1
|
Hong J, Sim D, Lee BH, Sarangthem V, Park RW. Multifunctional elastin-like polypeptide nanocarriers for efficient miRNA delivery in cancer therapy. J Nanobiotechnology 2024; 22:293. [PMID: 38802812 PMCID: PMC11131307 DOI: 10.1186/s12951-024-02559-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 05/16/2024] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND The exogenous delivery of miRNA to mimic and restore miRNA-34a activity in various cancer models holds significant promise in cancer treatment. Nevertheless, its effectiveness is often impeded by challenges, including a short half-life, propensity for off-target accumulation, susceptibility to inactivation by blood-based enzymes, concerns regarding patient safety, and the substantial cost associated with scaling up. As a means of overcoming these barriers, we propose the development of miRNA-loaded Tat-A86 nanoparticles by virtue of Tat-A86's ability to shield the loaded agent from external environmental factors, reducing degradation and inactivation, while enhancing circulation time and targeted accumulation. RESULTS Genetically engineered Tat-A86, featuring 16 copies of the interleukin-4 receptor (IL-4R)-binding peptide (AP1), Tat for tumor penetration, and an elastin-like polypeptide (ELP) for presenting target ligands and ensuring stability, served as the basis for this delivery system. Comparative groups, including Tat-E60 and A86, were employed to discern differences in binding and penetration. The designed ELP-based nanoparticle Tat-A86 effectively condensed miRNA, forming stable nanocomplexes under physiological conditions. The miRNA/Tat-A86 formulation bound specifically to tumor cells and facilitated stable miRNA delivery into them, effectively inhibiting tumor growth. The efficacy of miRNA/Tat-A86 was further evaluated using three-dimensional spheroids of lewis lung carcinoma (LLC) as in vitro model and LLC tumor-bearing mice as an in vivo model. It was found that miRNA/Tat-A86 facilitates effective cell killing by markedly improving miRNA penetration, leading to a substantial reduction in the size of LLC spheroids. Compared to other controls, Tat-A86 demonstrated superior efficacy in suppressing the growth of 3D cellular aggregates. Moreover, at equivalent doses, miRNA-34a delivered by Tat-A86 inhibited the growth of LLC cells in allograft mice. CONCLUSIONS Overall, these studies demonstrate that Tat-A86 nanoparticles can deliver miRNA systemically, overcoming the basic hurdles impeding miRNA delivery by facilitating both miRNA uptake and stability, ultimately leading to improved therapeutic effects.
Collapse
Affiliation(s)
- Jisan Hong
- Department of Biochemistry and Cell Biology, Cell & Matrix Research Institute, Kyungpook National University, School of Medicine, Daegu, 41944, Republic of Korea
| | - Dahye Sim
- Department of Biochemistry and Cell Biology, Cell & Matrix Research Institute, Kyungpook National University, School of Medicine, Daegu, 41944, Republic of Korea
| | - Byung-Heon Lee
- Department of Biochemistry and Cell Biology, Cell & Matrix Research Institute, Kyungpook National University, School of Medicine, Daegu, 41944, Republic of Korea
| | - Vijaya Sarangthem
- Department of Biochemistry and Cell Biology, Cell & Matrix Research Institute, Kyungpook National University, School of Medicine, Daegu, 41944, Republic of Korea.
| | - Rang-Woon Park
- Department of Biochemistry and Cell Biology, Cell & Matrix Research Institute, Kyungpook National University, School of Medicine, Daegu, 41944, Republic of Korea.
