1
|
Moianos D, Prifti GM, Makri M, Zoidis G. Targeting Metalloenzymes: The "Achilles' Heel" of Viruses and Parasites. Pharmaceuticals (Basel) 2023; 16:901. [PMID: 37375848 DOI: 10.3390/ph16060901] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/12/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Metalloenzymes are central to the regulation of a wide range of essential viral and parasitic functions, including protein degradation, nucleic acid modification, and many others. Given the impact of infectious diseases on human health, inhibiting metalloenzymes offers an attractive approach to disease therapy. Metal-chelating agents have been expansively studied as antivirals and antiparasitics, resulting in important classes of metal-dependent enzyme inhibitors. This review provides the recent advances in targeting the metalloenzymes of viruses and parasites that impose a significant burden on global public health, including influenza A and B, hepatitis B and C, and human immunodeficiency viruses as well as Trypanosoma brucei and Trypanosoma cruzi.
Collapse
Affiliation(s)
- Dimitrios Moianos
- Department of Pharmacy, Division of Pharmaceutical Chemistry, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Georgia-Myrto Prifti
- Department of Pharmacy, Division of Pharmaceutical Chemistry, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Maria Makri
- Department of Pharmacy, Division of Pharmaceutical Chemistry, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Grigoris Zoidis
- Department of Pharmacy, Division of Pharmaceutical Chemistry, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| |
Collapse
|
2
|
Southwell JW, Black CM, Duhme-Klair AK. Experimental Methods for Evaluating the Bacterial Uptake of Trojan Horse Antibacterials. ChemMedChem 2020; 16:1063-1076. [PMID: 33238066 DOI: 10.1002/cmdc.202000806] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Indexed: 01/10/2023]
Abstract
The field of antibacterial siderophore conjugates, referred to as Trojan Horse antibacterials, has received increasing attention in recent years, driven by the rise of antimicrobial resistance. Trojan Horse antibacterials offer an opportunity to exploit the specific pathways present in bacteria for active iron uptake, potentially allowing the drugs to bypass membrane-associated resistance mechanisms. Hence, the Trojan Horse approach might enable the redesigning of old antibiotics and the development of antibacterials that target specific pathogens. Critical parts of evaluating such Trojan Horse antibacterials and improving their design are the quantification of their bacterial uptake and the identification of the pathways by which this occurs. In this minireview, we highlight a selection of the biological and chemical methods used to study the uptake of Trojan Horse antibacterials, exemplified with case studies, some of which have led to drug candidates in clinical development or approved antibiotics.
Collapse
Affiliation(s)
- James W Southwell
- Department of Chemistry, University of York, Heslington, North Yorkshire, YO10 5DD, UK
| | - Conor M Black
- Department of Chemistry, University of York, Heslington, North Yorkshire, YO10 5DD, UK
| | | |
Collapse
|
3
|
Abbina S, Gill A, Mathew S, Abbasi U, Kizhakkedathu JN. Polyglycerol-Based Macromolecular Iron Chelator Adjuvants for Antibiotics To Treat Drug-Resistant Bacteria. ACS APPLIED MATERIALS & INTERFACES 2020; 12:37834-37844. [PMID: 32639137 DOI: 10.1021/acsami.0c06501] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Iron is an essential micronutrient for life. Its redox activity is a key component in a plethora of vital enzymatic reactions that take place in processes such as drug metabolism, DNA synthesis, steroid synthesis, gene regulation, and cellular respiration (oxygen transport and the electron transport chain). Bacteria are highly dependent on iron for their survival and growth and have specific mechanisms to acquire iron. Limiting the availability of iron to bacteria, thereby preventing their growth, provides new opportunities to treat infection in the era of the persistent rise of antibiotic-resistant bacteria. In this work, we have developed macromolecular iron chelators, conjugates of a high-affinity iron chelator (HBEDS) with polyglycerol, in an attempt to sequester iron uptake by bacteria to limit their growth in order to enhance antibiotic activity. The new macromolecular chelators are successful in slowing the growth of Staphylococcus aureus and worked as an efficient bacteriostatic against S. aureus. Further, these cytocompatible macrochelators acted as effective adjuvants to prevent bacterial growth when used in conjunction with antibiotics. The adjuvant activity of the macrochelators depends on their molecular weight and the chelator density on these molecules. These selective macro iron(III) chelators are highly efficient in growth inhibition and killing of methicillin-resistant S. aureus in conjunction with a low concentration of rifampicin.
