1
|
Wu Y, Mohd Sani SB, Peng K, Lin T, Tan C, Huang X, Li Z. Research progress of the Otubains subfamily in hepatocellular carcinoma. Biomed Pharmacother 2024; 179:117348. [PMID: 39208669 DOI: 10.1016/j.biopha.2024.117348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/14/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024] Open
Abstract
In cancer research, oncogenesis can be affected by modulating the deubiquitination pathway. Ubiquitination regulates proteins post-translationally in variety of physiological processes. The Otubain Subfamily includes OTUB1 (ovarian tumor-associated proteinase B1) and OTUB2(ovarian tumor-associated proteinase B2). They are deubiquitinating enzymes, which are research hotspots in tumor immunotherapy, with their implications extending across the spectrum of tumor development. Understanding their important role in tumorigenesis, includ-ing hepatocellular carcinoma (HCC) is crucial. HCC has alarming global incidence rates and mortality statistics, ranking among the top five prevalent cancers in Malaysia1. Numerous studies have consistently indicated significant expression of OTUB1 and OTUB2 in HCC cells. In addition, OTUB1 has important biological functions in cancer, suggesting its important role in tumorigenesis. However, the mechanism underlying the action of OTUB1 and OTUB2 in liver cancer remains inadequately explored. Therefore, Otubain Subfamily, as potential molecular target, holds promise for advancing HCC treatments. However, further clinical studies are required to verify its efficacy and application prospects.
Collapse
Affiliation(s)
- Yanming Wu
- Department of Biomedical Sciences, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, Kepala Batas, Penang 13200, Malaysia.
| | - Sa'udah Badriah Mohd Sani
- Department of Biomedical Sciences, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, Kepala Batas, Penang 13200, Malaysia.
| | - Ke Peng
- Department of Neurology, School of Clinical Medicine, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434000, China.
| | - Tao Lin
- Department of General Surgery, Anyang People's Hospital, Anyang, Henan 450000, China.
| | - Chenghao Tan
- Department of Social Science, Universiti Sain Malaysia, Gelugor, Penang 11700, Malaysia.
| | | | - Zhengrui Li
- Shanghai Jiao Tong University School of Medicine, Shanghai 200240, China.
| |
Collapse
|
2
|
Zhang Z, Zhao Q, Wang Z, Xu F, Liu Y, Guo Y, Li C, Liu T, Zhao Y, Tang X, Zhang J. Hepatocellular carcinoma cells downregulate NADH:Ubiquinone Oxidoreductase Subunit B3 to maintain reactive oxygen species homeostasis. Hepatol Commun 2024; 8:e0395. [PMID: 38437062 PMCID: PMC10914236 DOI: 10.1097/hc9.0000000000000395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 01/02/2024] [Indexed: 03/06/2024] Open
Abstract
BACKGROUND HCC is a leading cause of cancer-related death. The role of reactive oxygen species (ROS) in HCC remains elusive. Since a primary ROS source is the mitochondrial electron transport chain complex Ι and the NADH:ubiquinone Oxidoreductase Subunit B3 (NDUFB3), a complex I subunit, is critical for complex I assembly and regulates the associated ROS production, we hypothesize that some HCCs progress by hijacking NDUFB3 to maintain ROS homeostasis. METHODS NDUFB3 in human HCC lines was either knocked down or overexpressed. The cells were then analyzed in vitro for proliferation, migration, invasiveness, colony formation, complex I activity, ROS production, oxygen consumption, apoptosis, and cell cycle. In addition, the in vivo growth of the cells was evaluated in nude mice. Moreover, the role of ROS in the NDUFB3-mediated changes in the HCC lines was determined using cellular and mitochondrion-targeted ROS scavengers. RESULTS HCC tissues showed reduced NDUFB3 protein expression compared to adjacent healthy tissues. In addition, NDUFB3 knockdown promoted, while its overexpression suppressed, HCC cells' growth, migration, and invasiveness. Moreover, NDUFB3 knockdown significantly decreased, whereas its overexpression increased complex I activity. Further studies revealed that NDUFB3 overexpression elevated mitochondrial ROS production, causing cell apoptosis, as manifested by the enhanced expressions of proapoptotic molecules and the suppressed expression of the antiapoptotic molecule B cell lymphoma 2. Finally, our data demonstrated that the apoptosis was due to the activation of the c-Jun N-terminal kinase (JNK) signaling pathway and cell cycle arrest at G0/G1 phase. CONCLUSIONS Because ROS plays essential roles in many biological processes, such as aging and cancers, our findings suggest that NDFUB3 can be targeted for treating HCC and other human diseases.
