1
|
Del Bino L, Østerlid KE, Wu DY, Nonne F, Romano MR, Codée J, Adamo R. Synthetic Glycans to Improve Current Glycoconjugate Vaccines and Fight Antimicrobial Resistance. Chem Rev 2022; 122:15672-15716. [PMID: 35608633 PMCID: PMC9614730 DOI: 10.1021/acs.chemrev.2c00021] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Antimicrobial resistance (AMR) is emerging as the next potential pandemic. Different microorganisms, including the bacteria Acinetobacter baumannii, Clostridioides difficile, Escherichia coli, Enterococcus faecium, Klebsiella pneumoniae, Neisseria gonorrhoeae, Pseudomonas aeruginosa, non-typhoidal Salmonella, and Staphylococcus aureus, and the fungus Candida auris, have been identified by the WHO and CDC as urgent or serious AMR threats. Others, such as group A and B Streptococci, are classified as concerning threats. Glycoconjugate vaccines have been demonstrated to be an efficacious and cost-effective measure to combat infections against Haemophilus influenzae, Neisseria meningitis, Streptococcus pneumoniae, and, more recently, Salmonella typhi. Recent times have seen enormous progress in methodologies for the assembly of complex glycans and glycoconjugates, with developments in synthetic, chemoenzymatic, and glycoengineering methodologies. This review analyzes the advancement of glycoconjugate vaccines based on synthetic carbohydrates to improve existing vaccines and identify novel candidates to combat AMR. Through this literature survey we built an overview of structure-immunogenicity relationships from available data and identify gaps and areas for further research to better exploit the peculiar role of carbohydrates as vaccine targets and create the next generation of synthetic carbohydrate-based vaccines.
Collapse
Affiliation(s)
| | - Kitt Emilie Østerlid
- Leiden
Institute of Chemistry, Leiden University, 2300 RA Leiden, The Netherlands
| | - Dung-Yeh Wu
- Leiden
Institute of Chemistry, Leiden University, 2300 RA Leiden, The Netherlands
| | | | | | - Jeroen Codée
- Leiden
Institute of Chemistry, Leiden University, 2300 RA Leiden, The Netherlands
| | | |
Collapse
|
2
|
Richardson NI, Kuttel MM, Ravenscroft N. Modeling of pneumococcal serogroup 10 capsular polysaccharide molecular conformations provides insight into epitopes and observed cross-reactivity. Front Mol Biosci 2022; 9:961532. [PMID: 36003080 PMCID: PMC9393222 DOI: 10.3389/fmolb.2022.961532] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 07/04/2022] [Indexed: 11/21/2022] Open
Abstract
Streptococcus pneumoniae is an encapsulated gram-negative bacterium and a significant human pathogen. The capsular polysaccharide (CPS) is essential for virulence and a target antigen for vaccines. Although widespread introduction of pneumococcal conjugate vaccines (PCVs) has significantly reduced disease, the prevalence of non-vaccine serotypes has increased. On the basis of the CPS, S. pneumoniae serogroup 10 comprises four main serotypes 10A, 10B, 10C, and 10F; as well as the recently identified 10D. As it is the most prevalent, serotype 10A CPS has been included as a vaccine antigen in the next generation PCVs. Here we use molecular modeling to provide conformational rationales for the complex cross-reactivity reported between serotypes 10A, 10B, 10C, and 10F anti-sera. Although the highly mobile phosphodiester linkages produce very flexible CPS, shorter segments are conformationally defined, with exposed β-D-galactofuranose (β DGalf) side chains that are potential antibody binding sites. We identify four distinct conformational epitopes for the immunodominant β DGalf that assist in rationalizing the complex asymmetric cross-reactivity relationships. In particular, we find that strongly cross-reactive serotypes share common epitopes. Further, we show that human intelectin-1 has the potential to bind the exposed exocyclic 1,2-diol of the terminal β DGalf in each serotype; the relative accessibility of three- or six-linked β DGalf may play a role in the strength of the innate immune response and hence serotype disease prevalence. In conclusion, our modeling study and relevant serological studies support the inclusion of serotype 10A in a vaccine to best protect against serogroup 10 disease.
