luteolin, ergosterol peroxide, beta-sitosterol, and sitosterol were identified as key active compounds. In PPI analysis, TNF, IL6, CASP3, PPARG, STAT3, and other 12 core targets were obtained. GO enrichment analysis indicated that WLS was likely to interfere with oxidative stress in the treatment of HUA, and KEGG enrichment analysis indicated multiple inflammation-related signaling pathways possibly involved in the treatment of HUA by WLS, including TNF, and NOD-like receptor, HIF-1, PI3K-Akt, and IL-17 signaling pathways. The results of molecular docking indicated that the active compounds had good binding properties to their key targets. In the validation experiments, WLS significantly reduced the levels of serum uric acid (SUA) and serum malondialdehyde (MDA). Moreover, WLS not only significantly increased the levels of total antioxidant capacity (T-AOC) and superoxide dismutase (SOD), but also inhibited the expression of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6). Conclusion In the present study, we demonstrate that WLS has multicomponent, multitarget, and multi-pathway properties in the treatment of HUA. Its potential capability to reduce SUA could be ascribed to oxidative stress improvement and inflammation inhibition.
Collapse
Affiliation(s)
- Jing Huang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Zhijian Lin
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Yu Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Xueli Ding
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Bing Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| |
Collapse
|
12
|
Dong JF, Yan WJ, Feng XX, Li LS, Cheng W, Sun CS, Li CR. Antihyperuricemic and Renal Protective Effect of Cordyceps chanhua (Ascomycetes) Fruiting Bodies in Acute Hyperuricemia and Chronic Gout Rodent Models. Int J Med Mushrooms 2023; 25:63-72. [PMID: 37560890 DOI: 10.1615/intjmedmushrooms.2023048598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
Cordyceps chanhua has been widely used in traditional Chinese medicine. The uric acid-lowering effect of artificially cultivated fruiting bodies of C. chanhua (FBCC) was studied using the acute hyperuricemia (AH) and chronic gout (CG) animal models. The AH mice and CG rats were randomly divided into 6 groups: the negative control group, model group, positive control group, low-dose group, medium-dose group, and high-dose group of FBCC, respectively. Serum uric acid, creatinine, urea nitrogen, and liver xanthine oxidase (XOD) activity were detected. Renal tubulointerstitial injury and urate crystals in CG rats were evaluated. The results showed that the uric acid content in AH mice with the high-dose FBCC group decreased statistically (P < 0.05). In the CG rats, the serum uric acid level in all FBCC groups and the serum creatinine value in the high-dose group exhibited a significant decrease (P < 0.05); the scores of renal tubulointerstitial damage and urate deposit were reduced in the high-dose group of FBCC. FBCC can reduce uric acid and improve renal function, demonstrating it as a beneficial supplement for uric acid-lowering and gout-relieving drugs.
Collapse
Affiliation(s)
- Jian Fei Dong
- Zhejiang BioAsia Institute of Life Sciences, Pinghu 314200, Zhejiang, People's Republic of China
| | - Wen Juan Yan
- Zhejiang BioAsia Institute of Life Sciences, Pinghu 314200, Zhejiang, People's Republic of China
| | - Xue Xuan Feng
- Laboratory of Comparative Medicine, Guangdong Medical Laboratory Animal Center, Foshan 528248, Guangdong, People's Republic of China
| | - Li Si Li
- Laboratory of Comparative Medicine, Guangdong Medical Laboratory Animal Center, Foshan 528248, Guangdong, People's Republic of China
| | - Wenming Cheng
- School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, People's Republic of China
| | - Chang Sheng Sun
- Zhejiang BioAsia Institute of Life Sciences, Pinghu 314200, Zhejiang, People's Republic of China
| | - Chun Ru Li
- Zhejiang BioAsia Institute of Life Sciences, Pinghu 314200, Zhejiang, People's Republic of China
| |
Collapse
|
13
|
Téllez Arévalo AM, Quaye A, Rojas-Rodríguez LC, Poole BD, Baracaldo-Santamaría D, Tellez Freitas CM. Synthetic Pharmacotherapy for Systemic Lupus Erythematosus: Potential Mechanisms of Action, Efficacy, and Safety. MEDICINA (KAUNAS, LITHUANIA) 2022; 59:56. [PMID: 36676680 PMCID: PMC9866503 DOI: 10.3390/medicina59010056] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/14/2022] [Accepted: 12/21/2022] [Indexed: 12/29/2022]
Abstract
The pharmacological treatment of systemic lupus erythematosus (SLE) aims to decrease disease activity, progression, systemic compromise, and mortality. Among the pharmacological alternatives, there are chemically synthesized drugs whose efficacy has been evaluated, but which have the potential to generate adverse events that may compromise adherence and response to treatment. Therapy selection and monitoring will depend on patient characteristics and the safety profile of each drug. The aim of this review is to provide a comprehensive understanding of the most important synthetic drugs used in the treatment of SLE, including the current treatment options (mycophenolate mofetil, azathioprine, and cyclophosphamide), review their mechanism of action, efficacy, safety, and, most importantly, provide monitoring parameters that should be considered while the patient is receiving the pharmacotherapy.
Collapse
Affiliation(s)
- Angélica María Téllez Arévalo
- Department of Physiological Sciences, School of Medicine, Pontificia Universidad Javeriana, Carrera 7 No. 40–62, Bogotá 110231, Colombia
| | - Abraham Quaye
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA
| | - Luis Carlos Rojas-Rodríguez
- Pharmacology Unit, Department of Biomedical Sciences, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá 111221, Colombia
| | - Brian D. Poole
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA
| | - Daniela Baracaldo-Santamaría
- Pharmacology Unit, Department of Biomedical Sciences, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá 111221, Colombia
| | | |
Collapse
|
14
|
Xanthine Oxidase Inhibitory Activity and Chemical Composition of Pistacia chinensis Leaf Essential Oil. Pharmaceutics 2022; 14:pharmaceutics14101982. [PMID: 36297418 PMCID: PMC9609098 DOI: 10.3390/pharmaceutics14101982] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 09/14/2022] [Accepted: 09/18/2022] [Indexed: 11/29/2022] Open
Abstract
Gout is a common metabolic disease caused by abnormal purine metabolism that promotes the formation and deposition of monosodium urate crystals within joints that causes acute arthritis and can seriously affect the daily life of patients. Pistacia chinensis is one of the traditional medicinal plants of the Anacardiaceae family, and there have been many studies on its biological activity, including anti-inflammatory, antidepressant, antibacterial, antioxidant, and hypoglycemic activities. The aim of this study was to evaluate the antigout effect of P. chinensis leaf essential oil and its constituents through xanthine oxidase inhibition. Leaf essential oil showed good xanthine oxidase inhibitory activity for both substrates, hypoxanthine and xanthine. Six fractions were obtained from open column chromatography, and fraction E1 exhibited the best activity. The constituents of leaf essential oil and fraction E1 were analyzed by GC-MS. The main constituents of both leaf essential oil and fraction E1 were limonene and 3-carene; limonene showed a higher inhibitory effect on xanthine oxidase. Based on the enzyme kinetic investigation, limonene was the mixed-type inhibitor against xanthine oxidase. The results revealed that Pistacia chinensis leaf essential oil and limonene have the potential to act as natural remedies for the treatment of gout.