Collapse
Affiliation(s)
- Zhendong Zhang
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
- BGI College, Zhengzhou University, Zhengzhou, China
| | - Qianwei Zhao
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
- Henan Key Medical Laboratory of Tumor Molecular Biomarkers, Zhengzhou University, Zhengzhou, China
| | - Zexuan Wang
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
- BGI College, Zhengzhou University, Zhengzhou, China
| | - Fang Xu
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
- Henan Key Medical Laboratory of Tumor Molecular Biomarkers, Zhengzhou University, Zhengzhou, China
| | - Yixian Liu
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
- Henan Key Medical Laboratory of Tumor Molecular Biomarkers, Zhengzhou University, Zhengzhou, China
| | - Yaoyu Guo
- BGI College, Zhengzhou University, Zhengzhou, China
| | - Chenglong Li
- School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Ting Liu
- BGI College, Zhengzhou University, Zhengzhou, China
| | - Ying Zhao
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Xiaolei Tang
- Department of Veterinary Biomedical Sciences, College of Veterinary Medicine, Long Island University, Brookville, New York, USA
- Department of Medicine, Division of Regenerative Medicine, School of Medicine, Loma Linda University, Loma Linda, California, USA
- Department of Basic Science, School of Medicine, Loma Linda University, Loma Linda, California, USA
| | - Jintao Zhang
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
- Henan Key Medical Laboratory of Tumor Molecular Biomarkers, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Tumor Epidemiology, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
3
|
Lai Z, Ni H, Hu X, Cui S. Discovery of Novel 1,2,3,4-Tetrahydrobenzofuro[2,3- c]pyridine Histone Deacetylase Inhibitors for Efficient Treatment of Hepatocellular Carcinoma. J Med Chem 2023; 66:10791-10807. [PMID: 37498552 DOI: 10.1021/acs.jmedchem.3c01008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
The development of histone deacetylase (HDAC) inhibitors for treating hematologic malignancies has been widely investigated, while their role in hepatocellular carcinoma (HCC) remains unexplored. In this study, we employed a scaffold-hopping design and a multicomponent synthesis approach to develop a novel series of 1,2,3,4-tetrahydrobenzofuro[2,3-c]pyridines as HDAC inhibitors. There were a total of 29 compounds achieved with flexible linkers and zinc-binding groups, wherein compound 12k was identified as a promising candidate with good HDAC inhibitory activity, pharmacokinetic profiles, and potency. It exhibited significant therapeutic efficacy in HCC cell lines (IC50 = 30 nM for Bel-7402) and xenograft models (76% inhibition for Bel-7402 xenografts, P.O. at 20 mg/kg, QOD, for 14 days) and was found to upregulate the acetylation of histone H3 and α-tubulin, leading to apoptosis and autophagy in HCC models. Molecular docking studies indicated a unique T-shaped conformation of 12k with the catalytic domain of HDAC1. Therefore, this work provides a new structure design for HDAC inhibitors and also offers a promising treatment for HCC.