| |
Collapse
|
2
|
Alikiaii B, Bagherniya M, Askari G, Rajendram R, Sahebkar A. MicroRNA Profiles in Critically Ill Patients. Curr Med Chem 2024; 31:6801-6825. [PMID: 37496239 DOI: 10.2174/0929867331666230726095222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 05/19/2023] [Accepted: 06/01/2023] [Indexed: 07/28/2023]
Abstract
The use of biomarkers to expedite diagnosis, prognostication, and treatment could significantly improve patient outcomes. The early diagnosis and treatment of critical illnesses can greatly reduce mortality and morbidity. Therefore, there is great interest in the discovery of biomarkers for critical illnesses. Micro-ribonucleic acids (miRNAs) are a highly conserved group of non-coding RNA molecules. They regulate the expression of genes involved in several developmental, physiological, and pathological processes. The characteristics of miRNAs suggest that they could be versatile biomarkers. Assay panels to measure the expression of several miRNAs could facilitate clinical decision-- making for a range of diseases. We have, in this paper, reviewed the current understanding of the role of miRNAs as biomarkers in critically ill patients.
Collapse
Affiliation(s)
- Babak Alikiaii
- Anesthesia and Critical Care Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Bagherniya
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Gholamreza Askari
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Rajkumar Rajendram
- Department of Medicine, King Abdulaziz Medical City, King Abdulaziz International Medical Research Center, Ministry of National Guard - Health Affairs, Riyadh, Saudi Arabia
- College of Medicine, King Saud bin Abdulaziz University of Health Sciences, Riyadh, Saudi Arabia
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
3
|
Ahmadi SM, Amirkhanloo S, Yazdian-Robati R, Ebrahimi H, Pirhayati FH, Almalki WH, Ebrahimnejad P, Kesharwani P. Recent advances in novel miRNA mediated approaches for targeting breast cancer. J Drug Target 2023; 31:777-793. [PMID: 37480323 DOI: 10.1080/1061186x.2023.2240979] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/18/2023] [Accepted: 05/05/2023] [Indexed: 07/24/2023]
Abstract
Breast cancer (BC) is considered one of the most frequent cancers among woman worldwide. While conventional therapy has been successful in treating many cases of breast cancer, drug resistance, heterogenicity, tumour features and recurrence, invasion, metastasis and the presence of breast cancer stem cells can hinder the effect of treatments, and can reduce the quality of life of patients. MicroRNAs (miRNAs) are short non-coding RNA molecules that play a crucial role in the development and progression of breast cancer. Several studies have reported that aberrant expression of specific miRNAs is associated with the pathogenesis of breast cancer. However, miRNAs are emerging as potential biomarkers and therapeutic targets for breast cancer. Understanding their role in breast cancer biology could help develop more effective treatments for this disease. The present study discusses the biogenesis and function of miRNAs, as well as miRNA therapy approaches for targeting and treating breast cancer cells.
Collapse
Affiliation(s)
- Seyedeh Melika Ahmadi
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Shervin Amirkhanloo
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Rezvan Yazdian-Robati
- Pharmaceutical Sciences Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hossein Ebrahimi
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | | | - Waleed H Almalki
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Pedram Ebrahimnejad
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
- Pharmaceutical Sciences Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| |
Collapse
|
4
|
Hussen BM, Rasul MF, Abdullah SR, Hidayat HJ, Faraj GSH, Ali FA, Salihi A, Baniahmad A, Ghafouri-Fard S, Rahman M, Glassy MC, Branicki W, Taheri M. Targeting miRNA by CRISPR/Cas in cancer: advantages and challenges. Mil Med Res 2023; 10:32. [PMID: 37460924 PMCID: PMC10351202 DOI: 10.1186/s40779-023-00468-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 07/03/2023] [Indexed: 07/20/2023] Open
Abstract
Clustered regulatory interspaced short palindromic repeats (CRISPR) has changed biomedical research and provided entirely new models to analyze every aspect of biomedical sciences during the last decade. In the study of cancer, the CRISPR/CRISPR-associated protein (Cas) system opens new avenues into issues that were once unknown in our knowledge of the noncoding genome, tumor heterogeneity, and precision medicines. CRISPR/Cas-based gene-editing technology now allows for the precise and permanent targeting of mutations and provides an opportunity to target small non-coding RNAs such as microRNAs (miRNAs). However, the development of effective and safe cancer gene editing therapy is highly dependent on proper design to be innocuous to normal cells and prevent introducing other abnormalities. This study aims to highlight the cutting-edge approaches in cancer-gene editing therapy based on the CRISPR/Cas technology to target miRNAs in cancer therapy. Furthermore, we highlight the potential challenges in CRISPR/Cas-mediated miRNA gene editing and offer advanced strategies to overcome them.