Collapse
|
15
|
Yang L, Wang B, Ma L, Fu P. Traditional Chinese herbs and natural products in hyperuricemia-induced chronic kidney disease. Front Pharmacol 2022; 13:971032. [PMID: 36016570 PMCID: PMC9395578 DOI: 10.3389/fphar.2022.971032] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 07/06/2022] [Indexed: 11/20/2022] Open
Abstract
Hyperuricemia is a common biochemical disorder, which resulted from both excessive uric acid (UA) production and/or absolute or relative impairment of urinary UA excretion. Growing evidence has indicated that hyperuricemia is an independent risk factor for the development and progression of chronic kidney disease (CKD), causing hyperuricemia-induced CKD (hyperuricemic nephropathy, HN). The therapeutic strategy of HN is managing hyperuricemia and protecting kidney function. Adverse effects of commercial drugs make persistent treatment of HN challenging. Traditional Chinese medicine (TCM) has exact efficacy in lowering serum UA without serious adverse effects. In addition, TCM is widely applied for the treatment of CKD. This review aimed to provide an overview of efficacy and mechanisms of traditional Chinese herbs and natural products in hyperuricemia-induced CKD.
Collapse
Affiliation(s)
| | | | - Liang Ma
- *Correspondence: Liang Ma, ; Ping Fu,
| | - Ping Fu
- *Correspondence: Liang Ma, ; Ping Fu,
| |
Collapse
|
16
|
Huddleston EM, Gaffo AL. Emerging strategies for treating gout. Curr Opin Pharmacol 2022; 65:102241. [DOI: 10.1016/j.coph.2022.102241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 04/15/2022] [Indexed: 11/03/2022]
|
17
|
Heerspink HJL, Stack AG, Terkeltaub R, Greene TA, Inker LA, Bjursell M, Perl S, Rikte T, Erlandsson F, Perkovic V. Rationale, design, demographics and baseline characteristics of the randomized, controlled, Phase 2b SAPPHIRE study of verinurad plus allopurinol in patients with chronic kidney disease and hyperuricaemia. Nephrol Dial Transplant 2022; 37:1461-1471. [PMID: 34383954 PMCID: PMC9317164 DOI: 10.1093/ndt/gfab237] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Verinurad is a human uric acid (UA) transporter (URAT1) inhibitor known to decrease serum UA (sUA) levels and that may reduce albuminuria. In a Phase 2a study (NCT03118739), treatment with verinurad + febuxostat lowered urine albumin-to-creatinine ratio (UACR) at 12 weeks by 39% (90% confidence interval 4-62%) among patients with Type 2 diabetes mellitus, hyperuricaemia and albuminuria. The Phase 2b, randomized, placebo-controlled Study of verinurAd and alloPurinol in Patients with cHronic kIdney disease and hyperuRicaEmia (SAPPHIRE; NCT03990363) will examine the effect of verinurad + allopurinol on albuminuria and estimated glomerular filtration rate (eGFR) slope among patients with chronic kidney disease (CKD) and hyperuricaemia. METHODS Adults (≥18 years of age) with CKD, eGFR ≥25 mL/min/1.73 m2, UACR 30-5000 mg/g and sUA ≥6.0 mg/dL will be enrolled. Approximately 725 patients will be randomized 1:1:1:1:1 to 12, 7.5 or 3 mg verinurad + allopurinol, allopurinol or placebo. An 8-week dose-titration period will precede a 12-month treatment period; verinurad dose will be increased to 24 mg at Month 9 in a subset of patients in the 3 mg verinurad + allopurinol arm. The primary efficacy endpoint the is change from baseline in UACR at 6 months. Secondary efficacy endpoints include changes in UACR, eGFR and sUA from baseline at 6 and 12 months. CONCLUSIONS This study will assess the combined clinical effect of verinurad + allopurinol on kidney function in patients with CKD, hyperuricaemia and albuminuria, and whether this combination confers renoprotection beyond standard-of-care.
Collapse
Affiliation(s)
- Hiddo J L Heerspink
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- The George Institute for Global Health, Sydney, Australia
| | - Austin G Stack
- School of Medicine & Health Research Institute, University of Limerick, Limerick, Ireland
| | - Robert Terkeltaub
- San Francisco VA Health Care System, University of California San Diego, La Jolla, CA, USA
| | - Tom A Greene
- University of Utah School of Medicine, Salt Lake City, UT, USA
| | | | | | | | - Tord Rikte
- AstraZeneca R&D Gothenburg, Mölndal, Sweden
| | | | - Vlado Perkovic
- The George Institute for Global Health, Sydney, Australia
| |
Collapse
|
18
|
Wang CC, Li YL, Chiu PY, Chen C, Chen HC, Chen FA. Protective effects of corni fructus extract in mice with potassium oxonate-induced hyperuricemia. J Vet Med Sci 2022; 84:1134-1141. [PMID: 35781421 PMCID: PMC9412062 DOI: 10.1292/jvms.21-0671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Corni fructus is consumed as food and herbal medicine in Chinese culture. Studies have
revealed that corni fructus exhibits potent antioxidant activity; however, few studies
have investigated the ability of corni fructus to lower uric acid concentrations. In this
study, the xanthine oxidase (XO) inhibition and uric acid–lowering effect of corni fructus
extract (CFE) were evaluated in mice with potassium oxonate–induced hyperuricemia.
Hyperuricemia is a chronic disease prevalent worldwide and is associated with high
recurrence rates. In addition, drugs used to treat hyperuricemia induce side effects that
discourage patient compliance. Hyperuricemia induces metabolic imbalances resulting in
accumulative uric acid deposition in the joints and soft tissues. Hyperuricemia not only
induces gout but also interrupts hepatic and renal function, thereby trigging severe
inflammation and various complications, including obesity, nonalcoholic fatty liver
disease, diabetes, and metabolic diseases. In this study, the ethyl acetate fraction (EAF)
of CFE resulted in yields of antioxidant photochemical components significantly higher
than those of CFEs formed using other substances. The EAF of CFE exhibited high free
radical scavenging activity and XO inhibition and effectively lowered uric acid
concentrations in the animal model of chemically induced hyperuricemia. The results of
this study can serve as a reference for the prevention of preclinical gout as well as for
functional food research.