Collapse
Affiliation(s)
- Zhencheng Lai
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hao Ni
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Jinhua Institute of Zhejiang University, Jinhua, Zhejiang Province 321299, China
| | - Xueping Hu
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, China
| | - Sunliang Cui
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Jinhua Institute of Zhejiang University, Jinhua, Zhejiang Province 321299, China
| |
Collapse
|
4
|
Yu C, Zhang X, Wang M, Xu G, Zhao S, Feng Y, Pan C, Yang W, Zhou J, Shang L, Ma Y. Afatinib combined with anti-PD1 enhances immunotherapy of hepatocellular carcinoma via ERBB2/STAT3/PD-L1 signaling. Front Oncol 2023; 13:1198118. [PMID: 37324014 PMCID: PMC10266343 DOI: 10.3389/fonc.2023.1198118] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/15/2023] [Indexed: 06/17/2023] Open
Abstract
Background Afatinib is mainly used to treat advanced non-small cell lung cancer, but its therapeutic effect on hepatocellular carcinoma is still unclear. Methods Over 800 drugs were screened by CCK8 technology and afatinib was found to have a significant inhibitory effect on liver cancer cells. The expression of PDL1 in tumor cells treated with drugs were detected by qRT-PCR and Weston Blot experiments. The effects of afatinib on the growth, migration and invasion of HCC cells were evaluated using wound healing, Transwell, and cell cloning assays. The in vivo effects of afatinib in combination with anti-PD1 were evaluated in C57/BL6J mice with subcutaneous tumorigenesis. Bioinformatics analysis was performed to explore the specific mechanism of afatinib's inhibition of ERBB2 in improving the expression level of PD-L1, which was subsequently verified through experiments. Results Afatinib was found to have a significant inhibitory effect on liver cancer cells, as confirmed by in vitro experiments, which demonstrated that it could significantly suppress the growth, invasion and migration of HCC cells. qRT PCR and Weston Blot experiments also showed that Afatinib can enhance the expression of PD-L1 in tumor cells. In addition, in vitro experiments confirmed that afatinib can significantly enhance the immunotherapeutic effect of hepatocellular carcinoma. Afatinib's ability to increase PD-L1 expression is mediated by STAT3 activation following its action on HCC cells. Conclusion Afatinib enhances PD-L1 expression in tumor cells through the STAT3/PD-L1 pathway. The combination of afatinib and anti-PD1 treatment significantly increases the immunotherapeutic effect of HCC.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jin Zhou
- *Correspondence: Yong Ma, ; Longcheng Shang, ; Jin Zhou,
| | | | - Yong Ma
- *Correspondence: Yong Ma, ; Longcheng Shang, ; Jin Zhou,
| |
Collapse
|
5
|
Tang FF, Liu L, Tian XT, Li N, Peng YX, Qian CM, Jia TT, Liu JJ, Gao WH, Xu YF. Network pharmacological analysis of corosolic acid reveals P4HA2 inhibits hepatocellular carcinoma progression. BMC Complement Med Ther 2023; 23:171. [PMID: 37248456 DOI: 10.1186/s12906-023-04008-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 05/22/2023] [Indexed: 05/31/2023] Open
Abstract
BACKGROUND Corosolic acid is a pentacyclic triterpene acid with hypoglycemic, anti-inflammatory, and anti-cancer effects. However, its potential targets in hepatocellular carcinoma (HCC) are unknown, hindering clinical utilization. METHODS Differentially expressed proteins of the Bel-7404 cell line were identified with tandem mass tag analysis and differentially expressed genes (DEGs) of an HCC TCGA dataset using bioinformatics. Gene functions and pathways were inferred using the DAVID database. Online databases were used to establish P4HA2 expression in HCC (GEPIA2) and its relationship with patient survival (UALCAN and The Human Protein Atlas), the association between P4HA2 expression and immune cell infiltration (TIMER2), and DNA methylation of the P4HA2 gene (MethSurv). Cell proliferation, cell cycle, and cell death were assessed with PI and SYTOX-Green staining, CCK-8, and colony formation assays. Protein expression levels were detected by Western blotting. RESULTS A total of 44 differentially expressed proteins and 4498 DEGs were identified. Four genes whose proteins were also found in the differential protein profile but with opposing expressions were selected as candidate targets. The candidate gene prolyl 4-hydroxylase subunit alpha 2 (P4HA2) was recognized as the only potential target due to its high expression in public datasets, association with poor patient survival, and relation to immune cell infiltration in HCC tissues. Moreover, the DNA methylation status in 4 CpG islands of the P4HA2 gene correlated with a poor prognosis. Furthermore, corosolic acid treatment inhibited the proliferation of HCC cell lines Bel-7404 and HepG2 in a dose-dependent manner, caused G2/M phase cell cycle arrest, and promoted cell death. In addition, the treatment reduced P4HA2 protein levels. CONCLUSION Our results indicate that P4HA2 is a potential target of corosolic acid. Thus, they contribute to understanding molecular changes in HCC after corosolic acid treatment and facilitate finding new treatment regimens.