Collapse
Affiliation(s)
| | - Michelle M. Kuttel
- Department of Computer Science, University of Cape Town, Cape Town, South Africa
| | - Neil Ravenscroft
- Department of Chemistry, University of Cape Town, Cape Town, South Africa
- *Correspondence: Neil Ravenscroft,
| |
Collapse
|
3
|
Hao L, Kuttel MM, Ravenscroft N, Thompson A, Prasad AK, Gangolli S, Tan C, Cooper D, Watson W, Liberator P, Pride MW, Jansen KU, Anderson AS, Scully IL. Streptococcus pneumoniae serotype 15B polysaccharide conjugate elicits a cross-functional immune response against serotype 15C but not 15A. Vaccine 2022; 40:4872-4880. [PMID: 35810060 DOI: 10.1016/j.vaccine.2022.06.041] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 06/09/2022] [Accepted: 06/13/2022] [Indexed: 11/25/2022]
Abstract
Protection conferred by pneumococcal polysaccharide conjugate vaccines (PCVs) is associated with PCV-induced antibodies against vaccine-covered serotypes that exhibit functional opsonophagocytic activity (OPA). Structural similarity between capsular polysaccharides of closely related serotypes may result in induction of cross-reactive antibodies with or without a cross-functional activity against a serotype not covered by a PCV, with the former providing an additional protective clinical benefit. Serotypes 15B, 15A, and 15C, in the serogroup 15, are among the most prevalent Streptococcus pneumoniae serotypes associated with invasive pneumococcal disease following the implementation of a 13-valent PCV; in addition, 15B contributes significantly to acute otitis media. Serological discrimination between closely related serotypes such as 15B and 15C is complicated; here, we implemented an algorithm to quickly differentiate 15B from its closely related serotypes 15C and 15A directly from whole-genome sequencing data. In addition, molecular dynamics simulations of serotypes 15A, 15B, and 15C polysaccharides demonstrated that while 15B and 15C polysaccharides assume rigid branched conformation, 15A polysaccharide assumes a flexible linear conformation. A serotype 15B conjugate, included in a 20-valent PCV (PCV20), induced cross-functional OPA serum antibody responses against the structurally similar serotype 15C but not against serotype 15A, both not included in PCV20. In PCV20-vaccinated adults (18-49 years), robust OPA antibody titers were detected against both serotypes 15B (the geometric mean titer [GMT] of 19,334) and 15C (GMTs of 1692 and 2747 for strains PFE344340 and PFE1160, respectively), but were negligible against serotype 15A (GMTs of 10 and 30 for strains PFE593551 and PFE647449, respectively). Cross-functional 15B/C responses were also confirmed using sera from a larger group of older adults (60-64 years).
Collapse
Affiliation(s)
- Li Hao
- Pfizer Vaccine Research & Development, 401 N. Middletown Rd, Pearl River, NY 10965, USA
| | - Michelle M Kuttel
- Department of Computer Science, University of Cape Town, Rondebosch 7701, South Africa
| | - Neil Ravenscroft
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Allison Thompson
- Pfizer Vaccine Research & Development, 401 N. Middletown Rd, Pearl River, NY 10965, USA
| | - A Krishna Prasad
- Pfizer Vaccine Research & Development, 401 N. Middletown Rd, Pearl River, NY 10965, USA
| | - Seema Gangolli
- Pfizer Vaccine Research & Development, 401 N. Middletown Rd, Pearl River, NY 10965, USA
| | - Charles Tan
- Pfizer Vaccine Research & Development, 401 N. Middletown Rd, Pearl River, NY 10965, USA
| | - David Cooper
- Pfizer Vaccine Research & Development, 401 N. Middletown Rd, Pearl River, NY 10965, USA
| | - Wendy Watson
- Pfizer Vaccine Clinical Research & Development, 500 Arcola Rd, Collegeville, PA 19422, USA
| | - Paul Liberator
- Pfizer Vaccine Research & Development, 401 N. Middletown Rd, Pearl River, NY 10965, USA
| | - Michael W Pride
- Pfizer Vaccine Research & Development, 401 N. Middletown Rd, Pearl River, NY 10965, USA
| | - Kathrin U Jansen
- Pfizer Vaccine Research & Development, 401 N. Middletown Rd, Pearl River, NY 10965, USA
| | - Annaliesa S Anderson
- Pfizer Vaccine Research & Development, 401 N. Middletown Rd, Pearl River, NY 10965, USA
| | - Ingrid L Scully
- Pfizer Vaccine Research & Development, 401 N. Middletown Rd, Pearl River, NY 10965, USA.