Collapse
Affiliation(s)
- Bashdar Mahmud Hussen
- Department of Biomedical Sciences, Cihan University-Erbil, Erbil, Kurdistan Region 44001 Iraq
- Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region 44001 Iraq
| | - Mohammed Fatih Rasul
- Department of Pharmaceutical Basic Science, Faculty of Pharmacy, Tishk International University, Erbil, Kurdistan Region 44001 Iraq
| | - Snur Rasool Abdullah
- Medical Laboratory Science, Lebanese French University, Erbil, Kurdistan Region 44001 Iraq
| | - Hazha Jamal Hidayat
- Department of Biology, College of Education, Salahaddin University-Erbil, Erbil, Kurdistan Region 44001 Iraq
| | - Goran Sedeeq Hama Faraj
- Department of Medical Laboratory Science, Komar University of Science and Technology, Sulaymaniyah, 46001 Iraq
| | - Fattma Abodi Ali
- Department of Medical Microbiology, College of Health Sciences, Hawler Medical University, Erbil, Kurdistan Region 44001 Iraq
| | - Abbas Salihi
- Department of Biology, College of Science, Salahaddin University-Erbil, Erbil, Kurdistan Region 44001 Iraq
- Center of Research and Strategic Studies, Lebanese French University, Erbil, 44001 Iraq
| | - Aria Baniahmad
- Institute of Human Genetics, Jena University Hospital, 07747 Jena, Germany
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, 374-37515 Iran
| | - Milladur Rahman
- Department of Clinical Sciences, Malmö, Section for Surgery, Lund University, 22100 Malmö, Sweden
| | - Mark C. Glassy
- Translational Neuro-Oncology Laboratory, San Diego (UCSD) Moores Cancer Center, University of California, San Diego, CA 94720 USA
| | - Wojciech Branicki
- Faculty of Biology, Institute of Zoology and Biomedical Research, Jagiellonian University, 31-007 Kraków, Poland
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, 07747 Jena, Germany
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, 374-37515 Iran
| |
Collapse
|
5
|
Sell MC, Ramlogan-Steel CA, Steel JC, Dhungel BP. MicroRNAs in cancer metastasis: biological and therapeutic implications. Expert Rev Mol Med 2023; 25:e14. [PMID: 36927814 PMCID: PMC10407223 DOI: 10.1017/erm.2023.7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 01/02/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023]
Abstract
Cancer metastasis is the primary cause of cancer-related deaths. The seeding of primary tumours at a secondary site is a highly inefficient process requiring substantial alterations in the genetic architecture of cancer cells. These alterations include significant changes in global gene expression patterns. MicroRNAs are small, non-protein coding RNAs which play a central role in regulating gene expression. Here, we focus on microRNA determinants of cancer metastasis and examine microRNA dysregulation in metastatic cancer cells. We dissect the metastatic process in a step-wise manner and summarise the involvement of microRNAs at each step. We also discuss the advantages and limitations of different microRNA-based strategies that have been used to target metastasis in pre-clinical models. Finally, we highlight current clinical trials that use microRNA-based therapies to target advanced or metastatic tumours.