Collapse
Affiliation(s)
- Fei-Feng Tang
- Department of Pharmacy, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, People's Republic of China
| | - Long Liu
- Department of Traditional Chinese Medicine, Tianyou Hospital of Tongji University, Shanghai, 200331, People's Republic of China
| | - Xiao-Ting Tian
- Shanghai Chest Hospital, Shanghai Institute of Thoracic Oncology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, People's Republic of China
| | - Ning Li
- Central Laboratory, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, People's Republic of China
| | - Ying-Xiu Peng
- Department of Pharmacy, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, People's Republic of China
| | - Chun-Mei Qian
- Central Laboratory, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, People's Republic of China
| | - Ting-Ting Jia
- Department of Pharmacy, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, People's Republic of China
| | - Jing-Jin Liu
- Department of Pharmacy, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, People's Republic of China
| | - Wen-Hui Gao
- Department of Pharmacy, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, People's Republic of China
| | - Yan-Feng Xu
- Department of Pharmacy, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, People's Republic of China.
| |
Collapse
|
6
|
Jiang L, Xu F, Li C, Liu T, Zhao Q, Liu Y, Zhao Y, Li Y, Zhang Z, Tang X, Zhang J. Sulfotransferase 1C2 promotes hepatocellular carcinoma progression by enhancing glycolysis and fatty acid metabolism. Cancer Med 2023; 12:10738-10754. [PMID: 36880364 PMCID: PMC10225225 DOI: 10.1002/cam4.5759] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 11/16/2022] [Accepted: 12/01/2022] [Indexed: 03/08/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is aggressive liver cancer. Despite advanced imaging and other diagnostic measures, HCC in a significant portion of patients had reached the advanced stage at the first diagnosis. Unfortunately, there is no cure for advanced HCC. As a result, HCC is still a leading cause of cancer death, and there is a pressing need for new diagnostic markers and therapeutic targets. METHODS We investigated sulfotransferase 1C2 (SUTL1C2), which we recently showed was overexpressed in human HCC cancerous tissues. Specifically, we analyzed the effects of SULT1C2 knockdown on the growth, survival, migration, and invasiveness of two HCC cell lines, i.e., HepG2 and Huh7 cells. We also studied the transcriptomes and metabolomes in the two HCC cell lines before and after SULT1C2 knockdown. Based on the transcriptome and metabolome data, we further investigated the SULT1C2 knockdown-mediated shared changes, i.e., glycolysis and fatty acid metabolism, in the two HCC cell lines. Finally, we performed rescue experiments to determine whether the inhibitory effects of SULT1C2 knockdown could be rescued via overexpression. RESULTS We showed that SULT1C2 overexpression promoted the growth, survival, migration, and invasiveness of HCC cells. In addition, SULT1C2 knockdown resulted in a wide range of gene expression and metabolome changes in HCC cells. Moreover, analysis of shared alterations showed that SULT1C2 knockdown significantly suppressed glycolysis and fatty acid metabolism, which could be rescued via SULT1C2 overexpression. CONCLUSIONS Our data suggest that SULT1C2 is a potential diagnostic marker and therapeutic target for human HCC.
Collapse
Affiliation(s)
- Liya Jiang
- Henan Institute of Medical and Pharmaceutical SciencesZhengzhou UniversityZhengzhouHenanChina
- School of Life SciencesZhengzhou UniversityZhengzhouHenanChina
| | - Fang Xu
- Henan Institute of Medical and Pharmaceutical SciencesZhengzhou UniversityZhengzhouHenanChina
| | - Chenglong Li
- School of Basic Medical SciencesZhengzhou UniversityZhengzhouHenanChina
| | - Ting Liu
- BGI College & Henan Institute of Medical and Pharmaceutical SciencesZhengzhou UniversityZhengzhouHenanChina
| | - Qianwei Zhao
- Henan Institute of Medical and Pharmaceutical SciencesZhengzhou UniversityZhengzhouHenanChina
- Henan Key Laboratory of Tumor Epidemiology and State Key Laboratory of Esophageal Cancer Prevention & TreatmentZhengzhou UniversityZhengzhouHenanChina
| | - Yixian Liu
- Henan Institute of Medical and Pharmaceutical SciencesZhengzhou UniversityZhengzhouHenanChina
| | - Ying Zhao
- Henan Institute of Medical and Pharmaceutical SciencesZhengzhou UniversityZhengzhouHenanChina
| | - Yamei Li
- School of Basic Medical SciencesZhengzhou UniversityZhengzhouHenanChina
| | - Zhendong Zhang
- BGI College & Henan Institute of Medical and Pharmaceutical SciencesZhengzhou UniversityZhengzhouHenanChina
| | - Xiaolei Tang
- Department of Veterinary Biomedical Sciences, College of Veterinary MedicineLong Island UniversityBrookvilleNew YorkUSA