| |
Collapse
|
4
|
Kuttel MM. Comparative Molecular Modelling of Capsular Polysaccharide Conformations in Streptococcus suis Serotypes 1, 2, 1/2 and 14 Identifies Common Epitopes for Antibody Binding. Front Mol Biosci 2022; 9:830854. [PMID: 35211512 PMCID: PMC8861514 DOI: 10.3389/fmolb.2022.830854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/18/2022] [Indexed: 11/21/2022] Open
Abstract
Streptococcus suis is an encapsulated, commensal, potentially pathogenic bacterium that infects swine globally and causes sporadic life-threatening zoonotic septicemia and meningitis infections in humans. The capsular polysaccharide is a primary virulence factor for S. suis. As S. suis serotype 2 is the most prevalent serotype globally, the serotype 2 CPS is the primary target of current efforts to develop an effective glycoconjugate veterinary vaccine against S. suis. Possible cross-protection with related serotypes would broaden the coverage of a vaccine. The CPS in serotypes 2 and 1/2 differ at a single residue (Gal versus GalNAc), and both are similar to serotypes 1 and 14: all contain a terminal sialic acid on a side chain. However, despite this similarity, there is complex pattern of cross-protection for these serotypes, with varying estimations of the importance of sialic acid in a protective epitope. Further, a pentasaccharide without the terminal sialic acid has been identified as minimal epitope for serotype 2. Here we use molecular simulation to model the molecule conformations of the CPS in serotypes 2, 1/2, 1 and 14, as well as three vaccine candidate oligosaccharides. The common epitopes we identify assist in rationalizing the apparently contradictory immunological data and provide a basis for rational design of S. suis vaccines in the future.
Collapse
|
5
|
Gómez-Redondo M, Ardá A, Gimeno A, Jiménez-Barbero J. Bacterial polysaccharides: conformation, dynamics and molecular recognition by antibodies. DRUG DISCOVERY TODAY. TECHNOLOGIES 2021; 35-36:1-11. [PMID: 33388123 DOI: 10.1016/j.ddtec.2020.08.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/26/2020] [Accepted: 08/28/2020] [Indexed: 02/07/2023]
Abstract
Bacterial infections are the cause of different severe health conditions and new therapies to combat these pathogens have been widely investigated. Carbohydrates, being complex structures covering the surface of bacteria, are considered relevant targets for antibody and vaccine development. The biological activities in pathogenesis of bacterial capsular polysaccharides and lipopolisaccharides and their unique structures have boosted the study of the minimal antigenic binding epitopes and the structural details of antibody-carbohydrate recognition. This review describes the most recent advances on the field, examining the structure, conformation and dynamics of relevant bacterial carbohydrates and their complexes with antibodies. The understanding of key factors governing the recognition process is fundamental for the progress toward the development of specific and efficient bacterial therapeutics.