Collapse
Affiliation(s)
- Marie C. Sell
- School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton, QLD 4701, Australia
| | - Charmaine A. Ramlogan-Steel
- School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton, QLD 4701, Australia
| | - Jason C. Steel
- School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton, QLD 4701, Australia
| | - Bijay P. Dhungel
- Gene & Stem Cell Therapy Program Centenary Institute, The University of Sydney, Camperdown, NSW 2050, Australia
- Faculty of Medicine & Health, The University of Sydney, Camperdown, NSW 2050, Australia
| |
Collapse
|
6
|
Becker V, Yuan X, Boewe AS, Ampofo E, Ebert E, Hohneck J, Bohle RM, Meese E, Zhao Y, Menger MD, Laschke MW, Gu Y. Hypoxia-induced downregulation of microRNA-186-5p in endothelial cells promotes non-small cell lung cancer angiogenesis by upregulating protein kinase C alpha. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 31:421-436. [PMID: 36845338 PMCID: PMC9945639 DOI: 10.1016/j.omtn.2023.01.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 01/23/2023] [Indexed: 01/28/2023]
Abstract
The tumor microenvironment stimulates the angiogenic activity of endothelial cells (ECs) to facilitate tumor vascularization, growth, and metastasis. The involvement of microRNA-186-5p (miR-186) in regulating the aberrant activity of tumor-associated ECs has so far not been clarified. In the present study, we demonstrated that miR-186 is significantly downregulated in ECs microdissected from human non-small cell lung cancer (NSCLC) tissues compared with matched non-malignant lung tissues. In vitro analyses of primary human dermal microvascular ECs (HDMECs) exposed to different stimuli indicated that this miR-186 downregulation is triggered by hypoxia via activation of hypoxia-inducible factor 1 alpha (HIF1α). Transfection of HDMECs with miR-186 mimic (miR-186m) significantly inhibited their proliferation, migration, tube formation, and spheroid sprouting. In contrast, miR-186 inhibitor (miR-186i) exerted pro-angiogenic effects. In vivo, endothelial miR-186 overexpression inhibited the vascularization of Matrigel plugs and the initial growth of tumors composed of NSCLC cells (NCI-H460) and HDMECs. Mechanistic analyses revealed that the gene encoding for protein kinase C alpha (PKCα) is a bona fide target of miR-186. Activation of this kinase significantly reversed the miR-186m-repressed angiogenic activity of HDMECs. These findings indicate that downregulation of miR-186 in ECs mediates hypoxia-stimulated NSCLC angiogenesis by upregulating PKCα.
Collapse
Affiliation(s)
- Vivien Becker
- Institute for Clinical & Experimental Surgery, Saarland University, 66421 Homburg/Saar, Germany
| | - Xu Yuan
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Anne S. Boewe
- Institute for Clinical & Experimental Surgery, Saarland University, 66421 Homburg/Saar, Germany
| | - Emmanuel Ampofo
- Institute for Clinical & Experimental Surgery, Saarland University, 66421 Homburg/Saar, Germany
| | - Elke Ebert
- Institute of Pathology, Medical Center, Saarland University, 66421 Homburg/Saar, Germany
| | - Johannes Hohneck
- Institute of Pathology, Medical Center, Saarland University, 66421 Homburg/Saar, Germany
| | - Rainer M. Bohle
- Institute of Pathology, Medical Center, Saarland University, 66421 Homburg/Saar, Germany
| | - Eckart Meese
- Institute of Human Genetics, Saarland University, 66421 Homburg/Saar, Germany
| | - Yingjun Zhao
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Michael D. Menger
- Institute for Clinical & Experimental Surgery, Saarland University, 66421 Homburg/Saar, Germany
| | - Matthias W. Laschke
- Institute for Clinical & Experimental Surgery, Saarland University, 66421 Homburg/Saar, Germany
| | - Yuan Gu
- Institute for Clinical & Experimental Surgery, Saarland University, 66421 Homburg/Saar, Germany
- Corresponding author: Yuan Gu, Institute for Clinical & Experimental Surgery, Saarland University, 66421 Homburg/Saar, Germany.