- Division of Regenerative Medicine, Department of Medicine, Department of Basic Science, School of MedicineLoma Linda UniversityLoma LindaCaliforniaUSA
| | - Jintao Zhang
- Henan Institute of Medical and Pharmaceutical SciencesZhengzhou UniversityZhengzhouHenanChina
- Henan Key Laboratory of Tumor Epidemiology and State Key Laboratory of Esophageal Cancer Prevention & TreatmentZhengzhou UniversityZhengzhouHenanChina
| |
Collapse
|
7
|
Girardi DM, Sousa LP, Miranda TA, Haum FNC, Pereira GCB, Pereira AAL. Systemic Therapy for Advanced Hepatocellular Carcinoma: Current Stand and Perspectives. Cancers (Basel) 2023; 15:1680. [PMID: 36980566 PMCID: PMC10046570 DOI: 10.3390/cancers15061680] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/04/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Hepatocellular carcinoma often develops in the context of chronic liver disease. It is the sixth most frequently diagnosed cancer and the third most common cause of cancer-related mortality worldwide. Although the mainstay of therapy is surgical resection, most patients are not eligible because of liver dysfunction or tumor extent. Sorafenib was the first tyrosine kinase inhibitor that improved the overall survival of patients who failed to respond to local therapies or had advanced disease, and for many years, it was the only treatment approved for the first-line setting. However, in recent years, trials have demonstrated an improvement in survival with treatments based on immunotherapy and new targeting agents, thereby extending the treatment options. A phase III trial showed that a combination of immunotherapy and targeted therapy, including atezolizumab plus bevacizumab, improved survival in the first-line setting, and is now considered the new standard of care. Other agents and combinations are being tested, including the combination of nivolumab plus ipilimumab and tremelimumab plus durvalumab, and they reportedly have clinical benefits. The aim of this manuscript is to review the latest approved therapeutic options in first- and second-line settings for advanced HCC and discuss future perspectives.
Collapse
Affiliation(s)
- Daniel M. Girardi
- Hospital Sírio-Libanes, SGAS 613/614 Conjunto E Lote 95-Asa Sul, Brasília 70200-730, Brazil
- Hospital de Base do Distrito Federal, SMHS-Área Especial, Q. 101-Asa Sul, Brasília 70330-150, Brazil
| | - Lara P. Sousa
- Escola Superior de Ciências em Saúde, SMHN Conjunto A Bloco 01 Edifício Fepecs-Asa Norte, Brasília 70710-907, Brazil
| | - Thiago A. Miranda
- Escola Superior de Ciências em Saúde, SMHN Conjunto A Bloco 01 Edifício Fepecs-Asa Norte, Brasília 70710-907, Brazil
| | - Fernanda N. C. Haum
- Escola Superior de Ciências em Saúde, SMHN Conjunto A Bloco 01 Edifício Fepecs-Asa Norte, Brasília 70710-907, Brazil
| | - Gabriel C. B. Pereira
- Hospital Sírio-Libanes, SGAS 613/614 Conjunto E Lote 95-Asa Sul, Brasília 70200-730, Brazil
- Hospital de Base do Distrito Federal, SMHS-Área Especial, Q. 101-Asa Sul, Brasília 70330-150, Brazil
| | - Allan A. L. Pereira
- Hospital Sírio-Libanes, SGAS 613/614 Conjunto E Lote 95-Asa Sul, Brasília 70200-730, Brazil
- Hospital de Base do Distrito Federal, SMHS-Área Especial, Q. 101-Asa Sul, Brasília 70330-150, Brazil
| |
Collapse
|
8
|
Frager SZ, Cooper W, Saenger Y, Schwartz JM. Treatment of recurrent hepatocellular carcinoma following liver resection, ablation or liver transplantation. World J Meta-Anal 2023; 11:47-54. [DOI: 10.13105/wjma.v11.i2.47] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/30/2022] [Accepted: 01/17/2023] [Indexed: 02/02/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver malignancy and causes one third of cancer related deaths world-wide. Approximately one third of patients with HCC are eligible for curative treatments that include hepatic resection, liver transplantation or imaging guided tumor ablation. Recurrence rates after primary therapy depends on tumor biology and pre-treatment tumor burden with early recurrence rates ranging from 30%-80% following surgical resection and ablation. HCC recurs in over ten percent following liver transplantation for HCC. Treatment modalities for tumor recurrence following resection and ablation include repeat liver resection, salvage liver transplantation, locoregional therapies, and systemic chemotherapy/immunotherapy. Locoregional and immune mediated therapies are limited for patients with tumor recurrence following liver transplantation given potential immune related allograft rejection. Given the high HCC recurrence rates after primary tumor treatment, it is imperative for the clinician to review the appropriate treatment strategy for this disease entity. This article will review the current literature regarding HCC recurrence after primary curative therapies and will discuss the relevant future trends in the HCC field.