Collapse
Affiliation(s)
- Marcos Gómez-Redondo
- CIC bioGUNE, Basque Research Technology Alliance, BRTA, Bizkaia Technology Park, Building 800, 48160 Derio, Spain
| | - Ana Ardá
- CIC bioGUNE, Basque Research Technology Alliance, BRTA, Bizkaia Technology Park, Building 800, 48160 Derio, Spain
| | - Ana Gimeno
- CIC bioGUNE, Basque Research Technology Alliance, BRTA, Bizkaia Technology Park, Building 800, 48160 Derio, Spain
| | - Jesús Jiménez-Barbero
- CIC bioGUNE, Basque Research Technology Alliance, BRTA, Bizkaia Technology Park, Building 800, 48160 Derio, Spain; Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain; Department Organic Chemistry II, Faculty of Science and technology, UPV-EHU, 48940 Leioa, Spain
| |
Collapse
|
6
|
Carboni F, Adamo R. Structure-based glycoconjugate vaccine design: The example of Group B Streptococcus type III capsular polysaccharide. DRUG DISCOVERY TODAY. TECHNOLOGIES 2020; 35-36:23-33. [PMID: 33388125 DOI: 10.1016/j.ddtec.2020.11.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 10/22/2020] [Accepted: 11/05/2020] [Indexed: 06/12/2023]
Abstract
Microbial surface polysaccharides are important virulence factors and targets for vaccine development. Glycoconjugate vaccines, obtained by covalently linking carbohydrates and proteins, are well established tools for prevention of bacterial infections. Elucidation of the minimal portion involved in the interactions with functional antibodies is of utmost importance for the understanding of their mechanism of induction of protective immune responses and the design of synthetic glycan based vaccines. Typically, this is achieved by combination of different techniques, which include ELISA, glycoarray, Surface Plasmon Resonance in conjunction with approaches for mapping at atomic level the position involved in binding, such as Saturation Transfer NMR and X-ray crystallography. This review provides an overview of the structural studies performed to map glycan epitopes (glycotopes), with focus on the highly complex structure of Group B Streptococcus type III (GBSIII) capsular polysaccharide. Furthermore, it describes the rational process followed to translate the obtained information into the design of a protective glycoconjugate vaccine based on a well-defined synthetic glycan epitope.
Collapse
|
7
|
Kuttel MM, Casadevall A, Oscarson S. Cryptococcus neoformans Capsular GXM Conformation and Epitope Presentation: A Molecular Modelling Study. Molecules 2020; 25:E2651. [PMID: 32517333 PMCID: PMC7321252 DOI: 10.3390/molecules25112651] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 06/01/2020] [Accepted: 06/04/2020] [Indexed: 12/31/2022] Open
Abstract
The pathogenic encapsulated Cryptococcus neoformans fungus causes serious disease in immunosuppressed hosts. The capsule, a key virulence factor, consists primarily of the glucuronoxylomannan polysaccharide (GXM) that varies in composition according to serotype. While GXM is a potential vaccine target, vaccine development has been confounded by the existence of epitopes that elicit non-protective antibodies. Although there is evidence for protective antibodies binding conformational epitopes, the secondary structure of GXM remains an unsolved problem. Here an array of molecular dynamics simulations reveal that the GXM mannan backbone is consistently extended and relatively inflexible in both C. neoformans serotypes A and D. Backbone substitution does not alter the secondary structure, but rather adds structural motifs: β DGlcA and β DXyl side chains decorate the mannan backbone in two hydrophillic fringes, with mannose-6-O-acetylation forming a hydrophobic ridge between them. This work provides mechanistic rationales for clinical observations-the importance of O-acetylation for antibody binding; the lack of binding of protective antibodies to short GXM fragments; the existence of epitopes that elicit non-protective antibodies; and the self-aggregation of GXM chains-indicating that molecular modelling can play a role in the rational design of conjugate vaccines.