Collapse
Affiliation(s)
| | - You-Liang Li
- Department of Pharmacy and Master Program, Tajen University
| | - Po-Yen Chiu
- Department of Pharmacy and Master Program, Tajen University
| | - Chun Chen
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University
| | - Hung-Che Chen
- Department of Pharmacy and Master Program, Tajen University
| | - Fu-An Chen
- Department of Pharmacy and Master Program, Tajen University
| |
Collapse
|
19
|
Fan J, Sun S, Lv C, Li Z, Guo M, Yin Y, Wang H, Wang W. Discovery of mycotoxin alternariol as a potential lead compound targeting xanthine oxidase. Chem Biol Interact 2022; 360:109948. [DOI: 10.1016/j.cbi.2022.109948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/04/2022] [Accepted: 04/11/2022] [Indexed: 12/01/2022]
|
20
|
Zhang L, Tian J, Cheng H, Yang Y, Yang Y, Ye F, Xiao Z. Identification of novel xanthine oxidase inhibitors via virtual screening with enhanced characterization of molybdopterin binding groups. Eur J Med Chem 2022; 230:114101. [DOI: 10.1016/j.ejmech.2022.114101] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/13/2021] [Accepted: 12/13/2021] [Indexed: 12/11/2022]
|
21
|
Ghallab DS, Shawky E, Metwally AM, Celik I, Ibrahim RS, Mohyeldin MM. Integrated in silico - in vitro strategy for the discovery of potential xanthine oxidase inhibitors from Egyptian propolis and their synergistic effect with allopurinol and febuxostat. RSC Adv 2022; 12:2843-2872. [PMID: 35425287 PMCID: PMC8979054 DOI: 10.1039/d1ra08011c] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/04/2022] [Indexed: 01/19/2023] Open
Abstract
Xanthine oxidase (XO) has been well-recognized as a validated target for the treatment of hyperuricemia and gout. Currently, there are two drugs in clinical use that shut down XO overactivity, allopurinol and febuxostat; however, detrimental side effects restrict their applications. Propolis is a unique natural adhesive biomass of structurally variable and biologically active metabolites that exert remarkable health benefits. Moreover, combination drug therapy has become a promising pharmacotherapeutic strategy directed for reformulating existing drugs into new combination entities with potentiating therapeutic impacts. In this study, computer-aided molecular docking and MD simulations accompanied by biochemical testing were used for mining novel pharmacologically active chemical entities from Egyptian propolis to combat hyperuricemia. Further, with a view to decrease the potential toxicity of synthetic drugs and enhance efficacy, propolis hits were subjected to combination analysis with each of allopurinol and febuxostat. More specifically, Glide docking was utilized for a structure-based virtual screening of in-house datasets comprising various Egyptian propolis metabolites. Rosmarinic acid, luteolin, techtochrysin and isoferulic acid were the most promising virtual hits. In vitro XO inhibitory assays demonstrated the ability of these hits to significantly inhibit XO in a dose-dependent manner. Molecular docking and MD simulations revealed a cooperative binding mode between the discovered hits and standard XO inhibitors within the active site. Subsequently, the most promising hits were tested in a fixed-ratio combination setting with allopurinol and febuxostat separately to assess their combined effects on XO catalytic inhibition. The binary combination of each techtochrysin and rosmarinic acid with febuxostat displayed maximal synergy at lower effect levels. In contrast, individually, techtochrysin and rosmarinic acid with allopurinol cooperated synergistically at high dose levels. Taken together, the suggested strategy seems imperative to ensure a steady supply of new therapeutic options sourced from Egyptian propolis to regress the development of hyperuricemia.
Collapse
Affiliation(s)
- Dina S Ghallab
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University Alexandria 21521 Egypt +20-1223821098
| | - Eman Shawky
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University Alexandria 21521 Egypt +20-1223821098
| | - Ali M Metwally
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University Alexandria 21521 Egypt +20-1223821098
| | - Ismail Celik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Erciyes University Kayseri 38039 Turkey
| | - Reham S Ibrahim
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University Alexandria 21521 Egypt +20-1223821098
| | - Mohamed M Mohyeldin
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University Alexandria 21521 Egypt +20-1223821098
| |
Collapse
|
22
|
Isla MI, Ezquer ME, Leal M, Moreno MA, Zampini IC. Flower beverages of native medicinal plants from Argentina (Acacia caven, Geoffroea decorticans and Larrea divaricata) as antioxidant and anti-inflammatory. JOURNAL OF ETHNOPHARMACOLOGY 2021; 281:114490. [PMID: 34363930 DOI: 10.1016/j.jep.2021.114490] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 07/28/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Herbal beverages have been used as a natural part of the medicinal and food culture in northwestern Argentina. The flower beverages (infusion or decoction) of Acacia caven, Geoffroea decorticans and Larrea divaricata, three native species from arid and semiarid regions of Argentina are widely used as anti-inflammatory and anti-rheumatic by several local communities. AIM OF THE STUDY The aim of this study was to analyze the phytochemical composition of some Argentine flower beverage and to validate its traditional use as an antioxidant and anti-inflammatory agent. MATERIALS AND METHODS Phenolic profiles from all flower infusions and decoctions were analyzed by both spectrophotometric analysis and HPLC-DAD. ABTS•+; the scavenging activity of both hydrogen peroxide and hydroxyl radical was determined and finally, their ability to inhibit pro-inflammatory enzymes, such as xanthine oxidase (XOD), and lipoxygenase (LOX) was also assessed. RESULTS The flower beverages of all assayed species showed a high level of phenolic compounds with similar chromatographic patterns in both infusions and decoctions of each plant species, the major components of which have been identified. The flower beverages, especially G. decorticans infusion and decoctions, displayed an important antioxidant activity (SC50 values between 18.14 and 47 μg/mL) through different mechanisms; all of them were able to inhibit the XOD enzyme activity and, consequently, the formation of uric acid and reactive oxygen species, the primary cause of arthritis-related diseases. The most active beverages as XOD inhibitor were G. decorticans flower infusion and decoctions (IC50 values of 20 and 35 μg/mL, respectively). Pro-inflammatory enzymes, such as LOX, were also inhibited by infusions and decoctions of G. decorticans, L. cuneifolia and A caven flowers, lessening inflammation mediators in all beverages. CONCLUSIONS The present work validates the traditional medicinal use of flower beverages from Argentina as an anti-rheumatic and anti-inflammatory agent as it has been used for hundreds of years in several pathologies associated with oxidative stress.
Collapse
Affiliation(s)
- María Inés Isla
- Laboratorio de Investigación de Productos Naturales (LIPRON), Instituto de Bioprospección y Fisiología Vegetal (INBIOFIV-CONICET), Facultad de Ciencias Naturales e IML, Universidad Nacional de Tucumán, San Lorenzo, 1469, San Miguel de Tucumán, Tucumán, Argentina.
| | - María Elisa Ezquer
- Laboratorio de Investigación de Productos Naturales (LIPRON), Instituto de Bioprospección y Fisiología Vegetal (INBIOFIV-CONICET), Facultad de Ciencias Naturales e IML, Universidad Nacional de Tucumán, San Lorenzo, 1469, San Miguel de Tucumán, Tucumán, Argentina
| | - Mariana Leal
- Laboratorio de Investigación de Productos Naturales (LIPRON), Instituto de Bioprospección y Fisiología Vegetal (INBIOFIV-CONICET), Facultad de Ciencias Naturales e IML, Universidad Nacional de Tucumán, San Lorenzo, 1469, San Miguel de Tucumán, Tucumán, Argentina
| | - María Alejandra Moreno
- Laboratorio de Investigación de Productos Naturales (LIPRON), Instituto de Bioprospección y Fisiología Vegetal (INBIOFIV-CONICET), Facultad de Ciencias Naturales e IML, Universidad Nacional de Tucumán, San Lorenzo, 1469, San Miguel de Tucumán, Tucumán, Argentina
| | - Iris Catiana Zampini
- Laboratorio de Investigación de Productos Naturales (LIPRON), Instituto de Bioprospección y Fisiología Vegetal (INBIOFIV-CONICET), Facultad de Ciencias Naturales e IML, Universidad Nacional de Tucumán, San Lorenzo, 1469, San Miguel de Tucumán, Tucumán, Argentina.