Collapse
Affiliation(s)
- Shalom Z Frager
- Department of Medicine, Division of Hepatology, Montefiore Medical Center, Bronx, NY 10467, United States
| | - Weston Cooper
- Cancer Center, Montefiore Medical Center, Bronx, NY 10467, United States
| | - Yvonne Saenger
- Cancer Center, Montefiore Medical Center, Bronx, NY 10467, United States
| | - Jonathan M Schwartz
- Department of Medicine, Division Hepatology, Montefiore Medical Center, Bronx, NY 10467, United States
| |
Collapse
|
9
|
Fan HL, Liu ST, Chang YL, Chiu YL, Huang SM, Chen TW. In Vitro Cell Density Determines the Sensitivity of Hepatocarcinoma Cells to Ascorbate. Front Oncol 2022; 12:843742. [PMID: 35677156 PMCID: PMC9169715 DOI: 10.3389/fonc.2022.843742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 04/20/2022] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the primary histological subtype of liver cancer, and its incidence rates increase with age. Recently, systemic therapies, such as immune checkpoint inhibitors, monoclonal antibodies, and tyrosine kinase inhibitors (TKIs), have been more beneficial than conventional therapies for treating HCC. Nonetheless, the prognosis of late-stage HCC remains dismal because of its high recurrence rates, even with substantial advances in current therapeutic strategies. A new treatment, such as a combination of current systemic therapies, is urgently required. Therefore, we adopted a repurposing strategy and tried to combine ascorbate with TKIs, including lenvatinib and regorafenib, in HepG2 and Hep3B cells. We investigated the potential functional impact of pharmacological concentrations of ascorbate on the cell-cycle profiles, mitochondrial membrane potential, oxidative response, synergistic effects of lenvatinib or regorafenib, and differential responsiveness between HepG2 and Hep3B cells. Our data suggest that the relative level of cell density is an important determinant for ascorbate cytotoxicity in HCC. Furthermore, the data also revealed that the cytotoxic effect of pharmacological concentrations of ascorbate might not be mediated via our proposed elevation of ROS generation. Ascorbate might be involved in redox homeostasis to enhance the efficacy of TKIs in HepG2 and Hep3B cells. The synergistic effects of ascorbate with TKIs (lenvatinib and regorafenib) support their potential as an adjuvant for HCC targeted TKI therapy. This research provides a cheap and new combinatory therapy for HCC treatment.
Collapse
Affiliation(s)
- Hsiu-Lung Fan
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan.,Division of General Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Shu-Ting Liu
- Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan
| | - Yung-Lung Chang
- Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan
| | - Yi-Lin Chiu
- Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan
| | - Shih-Ming Huang
- Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan
| | - Teng-Wei Chen
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan.,Division of General Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
10
|
Huo J, Cai J, Wu L. Comprehensive analysis of metabolic pathway activity subtypes derived prognostic signature in hepatocellular carcinoma. Cancer Med 2022; 12:898-912. [PMID: 35651292 PMCID: PMC9844627 DOI: 10.1002/cam4.4858] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/20/2022] [Accepted: 05/15/2022] [Indexed: 01/26/2023] Open
Abstract
OBJECTIVE Metabolic reprogramming is one of the hallmarks of cancer, but metabolic pathway activity-related subtypes of hepatocellular carcinoma (HCC) have not been identified. METHODS Based on the quantification results of 41 metabolic pathway activities by gene set variation analysis, the training cohort (n = 609, merged by TCGA and GSE14520) was clustered into three subtypes (C1, C2, and C3) with the nonnegative matrix factorization method. Totally 1371 differentially expressed genes among C1, C2, and C3 were identified, and an 8-gene risk score was established by univariable Cox regression analysis, least absolute shrinkage and selection operator method, and multivariable Cox regression analysis. RESULTS C1 had the strongest metabolic activity, good prognosis, the highest CTNNB1 mutation rate, with massive infiltration of eosinophils and natural killer cells. C2 had the weakest metabolic activity, poor prognosis, was younger, was inclined to vascular invasion and advanced stage, had the highest TP53 mutation rate, exhibited a higher expression level of immune checkpoints, accompanied by massive infiltration of regulatory T cells. C3 had moderate metabolic activity and prognosis, the highest LRP1B mutation rate, and a higher infiltration level of neutrophils and macrophages. Internal cohorts (TCGA, n = 370; GSE14520, n = 239), external cohorts (ICGC, n = 231; GSE116174, n = 64), and clinical subgroup validation showed that the risk score was applicable for patients with diverse clinical features and was effective in predicting the prognosis and malignant progression of patients with HCC. Compared with the low-risk group, the high-risk group had a poor prognosis, enhanced cancer stem cell characteristics, activated DNA damage repair, weakened metabolic activity, cytolytic activity, and interferon response. CONCLUSION We identified HCC subtypes from the perspective of metabolism-related pathway activity and proposed a robust prognostic signature for HCC.