Collapse
Affiliation(s)
- Srinivas Abbina
- Centre for Blood Research, Life Sciences Institute, The University of British Columbia, Vancouver V6T 1Z4, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, The University of British Columbia, Vancouver V6T 1Z4, British Columbia, Canada
| | - Arshdeep Gill
- Centre for Blood Research, Life Sciences Institute, The University of British Columbia, Vancouver V6T 1Z4, British Columbia, Canada
- Department of Chemistry, The University of British Columbia, Vancouver V6T 1Z4, British Columbia, Canada
| | - Snehamol Mathew
- Centre for Blood Research, Life Sciences Institute, The University of British Columbia, Vancouver V6T 1Z4, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, The University of British Columbia, Vancouver V6T 1Z4, British Columbia, Canada
| | - Usama Abbasi
- Centre for Blood Research, Life Sciences Institute, The University of British Columbia, Vancouver V6T 1Z4, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, The University of British Columbia, Vancouver V6T 1Z4, British Columbia, Canada
| | - Jayachandran N Kizhakkedathu
- Centre for Blood Research, Life Sciences Institute, The University of British Columbia, Vancouver V6T 1Z4, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, The University of British Columbia, Vancouver V6T 1Z4, British Columbia, Canada
- Department of Chemistry, The University of British Columbia, Vancouver V6T 1Z4, British Columbia, Canada
- School of Biomedical Engineering, The University of British Columbia, Vancouver V6T 1Z4, British Columbia, Canada
| |
Collapse
|
4
|
Santos CS, Leite A, Vinhas S, Ferreira S, Moniz T, Vasconcelos MW, Rangel M. A combined physiological and biophysical approach to understand the ligand-dependent efficiency of 3-hydroxy-4-pyridinone Fe-chelates. PLANT DIRECT 2020; 4:e00256. [PMID: 32821874 PMCID: PMC7429444 DOI: 10.1002/pld3.256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/20/2020] [Accepted: 07/22/2020] [Indexed: 05/11/2023]
Abstract
Ligands of the 3-hydroxy-4-pyridinone (3,4-HPO) class were considered eligible to formulate new Fe fertilizers for Iron Deficiency Chlorosis (IDC). Soybean (Glycine max L.) plants grown in hydroponic conditions and supplemented with Fe-chelate [Fe(mpp)3] were significantly greener, had increased biomass, and were able to translocate more iron from the roots to the shoots than those supplemented with an equal amount of the commercially available chelate [FeEDDHA]. To understand the influence of the structure of 3,4-HPO ligand on the role of the Fe-chelate to improve Fe-uptake, we investigated and report here the effect of Fe-chelates ([Fe(mpp)3], [Fe(dmpp)3], and [Fe(etpp)3]) in addressing IDC. Chlorosis development was assessed by measurement of morphological parameters, quantification of chlorophyll and Fe, and other micronutrient contents, as well as measurement of enzymatic activity (FCR) and gene expression (FRO2, IRT1, and Ferritin). All [Fe(3,4-HPO)3] chelates were able to provide Fe to plants and prevent IDC but with a different efficiency depending on the ligand. We hypothesize that this may be related with the distinct physicochemical characteristics of ligands and complexes, namely, the diverse hydrophilic-lipophilic balance of the three chelates. To test the hypothesis, we performed an EPR biophysical study using liposomes prepared from a soybean (Glycine3 max L.) lipid extract and spin probes. The results showed that the most effective chelate [Fe(mpp)3] shows a preferential location close to the surface while the others prefer the hydrophobic region inside the bilayer. SIGNIFICANCE STATEMENT The 3-hydroxy-4-pyridinone Fe-chelates, [Fe(mpp)3], [Fe(dmpp)3], and [Fe(etpp)3], were all able to provide Fe to plants and prevent IDC. Efficacy is dependent on the structure of the ligand. From an EPR biophysical study using spin probes and liposomes, prepared from a soybean lipid extract, we hypothesize that this may be related with the distinct preferential location close to the surface or on the hydrophobic region of the lipid bilayer. [Fe(mpp)3] provide higher amounts of Fe in the leaves.