| |
Collapse
|
23
|
Zheng Y, Zhang H, Liu M, Li G, Ma S, Zhang Z, Lin H, Zhan Y, Chen Z, Zhong D, Miao L, Diao X. Pharmacokinetics, Mass Balance, and Metabolism of the Novel URAT1 Inhibitor [14C]HR011303 in Humans: Metabolism is Mediated Predominantly by UDP-glucuronosyltransferase. Drug Metab Dispos 2021; 50:798-808. [PMID: 34862252 DOI: 10.1124/dmd.121.000581] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 11/30/2021] [Indexed: 11/22/2022] Open
Abstract
HR011303, a promising selective URAT1 inhibitor, is currently being studied in a phase Ⅲ clinical trial in China for the treatment of hyperuricemia and gout. In the current study, the pharmacokinetics, mass balance, and metabolism of HR011303 were examined in six healthy Chinese male subjects who received a single oral dose of 10 mg of [14C]HR011303 (80 µCi). The results showed that HR011303 was rapidly absorbed with a median T max = 1.50 h post-dose, and the arithmetic mean t 1/2 of total radioactivity was approximately 24.2 h in plasma. The mean blood-to-plasma radioactivity concentration ratio was 0.66, suggesting the preferential distribution of drug-related components in plasma. At 216 h post-dose, the mean cumulative excreted radioactivity was 91.75% of the dose, including 81.50% in urine and 10.26% in feces. Six metabolites were identified, and the parent drug HR011303 was the most abundant component in plasma and feces, but a minor component in urine. Glucuronidation of the carboxylic acid moiety of HR011303 was the primary metabolic pathway in humans, amounting to 69.63% of the dose (M5, 51.57% of the dose; M5/2, 18.06% of the dose) in the urine; however, it was not detected in plasma. UGT2B7 was responsible for the formation of M5. Overall, after a single oral dose of 10 mg of [14C]HR011303 (80 µCi), HR011303 and its main metabolites were eliminated via renal excretion. The major metabolic pathway was carboxylic acid glucuronidation, which was catalyzed predominantly by UGT2B7. Significance Statement This study determined the absorption and disposition of HR011303, a selective URAT1 inhibitor currently in development for the treatment of hyperuricemia and gout. This work helps to characterize the major metabolic pathways of new URAT inhibitors and identify the absorption and clearance mechanism.
Collapse
Affiliation(s)
- Yuandong Zheng
- DMPK, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, China
| | - Hua Zhang
- First Affiliated Hospital of Soochow University, China
| | - Mengling Liu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, China
| | - Guangze Li
- Jiangsu Hengrui Medicine Co. Ltd., China
| | - Sheng Ma
- First Affiliated Hospital of Soochow University, China
| | - Zhe Zhang
- Jiangsu Hengrui Medicine Co. Ltd, China
| | | | - Yan Zhan
- Shanghai Center for Drug Metabolism and Pharmacokinetics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, China
| | - Zhendong Chen
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, China
| | - Dafang Zhong
- Center for Drug Metabolism and Pharmacokinet, China
| | - Liyan Miao
- Department of Pharmacy, The First Affiliated Hospital of Soochow Universit, China
| | - Xingxing Diao
- DMPK, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, China
| |
Collapse
|
24
|
Natural Xanthine Oxidase Inhibitor 5- O-Caffeoylshikimic Acid Ameliorates Kidney Injury Caused by Hyperuricemia in Mice. Molecules 2021; 26:molecules26237307. [PMID: 34885887 PMCID: PMC8659034 DOI: 10.3390/molecules26237307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 11/21/2021] [Accepted: 11/29/2021] [Indexed: 11/21/2022] Open
Abstract
Xanthine oxidase (XOD) inhibition has long been considered an effective anti-hyperuricemia strategy. To identify effective natural XOD inhibitors with little side effects, we performed a XOD inhibitory assay-coupled isolation of compounds from Smilacis Glabrae Rhizoma (SGR), a traditional Chinese medicine frequently prescribed as anti-hyperuricemia agent for centuries. Through the in vitro XOD inhibitory assay, we obtained a novel XOD inhibitor, 5-O-caffeoylshikimic acid (#1, 5OCSA) with IC50 of 13.96 μM, as well as two known XOD inhibitors, quercetin (#3) and astilbin (#6). Meanwhile, we performed in silico molecular docking and found 5OCSA could interact with the active sites of XOD (PDB ID: 3NVY) with a binding energy of −8.6 kcal/mol, suggesting 5OCSA inhibits XOD by binding with its active site. To evaluate the in vivo effects on XOD, we generated a hyperuricemia mice model by intraperitoneal injection of potassium oxonate (300 mg/kg) and oral gavage of hypoxanthine (500 mg/kg) for 7 days. 5OCSA could inhibit both hepatic and serum XOD in vivo, together with an improvement of histological and multiple serological parameters in kidney injury and HUA. Collectively, our results suggested that 5OCSA may be developed into a safe and effective XOD inhibitor based on in vitro, in silico and in vivo evidence.
Collapse
|
25
|
Structural and biochemical insights into a hyperthermostable urate oxidase from Thermobispora bispora for hyperuricemia and gout therapy. Int J Biol Macromol 2021; 188:914-923. [PMID: 34403675 DOI: 10.1016/j.ijbiomac.2021.08.081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/03/2021] [Accepted: 08/10/2021] [Indexed: 01/21/2023]
Abstract
Microbial urate oxidase has emerged as a potential source of therapeutic properties for hyperuricemia in arthritic gout and renal disease. The thermostability and long-term thermal tolerance of the enzyme need to be established to prolong its therapeutic effects. Here, we present the biochemical and structural aspects of a hyperthermostable urate oxidase (TbUox) from the thermophilic microorganism Thermobispora bispora. Enzymatic characterization of TbUox revealed that it was active over a wide range of temperatures, from 30 to 70 °C, with optimal activity at 65 °C and pH 8.0, which suggests its applicability under physiological conditions. Moreover, TbUox exhibits high thermostability from 10 to 65 °C, with Tm of 70.3 °C and near-neutral pH stability from pH 7.0 to 8.0 and high thermal tolerance. The crystal structures of TbUox revealed a distinct feature of the C-terminal loop extensions that may help with protein stability via inter-subunit interactions. In addition, the high thermal tolerance of TbUox may be contributed by the extensive inter-subunit contacts via salt bridges, hydrogen bonds, and hydrophobic interactions. The findings in this study provide a molecular basis for the thermophilic TbUox urate oxidase for application in hyperuricemia and gout therapy.