Collapse
Affiliation(s)
- Junyu Huo
- Liver Disease CenterThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Jinzhen Cai
- Liver Disease CenterThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Liqun Wu
- Liver Disease CenterThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| |
Collapse
|
11
|
Inhibition of PARP Potentiates Immune Checkpoint Therapy through miR-513/PD-L1 Pathway in Hepatocellular Carcinoma. JOURNAL OF ONCOLOGY 2022; 2022:6988923. [PMID: 35466317 PMCID: PMC9020948 DOI: 10.1155/2022/6988923] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/08/2022] [Indexed: 11/17/2022]
Abstract
Background. The DNA repair enzyme poly(ADP-ribose) polymerase (PARP) is involved in DNA damage repair and cell death. However, the association between PARP’s biological activities and the immune microenvironment in hepatocellular carcinoma (HCC) is unclear. The present study will explore whether combining a PARP inhibitor with anti-PD1 might improve the anti-HCC impact and explain how it works. Method. The PARP inhibitor olaparib was screened out of 867 drugs through Cell Counting Kit 8 (CCK-8) assay. The expression of PARP was verified through the TCGA and TISIDB databases. The impacts exerted by PARP inhibitor olaparib to HCC cells were assessed via wound healing, Transwell, and proliferation assay. In vivo, experiments were performed in a C57BL/6 mouse model to evaluate the function of PARP inhibitor olaparib combination with anti-PD1 in HCC and mice tumors were further detected by immunohistochemically staining. Result. Olaparib was selected as the research object on the basis of drug screening. The results of the TCGA and Human Protein Atlas databases revealed that PARP was significantly upregulated in carcinoma cell cluster of HCC tissues compared to normal tissues. Higher expression of PARP showed a poorer prognosis based on Kaplan-Meier Plotter. qRT-PCR experiments confirmed that olaparib could increase PD-L1 expression through inhibiting miR-513 in HCC cells. In vivo, experiment confirmed that the combination of olaparib and anti-PD1 could enhance the immunotherapy effect of HCC. Conclusion. The present study reveals that inhibition of PARP potentiates immune checkpoint therapy through the miR-513/PD-L1 pathway in HCC and the combination of PARP inhibitor olaparib and anti-PD1 is beneficial to HCC therapy.
Collapse
|
12
|
Qi J, Wang W, Tang Y, Lou S, Wang J, Yuan T, He Q, Yang B, Zhu H, Cui S. Discovery of Novel Indazoles as Potent and Selective PI3Kδ Inhibitors with High Efficacy for Treatment of Hepatocellular Carcinoma. J Med Chem 2022; 65:3849-3865. [PMID: 35191698 DOI: 10.1021/acs.jmedchem.1c01520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
PI3Kδ inhibitors have been developed for treatment of B-cell malignancies and inflammatory and autoimmune diseases. However, their therapeutic role in solid tumors like hepatocellular carcinoma (HCC) is rarely reported. Thus, the development of potent and selective PI3Kδ inhibitors with a new chemotype and therapy is highly desirable. Through the scaffold-hopping strategy, indazole was first described as the core structure of propeller-shaped PI3Kδ inhibitors. A total of 26 indazole derivatives were designed and prepared to identify a novel compound 9x with good isoform selectivity, PK profile, and potency. Compared to Idelalisib and Sorafenib, the pharmacodynamic (PD) studies showed that 9x exhibits superior efficacy in HCC cell lines and xenograft models, and the mechanistic study showed that 9x robustly suppresses the downstream AKT pathway to induce subsequent apoptotic cell death in HCC models. Therefore, this work provides a new structural design of PI3Kδ inhibitors for a novel and efficient therapeutic small molecule toward HCC.