Collapse
Affiliation(s)
- Michelle M. Kuttel
- Department of Computer Science, University of Cape Town, Cape Town 7701, South Africa
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, 615 N Wolfe St Room E5132, Baltimore, MD 21205, USA;
| | - Stefan Oscarson
- Centre for Synthesis and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland;
| |
Collapse
|
8
|
Oldrini D, del Bino L, Arda A, Carboni F, Henriques P, Angiolini F, Quintana JI, Calloni I, Romano MR, Berti F, Jimenez‐Barbero J, Margarit I, Adamo R. Structure-Guided Design of a Group B Streptococcus Type III Synthetic Glycan-Conjugate Vaccine. Chemistry 2020; 26:7018-7025. [PMID: 32058627 PMCID: PMC7317837 DOI: 10.1002/chem.202000284] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/13/2020] [Indexed: 12/15/2022]
Abstract
Identification of glycan functional epitopes is of paramount importance for rational design of glycoconjugate vaccines. We recently mapped the structural epitope of the capsular polysaccharide from type III Group B Streptococcus (GBSIII), a major cause of invasive disease in newborns, by using a dimer fragment (composed of two pentasaccharide repeating units) obtained by depolymerization complexed with a protective mAb. Although reported data had suggested a highly complex epitope contained in a helical structure composed of more than four repeating units, we showed that such dimer conjugated to a carrier protein with a proper glycosylation degree elicited functional antibodies comparably to the full-length conjugated polysaccharide. Here, starting from the X-ray crystallographic structure of the polysaccharide fragment-mAb complex, we synthesized a hexasaccharide comprising exclusively the relevant positions involved in binding. Combining competitive surface plasmon resonance and saturation transfer difference NMR spectroscopy as well as in-silico modeling, we demonstrated that this synthetic glycan was recognized by the mAb similarly to the dimer. The hexasaccharide conjugated to CRM197 , a mutant of diphtheria toxin, elicited a robust functional immune response that was not inferior to the polysaccharide conjugate, indicating that it may suffice as a vaccine antigen. This is the first evidence of an X-ray crystallography-guided design of a synthetic carbohydrate-based conjugate vaccine.
Collapse
Affiliation(s)
- Davide Oldrini
- Research CenterGlaxoSmithKline PlcVia Fiorentina 153100SienaItaly
| | - Linda del Bino
- Research CenterGlaxoSmithKline PlcVia Fiorentina 153100SienaItaly
| | - Ana Arda
- Chemical Glycobiology Lab, CIC bioGUNEBasque Research Technology Alliance (BRTA)Bizkaia Technology Park48160DerioSpain
| | - Filippo Carboni
- Research CenterGlaxoSmithKline PlcVia Fiorentina 153100SienaItaly
| | - Pedro Henriques
- Research CenterGlaxoSmithKline PlcVia Fiorentina 153100SienaItaly
| | | | - Jon I. Quintana
- Chemical Glycobiology Lab, CIC bioGUNEBasque Research Technology Alliance (BRTA)Bizkaia Technology Park48160DerioSpain
| | - Ilaria Calloni
- Chemical Glycobiology Lab, CIC bioGUNEBasque Research Technology Alliance (BRTA)Bizkaia Technology Park48160DerioSpain
| | - Maria R. Romano
- Research CenterGlaxoSmithKline PlcVia Fiorentina 153100SienaItaly
| | - Francesco Berti
- Research CenterGlaxoSmithKline PlcVia Fiorentina 153100SienaItaly
| | - Jesus Jimenez‐Barbero
- Chemical Glycobiology Lab, CIC bioGUNEBasque Research Technology Alliance (BRTA)Bizkaia Technology Park48160DerioSpain
- IkerbasqueBasque Foundation for Science48013BilbaoBizkaiaSpain
- Department Organic Chemistry IIUniversity of the Basque Country UPV/EHU48940LeioaBizkaiaSpain
| | | | - Roberto Adamo
- Research CenterGlaxoSmithKline PlcVia Fiorentina 153100SienaItaly
| |
Collapse
|
9
|
Hlozek J, Ravenscroft N, Kuttel MM. Effects of Glucosylation and O-Acetylation on the Conformation of Shigella flexneri Serogroup 2 O-Antigen Vaccine Targets. J Phys Chem B 2020; 124:2806-2814. [PMID: 32204588 DOI: 10.1021/acs.jpcb.0c01595] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Shigellosis is an enteric disease with high morbidity and mortality, particularly in developing countries. There is currently no licensed vaccine available. Most infection is caused by Shigella flexneri, of which 30 serotypes have been recognized based on O-antigen polysaccharide structure. Almost all S. flexneri serotypes share the same repeating unit backbone (serotype Y), with varying glucosylation, O-acetylation and phosphorylation. The O-antigen is the primary vaccine target; the vaccine valency (and hence cost) can be reduced by cross-protection. Our planned systematic conformational study of S. flexneri starts here with 2a, the dominant cause of infection globally. We employ microsecond molecular dynamics simulations to compare the conformation of the unsubstituted serotype Y backbone with the serogroup 2 O-antigens, to investigate the effect of glucosylation and O-acetylation (O-factor 9) on conformation. We find that serotype Y is highly flexible, whereas glucosylation in 2a restricts flexibility and induces C-curve conformations. Further, the glucose side-chains adopt two distinct conformations, corroborated by the antibody-bound crystal structure data. Additional substitution on O-3 of rhamnose A (whether O-acetylation in 2a or glucosylation in 2b) induces helical conformations. Our results suggest that the O-3-acetylated 2a antigen will elicit cross-protection against 2b, as well as other serotypes containing O-factor 9.