Collapse
|
26
|
Magnetic particles for enzyme immobilization: A versatile support for ligand screening. J Pharm Biomed Anal 2021; 204:114286. [PMID: 34358814 DOI: 10.1016/j.jpba.2021.114286] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/20/2021] [Accepted: 07/25/2021] [Indexed: 12/12/2022]
Abstract
Enzyme inhibitors represent a substantial fraction of all small molecules currently in clinical use. Therefore, the early stage of drug-discovery process and development efforts are focused on the identification of new enzyme inhibitors through screening assays. The use of immobilized enzymes on solid supports to probe ligand-enzyme interactions have been employed with success not only to identify and characterize but also to isolate new ligands from complex mixtures. Between the available solid supports, magnetic particles have emerged as a promising support for enzyme immobilization due to the high superficial area, easy separation from the reaction medium and versatility. Particularly, the ligand fishing assay has been employed as a very useful tool to rapidly isolate bioactive compounds from complex mixtures, and hence the use of magnetic particles for enzyme immobilization has been widespread. Thus, this review provides a critical overview of the screening assays using immobilized enzymes on magnetic particles between 2006 and 2021.
Collapse
|
27
|
Yue L, Jiang N, Wu A, Qiu W, Shen X, Qin D, Li H, Lin J, Liang S, Wu J. Plumbagin can potently enhance the activity of xanthine oxidase: in vitro, in vivo and in silico studies. BMC Pharmacol Toxicol 2021; 22:45. [PMID: 34274011 PMCID: PMC8286619 DOI: 10.1186/s40360-021-00511-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 06/03/2021] [Indexed: 11/28/2022] Open
Abstract
Background Abnormally elevated xanthine oxidase (XO) activity has been verified to cause various pathological processes, such as gout, oxidative stress injury and metabolic syndrome. Thus, XO activators may exhibit above potential toxicological properties. Plumbagin (PLB) is an important active compound in traditional Chinese medicine (TCM), while its obvious toxic effects have been reported, including diarrhea, skin rashes and hepatic toxicity. However, the potential toxicity associated with enhancement of XO activity has not been fully illuminated so far. Methods The present study investigated the effect of PLB on XO activity by culturing mouse liver S9 (MLS9), human liver S9 (HLS9), XO monoenzyme system with PLB and xanthine. Then, the molecular docking and biolayer interferometry analysis were adopted to study the binding properties between PLB and XO. Finally, the in vivo acceleration effect also investigated by injected intraperitoneally PLB to KM mice for 3 days. Results PLB could obviously accelerate xanthine oxidation in the above three incubation systems. Both the Vmax values and intrinsic clearance values (CLint, Vmax/Km) of XO in the three incubation systems increased along with elevated PLB concentration. In addition, the molecular docking study and label-free biolayer interferometry assay displayed that PLB was well bound to XO. In addition, the in vivo results showed that PLB (2 and 10 mg/kg) significantly increased serum uric acid levels and enhanced serum XO activity in mice. Conclusion In summary, this study outlines a potential source of toxicity for PLB due to the powerful enhancement of XO activity, which may provide the crucial reminding for the PLB-containing preparation development and clinical application.
Collapse
Affiliation(s)
- Liang Yue
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Nan Jiang
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Anguo Wu
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China.,Institute of Cardiovascular Research, the Key Laboratory of Medical Electrophysiology, Ministry of Education of China, Medical Key Laboratory for Drug Discovery and Druggability Evaluation of Sichuan Province, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Luzhou, 646000, Sichuan, China
| | - Wenqiao Qiu
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Xin Shen
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Dalian Qin
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China.,Institute of Cardiovascular Research, the Key Laboratory of Medical Electrophysiology, Ministry of Education of China, Medical Key Laboratory for Drug Discovery and Druggability Evaluation of Sichuan Province, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Luzhou, 646000, Sichuan, China
| | - Hong Li
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Jing Lin
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Sicheng Liang
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China. .,Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
| | - Jianming Wu
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China. .,Institute of Cardiovascular Research, the Key Laboratory of Medical Electrophysiology, Ministry of Education of China, Medical Key Laboratory for Drug Discovery and Druggability Evaluation of Sichuan Province, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
28
|
Molecular Elucidation of a Urate Oxidase from Deinococcus radiodurans for Hyperuricemia and Gout Therapy. Int J Mol Sci 2021; 22:ijms22115611. [PMID: 34070642 PMCID: PMC8199477 DOI: 10.3390/ijms22115611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/21/2021] [Accepted: 05/23/2021] [Indexed: 12/02/2022] Open
Abstract
Urate oxidase initiates the uric acid degradation pathways and is extensively used for protein drug development for gout therapy and serum uric acid diagnosis. We first present the biochemical and structural elucidation of a urate oxidase from the extremophile microorganism Deinococcus radiodurans (DrUox). From enzyme characterization, DrUox showed optimal catalytic ability at 30 °C and pH 9.0 with high stability under physiological conditions. Only the Mg2+ ion moderately elevated its activity, which indicates the characteristic of the cofactor-free urate oxidase family. Of note, DrUox is thermostable in mesophilic conditions. It retains almost 100% activity when incubated at 25 °C and 37 °C for 24 h. In this study, we characterized a thermostable urate oxidase, DrUox with high catalytic efficiency and thermal stability, which strengthens its potential for medical applications.
Collapse
|
29
|
Wu W, Wang W, Qi L, Wang Q, Yu L, Lin JM, Hu Q. Screening of Xanthine Oxidase Inhibitors by Liquid Crystal-Based Assay Assisted with Enzyme Catalysis-Induced Aptamer Release. Anal Chem 2021; 93:6151-6157. [PMID: 33826305 DOI: 10.1021/acs.analchem.0c05456] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Small-molecule drugs play an important role in the treatment of various diseases. The screening of enzyme inhibitors is one of the most important means in developing therapeutic drugs. Herein, we demonstrate a liquid crystal (LC)-based screening assay assisted with enzyme catalysis-induced aptamer release for screening xanthine oxidase (XOD) inhibitors. The oxidation of xanthine by XOD prevents the specific binding of xanthine and its aptamer, which induces a bright image of LCs. However, when XOD is inhibited, xanthine specifically binds to the aptamer. Correspondingly, LCs display a dark image. Three compounds are identified as potent XOD inhibitors by screening a small library of triazole derivatives using this method. Molecular docking verifies the occupation of the active site by the inhibitor, which also exhibits excellent biocompatibility to HEK293 cells and HeLa cells. This strategy takes advantages of the unique aptamer-target binding, specific enzymatic reaction, and simple LC-based screening assay, which allows high-throughput and label-free screening of inhibitors with high sensitivity and remarkable accuracy. Overall, this study provides a competent and promising approach to facilitate the screening of enzyme inhibitors using the LC-based assay assisted with the enzyme catalysis-induced aptamer release.