| |
Collapse
|
7
|
El Bezawy R, Percio S, Ciniselli CM, De Cesare M, Colella G, Dugo M, Veneroni S, Doldi V, Martini S, Baratti D, Kusamura S, Verderio P, Deraco M, Gandellini P, Zaffaroni N, Zuco V. miR-550a-3p is a prognostic biomarker and exerts tumor-suppressive functions by targeting HSP90AA1 in diffuse malignant peritoneal mesothelioma. Cancer Gene Ther 2022; 29:1394-1404. [PMID: 35352023 PMCID: PMC9576593 DOI: 10.1038/s41417-022-00460-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 03/10/2022] [Indexed: 11/08/2022]
Abstract
Diffuse malignant peritoneal mesothelioma (DMPM) is a rare and rapidly lethal tumor, poorly responsive to conventional treatments. In this regards, the identification of molecular alterations underlying DMPM onset and progression might be exploited to develop novel therapeutic strategies. Here, we focused on miR-550a-3p, which we found downregulated in 45 DMPM clinical samples compared to normal tissues and whose expression levels were associated with patient outcome. Through a gain-of-function approach using miRNA mimics in 3 DMPM cell lines, we demonstrated the tumor-suppressive role of miR-550a-3p. Specifically, miRNA ectopic expression impaired cell proliferation and invasiveness, enhanced the apoptotic response, and reduced the growth of DMPM xenografts in mice. Antiproliferative and proapoptotic effects were also observed in prostate and ovarian cancer cell lines following miR-550a-3p ectopic expression. miR-550a-3p effects were mediated, at least in part, by the direct inhibition of HSP90AA1 and the consequent downregulation of its target proteins, the levels of which were rescued upon disruption of miRNA-HSP90AA1 mRNA pairing, partially abrogating miR-550a-3p-induced cellular effects. Our results show that miR-550a-3p reconstitution affects several tumor traits, thus suggesting this approach as a potential novel therapeutic strategy for DMPM.
Collapse
Affiliation(s)
- Rihan El Bezawy
- Molecular Pharmacology Unit, Fondazione IRCSS Istituto Nazionale dei Tumori, 20133, Milan, Italy
| | - Stefano Percio
- Molecular Pharmacology Unit, Fondazione IRCSS Istituto Nazionale dei Tumori, 20133, Milan, Italy
| | - Chiara Maura Ciniselli
- Bioinformatics and Biostatistics Unit, Fondazione IRCSS Istituto Nazionale dei Tumori, 20133, Milan, Italy
| | - Michelandrea De Cesare
- Molecular Pharmacology Unit, Fondazione IRCSS Istituto Nazionale dei Tumori, 20133, Milan, Italy
| | - Gennaro Colella
- Molecular Pharmacology Unit, Fondazione IRCSS Istituto Nazionale dei Tumori, 20133, Milan, Italy
| | - Matteo Dugo
- Department of Medical Oncology, IRCCS Ospedale San Raffaele, 20132, Milan, Italy
| | - Silvia Veneroni
- Biomarkers Unit, Fondazione IRCSS Istituto Nazionale dei Tumori, 20133, Milan, Italy
| | - Valentina Doldi
- Molecular Pharmacology Unit, Fondazione IRCSS Istituto Nazionale dei Tumori, 20133, Milan, Italy
| | - Silvia Martini
- Molecular Pharmacology Unit, Fondazione IRCSS Istituto Nazionale dei Tumori, 20133, Milan, Italy
| | - Dario Baratti
- Peritoneal Surface Malignancies Unit, Fondazione IRCSS Istituto Nazionale dei Tumori, 20133, Milan, Italy
| | - Shigeki Kusamura
- Peritoneal Surface Malignancies Unit, Fondazione IRCSS Istituto Nazionale dei Tumori, 20133, Milan, Italy
| | - Paolo Verderio
- Bioinformatics and Biostatistics Unit, Fondazione IRCSS Istituto Nazionale dei Tumori, 20133, Milan, Italy
| | - Marcello Deraco
- Peritoneal Surface Malignancies Unit, Fondazione IRCSS Istituto Nazionale dei Tumori, 20133, Milan, Italy
| | - Paolo Gandellini
- Department of Biosciences, University of Milan, 20133, Milan, Italy
| | - Nadia Zaffaroni
- Molecular Pharmacology Unit, Fondazione IRCSS Istituto Nazionale dei Tumori, 20133, Milan, Italy.