Collapse
Affiliation(s)
- Jason Hlozek
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Neil Ravenscroft
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Michelle M Kuttel
- Department of Computer Science, University of Cape Town, Rondebosch 7701, South Africa
| |
Collapse
|
10
|
Copoiu L, Malhotra S. The current structural glycome landscape and emerging technologies. Curr Opin Struct Biol 2020; 62:132-139. [PMID: 32006784 DOI: 10.1016/j.sbi.2019.12.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/23/2019] [Accepted: 12/24/2019] [Indexed: 11/19/2022]
Abstract
Carbohydrates represent one of the building blocks of life, along with nucleic acids, proteins and lipids. Although glycans are involved in a wide range of processes from embryogenesis to protein trafficking and pathogen infection, we are still a long way from deciphering the glycocode. In this review, we aim to present a few of the challenges that researchers working in the area of glycobiology can encounter and what strategies can be utilised to overcome them. Our goal is to paint a comprehensive picture of the current saccharide landscape available in the Protein Data Bank (PDB). We also review recently updated repositories relevant to the topic proposed, the impact of software development on strategies to structurally solve carbohydrate moieties, and state-of-the-art molecular and cellular biology methods that can shed some light on the function and structure of glycans.
Collapse
Affiliation(s)
- Liviu Copoiu
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, United Kingdom
| | - Sony Malhotra
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck College, University of London, Malet Street, London WC1E 7HX, United Kingdom.
| |
Collapse
|
11
|
Del Bino L, Calloni I, Oldrini D, Raso MM, Cuffaro R, Ardá A, Codée JDC, Jiménez‐Barbero J, Adamo R. Regioselective Glycosylation Strategies for the Synthesis of Group Ia and Ib Streptococcus Related Glycans Enable Elucidating Unique Conformations of the Capsular Polysaccharides. Chemistry 2019; 25:16277-16287. [PMID: 31506992 PMCID: PMC6972993 DOI: 10.1002/chem.201903527] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/07/2019] [Indexed: 12/29/2022]
Abstract
Group B Streptococcus serotypes Ia and Ib capsular polysaccharides are key targets for vaccine development. In spite of their immunospecifity these polysaccharides share high structural similarity. Both are composed of the same monosaccharide residues and differ only in the connection of the Neu5Acα2-3Gal side chain to the GlcNAc unit, which is a β1-4 linkage in serotype Ia and a β1-3 linkage in serotype Ib. The development of efficient regioselective routes for GlcNAcβ1-3[Glcβ1-4]Gal synthons is described, which give access to different group B Streptococcus (GBS) Ia and Ib repeating unit frameshifts. These glycans were used to probe the conformation and molecular dynamics of the two polysaccharides, highlighting the different presentation of the protruding Neu5Acα2-3Gal moieties on the polysaccharide backbones and a higher flexibility of Ib polymer relative to Ia, which can impact epitope exposure.
Collapse
Affiliation(s)
| | - Ilaria Calloni
- CIC bioGUNEBizkaia Technology Park, Building 80048160DerioSpain
| | | | | | | | - Ana Ardá
- CIC bioGUNEBizkaia Technology Park, Building 80048160DerioSpain
| | - Jeroen D. C. Codée
- Department of Bioorganic SynthesisLeiden University2333LeidenThe Netherlands
| | - Jesús Jiménez‐Barbero
- CIC bioGUNEBizkaia Technology Park, Building 80048160DerioSpain
- Basque Foundation for Science IKERBASQUE8009BilbaoSpain
- Department of Organic Chemistry IIFaculty of Science and TechnologyUniversity of the Basque Country48940LeioaSpain
| | | |
Collapse
|