Collapse
Affiliation(s)
- Wenli Wu
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Weiguo Wang
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, P. R. China
| | - Lubin Qi
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan 250100, China
| | - Quanbo Wang
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Li Yu
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan 250100, China
| | - Jin-Ming Lin
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Qiongzheng Hu
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| |
Collapse
|
30
|
Madrazo L, Jones E, Hsia CC. Anémie grave induite par l’azathioprine et potentialisée par l’emploi concomitant d’allopurinol. CMAJ 2021; 193:E460-E463. [PMID: 33782177 PMCID: PMC8099162 DOI: 10.1503/cmaj.201022-f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Affiliation(s)
- Lorenzo Madrazo
- Département de médecine (Madrazo, Jones) et division d'hématologie (Hsia), Département de médecine, Centre des sciences de la santé de London, Université Western Ontario, London, Ont.
| | - Emily Jones
- Département de médecine (Madrazo, Jones) et division d'hématologie (Hsia), Département de médecine, Centre des sciences de la santé de London, Université Western Ontario, London, Ont
| | - Cyrus C Hsia
- Département de médecine (Madrazo, Jones) et division d'hématologie (Hsia), Département de médecine, Centre des sciences de la santé de London, Université Western Ontario, London, Ont
| |
Collapse
|
31
|
Wang J, Sun S, Zhao K, Shi H, Fan J, Wang H, Liu Y, Liu X, Wang W. Insights into the inhibitory mechanism of purpurogallin on xanthine oxidase by multiple spectroscopic techniques and molecular docking. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129772] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
32
|
Duan Y, Jiang N, Chen J, Chen J. Expression, localization and metabolic function of "resurrected" human urate oxidase in human hepatocytes. Int J Biol Macromol 2021; 175:30-39. [PMID: 33513422 DOI: 10.1016/j.ijbiomac.2021.01.163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 01/13/2021] [Accepted: 01/24/2021] [Indexed: 12/23/2022]
Abstract
A high serum uric acid (SUA) concentration is associated with hyperuricemia (HUA) and gout. In order to obtain long-acting therapeutic effect, correction of purine metabolism at genetic level is advantageous. For this purpose, we expressed three "human-like" urate oxidases in human hepatocytes (HL-7702) by lentivirus-mediated transduction. Enzymatic assay revealed that the recombinant urate oxidases expressed in HL-7702 cells were functionally active. Electron microscopy study showed that the recombinant enzymes were localized to peroxisome and formed distinct crystalloid core structures as in other mammal cells. Although similar rate of uric acid degradation was observed for all recombinant urate oxidases, HL-7702-pLVX-UOX83 cells and HL-7702-pLVX-UOX214/217 cells retained more cell viability compared with HL-7702-pLVX-UOXPBC at high uric acid level. This study provides a new direction for the treatment of gout and hyperuricemia.
Collapse
Affiliation(s)
- Yundi Duan
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Nan Jiang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Jing Chen
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Jianhua Chen
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
33
|
Dong X, Wang B, Cao J, Zheng H, Ye LH. Ligand fishing based on bioaffinity ultrafiltration for screening xanthine oxidase inhibitors from citrus plants. J Sep Sci 2021; 44:1353-1360. [PMID: 33496069 DOI: 10.1002/jssc.202000708] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 12/22/2020] [Accepted: 01/05/2021] [Indexed: 12/26/2022]
Abstract
Citrus plants are valuable medicinal plants with abundant flavonoids content in the parts of fruits and peels, which exhibit potential hypouricemic effect. In the present study, a ligand fishing assay was performed based on bio-affinity ultrafiltration for rapidly screening and identifying xanthine oxidase inhibitors from citrus plants. Under the optimal experimental conditions, five potential ligands were fished out when xanthine oxidase acted as the targeted protein. Subsequently, the chemical structures of all five compounds were identified by quadrupole time-of-flight mass spectrometry. Among them, hesperidin and naringin were confirmed as high-efficiency xanthine oxidase inhibitors. The half maximal inhibitory concentration values of hesperidin and naringin were 0.15 and 1.82 μM, respectively. Compared with the clinical antigout drug, allopurinol (half maximal inhibitory concentration = 8.03 μM), lower half maximal inhibitory concentration values indicated higher enzyme inhibitory activity. The Lineweaver-Burk plots indicated that the two compounds inhibited xanthine oxidase in a noncompetitive manner. The results demonstrate that the bioaffinity ultrafiltration method is a powerful tool for screening out xanthine oxidase inhibitors from natural products.
Collapse
Affiliation(s)
- Xin Dong
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, P. R. China
| | - Bin Wang
- Lianyungang Hospital of Traditional Chinese Medicine, Lianyungang, P. R. China
| | - Jun Cao
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, P. R. China
| | - Hui Zheng
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, P. R. China
| | - Li-Hong Ye
- Department of Traditional Chinese Medicine, Hangzhou Red Cross Hospital, Hangzhou, P. R. China
| |
Collapse
|
34
|
Madrazo L, Jones E, Hsia CC. Azathioprine-induced severe anemia potentiated by the concurrent use of allopurinol. CMAJ 2021; 193:E94-E97. [PMID: 33462145 PMCID: PMC7835086 DOI: 10.1503/cmaj.201022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Lorenzo Madrazo
- Department of Medicine (Madrazo, Jones) and Division of Hematology (Hsia), Department of Medicine, London Health Sciences Centre, University of Western Ontario, London, Ont.
| | - Emily Jones
- Department of Medicine (Madrazo, Jones) and Division of Hematology (Hsia), Department of Medicine, London Health Sciences Centre, University of Western Ontario, London, Ont
| | - Cyrus C Hsia
- Department of Medicine (Madrazo, Jones) and Division of Hematology (Hsia), Department of Medicine, London Health Sciences Centre, University of Western Ontario, London, Ont
| |
Collapse
|
35
|
Joshi G, Sharma M, Kalra S, Gavande NS, Singh S, Kumar R. Design, synthesis, biological evaluation of 3,5-diaryl-4,5-dihydro-1H-pyrazole carbaldehydes as non-purine xanthine oxidase inhibitors: Tracing the anticancer mechanism via xanthine oxidase inhibition. Bioorg Chem 2021; 107:104620. [PMID: 33454509 DOI: 10.1016/j.bioorg.2020.104620] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 12/26/2020] [Accepted: 12/29/2020] [Indexed: 12/19/2022]
Abstract
Xanthine oxidase (XO) has been primarily targeted for the development of anti-hyperuriciemic /anti-gout agents as it catalyzes the conversion of xanthine and hypoxanthine into uric acid. XO overexpression in various cancer is very well correlated due to reactive oxygen species (ROS) production and metabolic activation of carcinogenic substances during the catalysis. Herein, we report the design and synthesis of a series of 3,5-diaryl-4,5-dihydro-1H-pyrazole carbaldehyde derivatives (2a-2x) as xanthine oxidase inhibitors (XOIs). A docking model was developed for the prediction of XO inhibitory activity of our novel compounds. Furthermore, our compounds anticancer activity results in low XO expression and XO-harboring cancer cells both in 2D and 3D-culture models are presented and discussed. Among the array of synthesized compounds, 2b and 2m emerged as potent XO inhibitors having IC50 values of 9.32 ± 0.45 µM and 10.03 ± 0.43 µM, respectively. Both compounds induced apoptosis, halted the cell cycle progression at the G1 phase, elevated ROS levels, altered mitochondrial membrane potential, and inhibited antioxidant enzymes. The levels of miRNA and expression of redox sensors in cells were also altered due to increase oxidative stress induced by our compounds. Compounds 2b and 2m hold a great promise for further development of XOIs for the treatment of XO-harboring tumors.