| | - Valentina Zuco
- Molecular Pharmacology Unit, Fondazione IRCSS Istituto Nazionale dei Tumori, 20133, Milan, Italy
| |
Collapse
|
8
|
Sousa DP, Conde J. Gold Nanoconjugates for miRNA Modulation in Cancer Therapy: From miRNA Silencing to miRNA Mimics. ACS MATERIALS AU 2022; 2:626-640. [PMID: 36397876 PMCID: PMC9650716 DOI: 10.1021/acsmaterialsau.2c00042] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/20/2022] [Accepted: 07/25/2022] [Indexed: 12/03/2022]
Abstract
![]()
Cancer is a major healthcare burden and cause of death
worldwide,
with an estimated 19.3 million new cancer cases and 10 million cancer
deaths globally only in 2020. While several anticancer therapeutics
are available to date, many of these still show low treatment efficacy
and high off-target effects and adverse reactions. This prompts a
serious need to develop novel therapies that can decrease the side
effects and increase treatment efficacy. MicroRNAs (miRNAs) can have
a role in tumor development and progression, making them important
targets for the improvement of anticancer therapies. In this context,
gold nanoparticles have been widely studied for different clinical
applications due to their biocompatibility and possibility of customization,
and gold nanoconjugates targeting miRNAs are being developed for cancer
diagnosis and treatment. Here we summarize the research developed
so far and how it can contribute to cancer treatment, discuss how
it can be improved, and present the current challenges and future
perspectives on their design and application.
Collapse
Affiliation(s)
- Diana P. Sousa
- NOVA Medical School
- Faculdade de Ciências Médicas, NMS
- FCM, Universidade Nova de Lisboa, Lisboa 1169-056, Portugal
- ToxOmics, NOVA Medical School
- Faculdade de Ciências Médicas, NMS
- FCM, Universidade Nova de Lisboa, Lisboa 1169-056, Portugal
| | - João Conde
- NOVA Medical School
- Faculdade de Ciências Médicas, NMS
- FCM, Universidade Nova de Lisboa, Lisboa 1169-056, Portugal
- ToxOmics, NOVA Medical School
- Faculdade de Ciências Médicas, NMS
- FCM, Universidade Nova de Lisboa, Lisboa 1169-056, Portugal
| |
Collapse
|
9
|
Kharaghani D, Kurniwan EB, Khan MQ, Yoshiko Y. MiRNA-Nanofiber, the Next Generation of Bioactive Scaffolds for Bone Regeneration: A Review. MICROMACHINES 2021; 12:mi12121472. [PMID: 34945325 PMCID: PMC8707075 DOI: 10.3390/mi12121472] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/23/2021] [Accepted: 11/23/2021] [Indexed: 12/19/2022]
Abstract
Scaffold-based bone tissue engineering has been introduced as an alternative treatment option for bone grafting due to limitations in the allograft. Not only physical conditions but also biological conditions such as gene expression significantly impact bone regeneration. Scaffolds in composition with bioactive molecules such as miRNA mimics provide a platform to enhance migration, proliferation, and differentiation of osteoprogenitor cells for bone regeneration. Among scaffolds, fibrous structures showed significant advantages in promoting osteogenic differentiation and bone regeneration via delivering bioactive molecules over the past decade. Here, we reviewed the bone and bone fracture healing considerations for the impact of miRNAs on bone regeneration. We also examined the methods used to improve miRNA mimics uptake by cells, the fabrication of fibrous scaffolds, and the effective delivery of miRNA mimics using fibrous scaffold and their processes for bone development. Finally, we offer our view on the principal challenges of miRNA mimics delivery by nanofibers for bone tissue engineering.