Collapse
Affiliation(s)
- Carla S. Santos
- CBQF – Centro de Biotecnologia e Química Fina – Laboratório AssociadoUniversidade Católica PortuguesaEscola Superior de BiotecnologiaPortoPortugal
| | - Andreia Leite
- REQUIMTELAQVDepartamento de Química e BioquímicaFaculdade de CiênciasUniversidade do PortoPortoPortugal
| | - Sílvia Vinhas
- REQUIMTELAQVDepartamento de Química e BioquímicaFaculdade de CiênciasUniversidade do PortoPortoPortugal
| | - Sofia Ferreira
- REQUIMTELAQVInstituto de Ciências Biomédicas de Abel SalazarUniversidade do PortoPortoPortugal
| | - Tânia Moniz
- REQUIMTELAQVDepartamento de Química e BioquímicaFaculdade de CiênciasUniversidade do PortoPortoPortugal
| | - Marta W. Vasconcelos
- CBQF – Centro de Biotecnologia e Química Fina – Laboratório AssociadoUniversidade Católica PortuguesaEscola Superior de BiotecnologiaPortoPortugal
| | - Maria Rangel
- REQUIMTELAQVInstituto de Ciências Biomédicas de Abel SalazarUniversidade do PortoPortoPortugal
| |
Collapse
|
5
|
Iron as Therapeutic Target in Human Diseases. Pharmaceuticals (Basel) 2019; 12:ph12040178. [PMID: 31817314 PMCID: PMC6958491 DOI: 10.3390/ph12040178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 11/28/2019] [Indexed: 12/14/2022] Open
Abstract
Iron is essential for almost all organisms, being involved in oxygen transport, DNA synthesis, and respiration; however, it is also potentially toxic via the formation of free radicals [...].
Collapse
|
6
|
Nurchi VM, Cappai R, Chand K, Chaves S, Gano L, Crisponi G, Peana M, Zoroddu MA, Santos MA. New strong extrafunctionalizable tris(3,4-HP) and bis(3,4-HP) metal sequestering agents: synthesis, solution and in vivo metal chelation. Dalton Trans 2019; 48:16167-16183. [PMID: 31577287 DOI: 10.1039/c9dt02905b] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Finding new multifunctional metal binders to be potentially used in diagnosis or therapy has been a subject of major challenge. Hydroxypyridinones have long been recognized as privileged chelating structures for the design of metal chelating drugs, especially towards hard metal ions, in view of their decorporation in metal overload disorders. Thus, pursuing our strategy of engineering new polydentate 3-hydroxy-4-pyridinones (3,4-HP) with extrafunctionalization capacity for sensing or targeting purposes, we report herein the synthesis and full characterization of a hexadentate (tris-3,4-HP) and a tetradentate (bis-3,4-HP) ligand, possessing three and two 3,4-HP arms N-attached to an aminomethanetrispropionic acid backbone, respectively. Thus, as compared with previously reported analogues, each ligand possesses an extra free amino group ready for further functionalization. Their chelating capacity towards Fe and Al was evaluated in aqueous solution, by potentiometric and spectroscopic techniques, and they proved to be strong sequestering agents for these metal ions without depletion of Zn, an essential biometal. Their excellent in vivo metal-decorporation capacity was also evidenced in mice injected with a radiotracer (67Ga) as an animal model of metal overload pathological situations. These findings provide encouragement for further ongoing extrafunctionalizations in view of several potential biomedical applications.