Collapse
Affiliation(s)
- Gaurav Joshi
- Laboratory for Drug Design and Synthesis, Department of Pharmaceutical Sciences and Natural Products, School of Health Sciences, Central University of Punjab, Bathinda 151 001, India
| | - Manisha Sharma
- Laboratory for Drug Design and Synthesis, Department of Pharmaceutical Sciences and Natural Products, School of Health Sciences, Central University of Punjab, Bathinda 151 001, India
| | - Sourav Kalra
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda 151 001, India
| | - Navnath S Gavande
- Department of Pharmaceutical Sciences, Wayne State University College of Pharmacy and Health Sciences, Detroit, MI 48201, USA.
| | - Sandeep Singh
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda 151 001, India.
| | - Raj Kumar
- Laboratory for Drug Design and Synthesis, Department of Pharmaceutical Sciences and Natural Products, School of Health Sciences, Central University of Punjab, Bathinda 151 001, India.
| |
Collapse
|
36
|
Ribeiro PMG, Fernandes HS, Maia LB, Sousa SF, Moura JJG, Cerqueira NMFSA. The complete catalytic mechanism of xanthine oxidase: a computational study. Inorg Chem Front 2021. [DOI: 10.1039/d0qi01029d] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
In this article, quantum mechanical/molecular mechanical (QM/MM) methods were used to study the full catalytic mechanism of xanthine oxidase (XO).
Collapse
Affiliation(s)
- Pedro M. G. Ribeiro
- UCIBIO@REQUIMTE
- BioSIM
- Departamento de Biomedicina
- Faculdade de Medicina da Universidade do Porto
- Alameda Professor Hernâni Monteiro
| | - Henrique S. Fernandes
- UCIBIO@REQUIMTE
- BioSIM
- Departamento de Biomedicina
- Faculdade de Medicina da Universidade do Porto
- Alameda Professor Hernâni Monteiro
| | - Luísa B. Maia
- LAQV
- REQUIMTE
- NOVA School of Science and Technology
- Campus de Caparica
- 2829-516 Caparica
| | - Sérgio F. Sousa
- UCIBIO@REQUIMTE
- BioSIM
- Departamento de Biomedicina
- Faculdade de Medicina da Universidade do Porto
- Alameda Professor Hernâni Monteiro
| | - José J. G. Moura
- LAQV
- REQUIMTE
- NOVA School of Science and Technology
- Campus de Caparica
- 2829-516 Caparica
| | - Nuno M. F. S. A. Cerqueira
- UCIBIO@REQUIMTE
- BioSIM
- Departamento de Biomedicina
- Faculdade de Medicina da Universidade do Porto
- Alameda Professor Hernâni Monteiro
| |
Collapse
|
37
|
Alghamdi AA, Althumali JS, Almalki MMM, Almasoudi AS, Almuntashiri AH, Almuntashiri AH, Mohammed AI, Alkinani AA, Almahdawi MS, Mahzari MAH. An Overview on the Role of Xanthine Oxidase Inhibitors in Gout Management. ARCHIVES OF PHARMACY PRACTICE 2021. [DOI: 10.51847/rkcpaycprc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
38
|
Hyperuricemia as a trigger of immune response in hypertension and chronic kidney disease. Kidney Int 2020; 98:1149-1159. [DOI: 10.1016/j.kint.2020.05.056] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/22/2020] [Accepted: 05/27/2020] [Indexed: 02/07/2023]
|
39
|
Casas AI, Nogales C, Mucke HAM, Petraina A, Cuadrado A, Rojo AI, Ghezzi P, Jaquet V, Augsburger F, Dufrasne F, Soubhye J, Deshwal S, Di Sante M, Kaludercic N, Di Lisa F, Schmidt HHHW. On the Clinical Pharmacology of Reactive Oxygen Species. Pharmacol Rev 2020; 72:801-828. [DOI: 10.1124/pr.120.019422] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
40
|
Malik N, Dhiman P, Khatkar A. In Silico Design and Synthesis of Targeted Curcumin Derivatives as Xanthine Oxidase Inhibitors. Curr Drug Targets 2020; 20:593-603. [PMID: 30465499 DOI: 10.2174/1389450120666181122100511] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 09/24/2018] [Accepted: 11/02/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND Curcumin is a well-known pharmacophore and some of its derivatives are shown to target xanthine oxidase (XO) to alleviate disorders caused by the excess production of uric acid. OBJECTIVE Curcumin based derivatives were designed, synthesized and evaluated for their antioxidant and xanthine oxidase inhibitory potential. METHOD In this report, we designed and synthesized two series of curcumin derivatives modified by inserting pyrazole and pyrimidine ring to central keto group. The synthesized compounds were evaluated for their antioxidant and xanthine oxidase inhibitory potential. RESULTS Results showed that pyrazole analogues of curcumin produced excellent XO inhibitory potency with the IC50 values varying from 06.255 µM to 10.503 µM. Among pyrimidine derivatives compound CU3a1 having ortho nitro substitution exhibited more potent xanthine oxidase inhibitory activity than any other curcumin derivative of this series. CONCLUSION Curcumin derivatives CU5b1, CU5b2, CU5b3, and CU3a1 showed a potent inhibitory activity against xanthine oxidase along with good antioxidant potential.
Collapse
Affiliation(s)
- Neelam Malik
- Laboratory for Preservation Technology and Enzyme Inhibition Studies, Department of Pharmaceutical Sciences, M.D.University, Rohtak, Haryana, India
| | - Priyanka Dhiman
- Laboratory for Preservation Technology and Enzyme Inhibition Studies, Department of Pharmaceutical Sciences, M.D.University, Rohtak, Haryana, India
| | - Anurag Khatkar
- Laboratory for Preservation Technology and Enzyme Inhibition Studies, Department of Pharmaceutical Sciences, M.D.University, Rohtak, Haryana, India
| |
Collapse
|
41
|
Ladmakhi HB, Chekin F, Fathi S, Raoof JB. Electrochemical sensor based on magnetite graphene oxide/ordered mesoporous carbon hybrid to detection of allopurinol in clinical samples. Talanta 2020; 211:120759. [DOI: 10.1016/j.talanta.2020.120759] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/14/2020] [Accepted: 01/17/2020] [Indexed: 12/18/2022]
|
42
|
An Improved Method for the Synthesis of Butein Using SOCl 2/EtOH as Catalyst and Deciphering Its Inhibition Mechanism on Xanthine Oxidase. Molecules 2019; 24:molecules24101948. [PMID: 31117192 PMCID: PMC6572126 DOI: 10.3390/molecules24101948] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/18/2019] [Accepted: 05/19/2019] [Indexed: 12/24/2022] Open
Abstract
Butein (3,4,2',4'-tetrahydroxychalcone) belongs to the chalcone family of flavonoids and possesses various biological activities. In this study, butein was synthesized through aldol condensation catalyzed by thionyl chloride (SOCl2)/ethyl alcohol (EtOH) for the first time. The optimal reaction conditions including the molar ratio of reactants, the dosage of catalyst, and the reaction time on the yield of product were investigated, and the straightforward strategy assembles the yield of butein up to 88%. Butein has been found to inhibit xanthine oxidase (XO) activity. Herein, the inhibitory mechanism of butein against XO was discussed in aspects of inhibition kinetic, fluorescence titration, synchronous fluorescence spectroscopy, and molecular docking. The inhibition kinetic analysis showed that butein possessed a stronger inhibition on XO in an irreversible competitive manner with IC50 value of 2.93 × 10-6 mol L-1. The results of fluorescence titrations and synchronous fluorescence spectroscopy indicated that butein was able to interact with XO at one binding site, and the fluorophores of XO were placed in a more hydrophobic environment with the addition of butein. Subsequently, the result of molecular docking between butein and XO protein revealed that butein formed hydrogen bonding with the amino acid residues located in the hydrophobic cavity of XO. All the results suggested that the inhibitory mechanism of butein on XO may be the insertion of butein into the active site occupying the catalytic center of XO to avoid the entrance of xanthine and inducing conformational changes in XO.