Collapse
Affiliation(s)
- Davood Kharaghani
- Department of Calcified Tissue Biology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan;
- Correspondence: ; Tel.: +81-82-257-5621
| | - Eben Bashir Kurniwan
- School of Dentistry, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan;
| | - Muhammad Qamar Khan
- Nanotechnology Research Lab, Department of Textile and Clothing, National Textile University, Karachi Campus, Karachi 74900, Pakistan;
| | - Yuji Yoshiko
- Department of Calcified Tissue Biology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan;
| |
Collapse
|
10
|
Fu Z, Wang L, Li S, Chen F, Au-Yeung KKW, Shi C. MicroRNA as an Important Target for Anticancer Drug Development. Front Pharmacol 2021; 12:736323. [PMID: 34512363 PMCID: PMC8425594 DOI: 10.3389/fphar.2021.736323] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/10/2021] [Indexed: 12/15/2022] Open
Abstract
Cancer has become the second greatest cause of death worldwide. Although there are several different classes of anticancer drugs that are available in clinic, some tough issues like side-effects and low efficacy still need to dissolve. Therefore, there remains an urgent need to discover and develop more effective anticancer drugs. MicroRNAs (miRNAs) are a class of small endogenous non-coding RNAs that regulate gene expression by inhibiting mRNA translation or reducing the stability of mRNA. An abnormal miRNA expression profile was found to exist widely in cancer cell, which induces limitless replicative potential and evading apoptosis. MiRNAs function as oncogenes (oncomiRs) or tumor suppressors during tumor development and progression. It was shown that regulation of specific miRNA alterations using miRNA mimics or antagomirs can normalize the gene regulatory network and signaling pathways, and reverse the phenotypes in cancer cells. The miRNA hence provides an attractive target for anticancer drug development. In this review, we will summarize the latest publications on the role of miRNA in anticancer therapeutics and briefly describe the relationship between abnormal miRNAs and tumorigenesis. The potential of miRNA-based therapeutics for anticancer treatment has been critically discussed. And the current strategies in designing miRNA targeting therapeutics are described in detail. Finally, the current challenges and future perspectives of miRNA-based therapy are conferred.
Collapse
Affiliation(s)
- Zhiwen Fu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, China
| | - Liu Wang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, China
| | - Shijun Li
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, China
| | - Fen Chen
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, China
| | | | - Chen Shi
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, China
| |
Collapse
|
11
|
Breast Cancer Drug Resistance: Overcoming the Challenge by Capitalizing on MicroRNA and Tumor Microenvironment Interplay. Cancers (Basel) 2021; 13:cancers13153691. [PMID: 34359591 PMCID: PMC8345203 DOI: 10.3390/cancers13153691] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 12/20/2022] Open
Abstract
The clinical management of breast cancer reaches new frontiers every day. However, the number of drug resistant cases is still high, and, currently, this constitutes one of the major challenges that cancer research has to face. For instance, 50% of women affected with HER2 positive breast cancer presents or acquires resistance to trastuzumab. Moreover, for patients affected with triple negative breast cancer, standard chemotherapy is still the fist-line therapy, and often patients become resistant to treatments. Tumor microenvironment plays a crucial role in this context. Indeed, cancer-associated stromal cells deliver oncogenic cues to the tumor and vice versa to escape exogenous insults. It is well known that microRNAs are among the molecules exploited in this aberrant crosstalk. Indeed, microRNAs play a crucial function both in the induction of pro-tumoral traits in stromal cells and in the stroma-mediated fueling of tumor aggressiveness. Here, we summarize the most recent literature regarding the involvement of miRNAs in the crosstalk between tumor and stromal cells and their capability to modulate tumor microenvironment characteristics. All up-to-date findings suggest that microRNAs in the TME could serve both to reverse malignant phenotype of stromal cells, modulating response to therapy, and as predictive/prognostic biomarkers.