Collapse
Affiliation(s)
- Valeria M Nurchi
- Dipartimento di Scienze della Vita e dell'Ambiente, Università di Cagliari, Cittadella Universitaria, 09042, Monserrato-Cagliari, Italy.
| | - Rosita Cappai
- Dipartimento di Scienze della Vita e dell'Ambiente, Università di Cagliari, Cittadella Universitaria, 09042, Monserrato-Cagliari, Italy. and Centro de Quimica Estrutural, Instituto Superior Tecnico, Universidade de Lisboa, Av, Rovisco Pais 1, 1049-001, Lisboa, Portugal.
| | - Karam Chand
- Centro de Quimica Estrutural, Instituto Superior Tecnico, Universidade de Lisboa, Av, Rovisco Pais 1, 1049-001, Lisboa, Portugal.
| | - Sílvia Chaves
- Centro de Quimica Estrutural, Instituto Superior Tecnico, Universidade de Lisboa, Av, Rovisco Pais 1, 1049-001, Lisboa, Portugal.
| | - Lurdes Gano
- Centro de Ciencias e Tecnologias Nucleares(C2TN), Instituto Superior Tecnico, Universidade de Lisboa, Estrada Nacional 10, 2695-006, Lisboa, Portugal
| | - Guido Crisponi
- Dipartimento di Scienze della Vita e dell'Ambiente, Università di Cagliari, Cittadella Universitaria, 09042, Monserrato-Cagliari, Italy.
| | - Massimiliano Peana
- Dipartimento di Chimica e Farmacia, Università di Sassari, Via Vienna 2, 07100, Sassari, Italy
| | - M Antonietta Zoroddu
- Dipartimento di Chimica e Farmacia, Università di Sassari, Via Vienna 2, 07100, Sassari, Italy
| | - M Amélia Santos
- Centro de Quimica Estrutural, Instituto Superior Tecnico, Universidade de Lisboa, Av, Rovisco Pais 1, 1049-001, Lisboa, Portugal.
| |
Collapse
|
7
|
Coimbra JTS, Brás NF, Fernandes PA, Rangel M, Ramos MJ. A computational study on the redox properties and binding affinities of iron complexes of hydroxypyridinones. J Mol Model 2019; 25:172. [PMID: 31129727 DOI: 10.1007/s00894-019-4037-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 04/15/2019] [Indexed: 12/01/2022]
Abstract
The potential of hydroxypyridinones for in vivo iron sequestration, in both biological and medical contexts, has been extensively discussed in the literature. Different chelators can be designed, with distinct lipophilicities that should alter their cell permeability, distribution, and rates of metabolism. However, for effective iron scavenging in biological systems, the redox potential and binding affinity of iron must fall within a proper range. Our objective was to assess the impact of different hydroxypyridinone chelators in 3:1 iron(III) complexes through comparison of these thermodynamic properties. For that purpose, we employed a cluster-continuum approach using density functional theory, on a dataset of 25 iron complexes. Whenever possible, our results were compared with experimental stability constants (log β) and with electrode potentials. We observed a good qualitative agreement between computed free energies of binding and log β values. In addition, we described which substitutions to the 3-hydroxypyridin-4-one ring should not markedly affect the redox properties and metal ion affinity considering iron. Graphical abstract Iron complexes of hydroxypyridinones.
Collapse
Affiliation(s)
- João T S Coimbra
- UCIBIO, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007, Porto, Portugal
| | - Natércia F Brás
- UCIBIO, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007, Porto, Portugal
| | - Pedro A Fernandes
- UCIBIO, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007, Porto, Portugal
| | - Maria Rangel
- LAQV, REQUIMTE, Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Maria J Ramos
- UCIBIO, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007, Porto, Portugal.
| |
Collapse
|