Collapse
|
43
|
Malik N, Dhiman P, Khatkar A. In Silico and 3D QSAR Studies of Natural Based Derivatives as Xanthine Oxidase Inhibitors. Curr Top Med Chem 2019; 19:123-138. [PMID: 30727896 DOI: 10.2174/1568026619666190206122640] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 11/23/2018] [Accepted: 01/27/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND A large number of disorders and their symptoms emerge from deficiency or overproduction of specific metabolites has drawn the attention for the discovery of new therapeutic agents for the treatment of disorders. Various approaches such as computational drug design have provided the new methodology for the selection and evaluation of target protein and the lead compound mechanistically. For instance, the overproduction of xanthine oxidase causes the accumulation of uric acid which can prompt gout. OBJECTIVE In the present study we critically discussed the various techniques such as 3-D QSAR and molecular docking for the study of the natural based xanthine oxidase inhibitors with their mechanistic insight into the interaction of xanthine oxidase and various natural leads. CONCLUSION The computational studies of deferent natural compounds were discussed as a result the flavonoids, anthraquinones, xanthones shown the remarkable inhibitory potential for xanthine oxidase inhibition moreover the flavonoids such as hesperidin and rutin were found as promising candidates for further exploration.
Collapse
Affiliation(s)
- Neelam Malik
- Department of Pharmaceutical sciences, Maharshi Dayanand University Rohtak, Haryana, India
| | - Priyanka Dhiman
- Department of Pharmaceutical sciences, Maharshi Dayanand University Rohtak, Haryana, India
| | - Anurag Khatkar
- Laboratory for Preservation Technology and Enzyme Inhibition Studies, Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, India
| |
Collapse
|
44
|
Bellos I, Kontzoglou K, Psyrri A, Pergialiotis V. Febuxostat administration for the prevention of tumour lysis syndrome: A meta-analysis. J Clin Pharm Ther 2019; 44:525-533. [PMID: 30972811 DOI: 10.1111/jcpt.12839] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/11/2019] [Accepted: 03/17/2019] [Indexed: 11/30/2022]
Abstract
WHAT IS KNOWN AND OBJECTIVE Tumour lysis syndrome is an oncological emergency, characterized by rapid cytolysis leading to an abrupt rise of serum uric acid levels. The aim of the present meta-analysis is to evaluate the efficacy and safety of febuxostat as a preventive measure in patients at risk of tumour lysis syndrome development, by comparing it with allopurinol administration. METHODS MEDLINE, Scopus, Cochrane Central Register of Controlled Trials, Clinicaltrials.gov and Google Scholar databases were searched from inception to 15 December 2018. All studies evaluating the effectiveness of febuxostat in preventing tumour lysis syndrome were held eligible. RESULTS AND DISCUSSION Six studies were included with a total of 658 patients. Compared to allopurinol, febuxostat achieved a similar response rate (OR: 1.39, 95% CI: [0.55, 3.51]) and tumour lysis syndrome incidence (OR: 1.01, 95% CI: [0.56, 1.81]). Serum uric acid levels did not differ between the investigated groups at the second (MD: -0.21 mg/dL, 95% CI: [-1.30, 0.88]) and seventh (MD: -0.43 mg/dL, 95% CI: [-1.38, 0.51]) day of treatment. Elevation of liver function tests was the most common adverse effect, although its incidence was similar among patients treated with allopurinol and febuxostat. WHAT IS NEW AND CONCLUSIONS The present meta-analysis suggests that febuxostat may serve as an effective alternative to allopurinol in the prevention of tumour lysis syndrome. Future large-scale studies should define the optimal febuxostat dosage, explore the most appropriate population for its administration and better define its safety profile.
Collapse
Affiliation(s)
- Ioannis Bellos
- Laboratory of Experimental Surgery and Surgical Research N.S. Christeas, Athens University Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantinos Kontzoglou
- 2nd Department of Propedeutic Surgery, "Laikon" General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Amanda Psyrri
- Division of Oncology, 2nd Department of Internal Medicine, Attikon University Hospital, Athens, Greece
| | - Vasilios Pergialiotis
- Laboratory of Experimental Surgery and Surgical Research N.S. Christeas, Athens University Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
45
|
Strilchuk L, Fogacci F, Cicero AF. Safety and tolerability of available urate-lowering drugs: a critical review. Expert Opin Drug Saf 2019; 18:261-271. [PMID: 30915866 DOI: 10.1080/14740338.2019.1594771] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Urate-lowering therapy (ULT) is the cornerstone of gout management, which is a widespread chronic illness characterized by hyperuricemia, arthropathy, tophus development, and urolithiasis. Since asymptomatic increased serum urate levels are associated with a higher risk of cardiovascular, renal and metabolic disorders, a larger use of ULTs in the general population is expected in the near future. AREAS COVERED This review will focus on the safety and tolerability profile of the available urate-lowering drugs: xanthine oxidase inhibitors (XOIs), uricosuric agents and injectable uricases. EXPERT OPINION Older drugs for ULT like allopurinol are well studied and extensively described from typical adverse effects (mild skin rash) to unusual fatal reactions, while febuxostat seems to be overall well tolerated. More evidence is required to define the safety profile of topiroxostat, arhalofenate, tranilast, and sulfinpyrazone. Furthermore, there are some unanswered questions about the pharmacological interactions of probenecid and the hepatotoxicity of benzbromarone. Despite a limited use in clinical practice, combination therapy with lesinurad or verinurad and XOI is not frequently accompanied by side effects. Rasburicase and pegloticase are usually well tolerated with some specific exceptions. Before prescribing UL drugs, physicians should take into account their safety profile tailoring the treatment on the patient characteristics.
Collapse
Affiliation(s)
- Larysa Strilchuk
- a Department of Therapy and Medical Diagnostics , Lviv National Medical University , Lviv , Ukraine
| | - Federica Fogacci
- b Medical and Surgical Sciences Department , Alma Mater Studiorum University of Bologna , Bologna , Italy
| | - Arrigo Fg Cicero
- b Medical and Surgical Sciences Department , Alma Mater Studiorum University of Bologna , Bologna , Italy.,c Medical and Surgical Sciences Department , Sant'Orsola-Malpighi University Hospital , Bologna , Italy
| |
Collapse
|