Collapse
|
12
|
Peixoto da Silva S, Caires HR, Bergantim R, Guimarães JE, Vasconcelos MH. miRNAs mediated drug resistance in hematological malignancies. Semin Cancer Biol 2021; 83:283-302. [PMID: 33757848 DOI: 10.1016/j.semcancer.2021.03.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 02/11/2021] [Accepted: 03/16/2021] [Indexed: 12/12/2022]
Abstract
Despite improvements in the therapeutic approaches for hematological malignancies in the last decades, refractory disease still occurs, and cancer drug resistance still remains a major hurdle in the clinical management of these cancer patients. The investigation of this problem has been extensive and different mechanism and molecules have been associated with drug resistance. MicroRNAs (miRNAs) have been described as having an important action in the emergence of cancer, including hematological tumors, and as being major players in their progression, aggressiveness and response to treatments. Moreover, miRNAs have been strongly associated with cancer drug resistance and with the modulation of the sensitivity of cancer cells to a wide array of anticancer drugs. Furthermore, this role has also been reported for miRNAs packaged into extracellular vesicles (EVs-miRNAs), which in turn have been described as essential for the horizontal transfer of drug resistance to sensitive cells. Several studies have been suggesting the use of miRNAs as biomarkers for drug response and clinical outcome prediction, as well as promising therapeutic tools in hematological diseases. Indeed, the combination of miRNA-based therapeutic tools with conventional drugs contributes to overcome drug resistance. This review addresses the role of miRNAs in the pathogenesis of hematological malignances, namely multiple myeloma, leukemias and lymphomas, highlighting their important action (either in their cell-free circulating form or within circulating EVs) in drug resistance and their potential clinical applications.
Collapse
Affiliation(s)
- Sara Peixoto da Silva
- i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal; Cancer Drug Resistance Group, IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135, Porto, Portugal
| | - Hugo R Caires
- i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal; Cancer Drug Resistance Group, IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135, Porto, Portugal
| | - Rui Bergantim
- i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal; Cancer Drug Resistance Group, IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135, Porto, Portugal; Clinical Hematology, Hospital São João, 4200-319, Porto, Portugal; Clinical Hematology, FMUP - Faculty of Medicine, University of Porto, 4200-319, Porto, Portugal
| | - José E Guimarães
- i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal; Cancer Drug Resistance Group, IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135, Porto, Portugal; Clinical Hematology, FMUP - Faculty of Medicine, University of Porto, 4200-319, Porto, Portugal; Instituto Universitário de Ciências da Saúde, Cooperativa de Ensino Superior Politécnico e Universitário, IUCSCESPU, 4585-116, Gandra, Paredes, Portugal
| | - M Helena Vasconcelos
- i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal; Cancer Drug Resistance Group, IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135, Porto, Portugal; Department of Biological Sciences, FFUP - Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal.
| |
Collapse
|
13
|
Multiple Myeloma Bone Disease: Implication of MicroRNAs in Its Molecular Background. Int J Mol Sci 2021; 22:ijms22052375. [PMID: 33673480 PMCID: PMC7956742 DOI: 10.3390/ijms22052375] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 02/23/2021] [Accepted: 02/26/2021] [Indexed: 12/16/2022] Open
Abstract
Multiple myeloma (MM) is a common hematological malignancy arising from terminally differentiated plasma cells. In the majority of cases, symptomatic disease is characterized by the presence of bone disease. Multiple myeloma bone disease (MMBD) is a result of an imbalance in the bone-remodeling process that leads to increased osteoclast activity and decreased osteoblast activity. The molecular background of MMBD appears intriguingly complex, as several signaling pathways and cell-to-cell interactions are implicated in the pathophysiology of MMBD. MicroRNAs (miRNAs) are small non-coding RNA molecules that regulate the expression of their target mRNAs. Numerous miRNAs have been witnessed to be involved in cancer and hematological malignancies and their role has been characterized either as oncogenic or oncosuppressive. Recently, scientific research turned towards miRNAs as regulators of MMBD. Scientific data support that miRNAs finely regulate the majority of the signaling pathways implicated in MMBD. In this review, we provide concise information regarding the molecular pathways with a significant role in MMBD and the miRNAs implicated in their regulation. Moreover, we discuss their utility as molecular biomarkers and highlight the putative usage of miRNAs as novel molecular targets for targeted therapy in MMBD.
Collapse
|