Collapse
Affiliation(s)
- Jifeng Qi
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Weihua Wang
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yongmei Tang
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shengying Lou
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiaer Wang
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Tao Yuan
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qiaojun He
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Bo Yang
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hong Zhu
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Sunliang Cui
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
13
|
Larasati Y, Boudou C, Koval A, Katanaev VL. Unlocking the Wnt pathway: Therapeutic potential of selective targeting FZD 7 in cancer. Drug Discov Today 2021; 27:777-792. [PMID: 34915171 DOI: 10.1016/j.drudis.2021.12.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 09/09/2021] [Accepted: 12/09/2021] [Indexed: 02/08/2023]
Abstract
The Wnt signaling is of paramount pathophysiological importance. Despite showing promising anticancer activities in pre-clinical studies, current Wnt pathway inhibitors face complications in clinical trials resulting from on-target toxicity. Hence, the targeting of pathway component(s) that are essential for cancer but dispensable for normal physiology is key to the development of a safe Wnt signaling inhibitor. Frizzled7 (FZD7) is a Wnt pathway receptor that is redundant in healthy tissues but crucial in various cancers. FZD7 modulates diverse aspects of carcinogenesis, including cancer growth, metastasis, maintenance of cancer stem cells, and chemoresistance. In this review, we describe state-of-the-art knowledge of the functions of FZD7 in carcinogenesis and adult tissue homeostasis. Next, we overview the development of small molecules and biomolecules that target FZD7. Finally, we discuss challenges and possibilities in developing FZD7-selective antagonists.
Collapse
Affiliation(s)
- Yonika Larasati
- Department of Cell Physiology and Metabolism, Translational Research Centre in Oncohaematology, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland
| | - Cédric Boudou
- Department of Cell Physiology and Metabolism, Translational Research Centre in Oncohaematology, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland
| | - Alexey Koval
- Department of Cell Physiology and Metabolism, Translational Research Centre in Oncohaematology, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland
| | - Vladimir L Katanaev
- Department of Cell Physiology and Metabolism, Translational Research Centre in Oncohaematology, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland; School of Biomedicine, Far Eastern Federal University, 690922 Vladivostok, Russia.
| |
Collapse
|
14
|
Zhao J, Wang Y, Su H, Su L. Non-coding RNAs as biomarkers for hepatocellular carcinoma-A systematic review. Clin Res Hepatol Gastroenterol 2021; 45:101736. [PMID: 34146723 DOI: 10.1016/j.clinre.2021.101736] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 05/09/2021] [Accepted: 05/21/2021] [Indexed: 02/06/2023]
Abstract
Hepatocellular carcinoma (HCC) is the sixth most common malignancy in the world and the fourth leading cause of cancer-related death, and its incidence is increasing globally. Despite significant advances in treatment strategies for HCC, the prognosis is still poor due to its high recurrence rate. Therefore, there is an urgent need to understand the pathogenesis of HCC and further develop new therapies to improve the prognosis and quality of life of HCC patients. MicroRNAs (miRNAs, miRs) are small non-coding RNAs involved in post-transcriptional regulation of gene expression that is abnormally expressed in cancer-associated genomic regions or vulnerable sites. More and more findings have shown that miRNAs are important regulatory factors of mRNA expression in HCC, and they are receiving more and more attention as a possible key biomarker of HCC. This review mainly summarizes the potential applied value on miRNAs as diagnostic, drug resistant, prognostic, and therapeutic biomarkers in the diagnosis, therapy, and prognosis of HCC. Also, we summarize the research value of long non-coding RNA (lncRNAs), circular RNAs (circRNAs), and miRNAs network in HCC as novel biomarkers, aiming at providing some references for the therapy of HCC.
Collapse
Affiliation(s)
- Jinying Zhao
- The Third-Grade Pharmacological Laboratory on Traditional Chinese Medicine (Approved by State Administration of Traditional Chinese Medicine), China Three Gorges University, Yichang, China
| | - Yanhua Wang
- Department of Morphology, Medical College of China Three Gorges University, Yichang, China.
| | - Huahua Su
- The Third-Grade Pharmacological Laboratory on Traditional Chinese Medicine (Approved by State Administration of Traditional Chinese Medicine), China Three Gorges University, Yichang, China
| | - Lijia Su
- The Third-Grade Pharmacological Laboratory on Traditional Chinese Medicine (Approved by State Administration of Traditional Chinese Medicine), China Three Gorges University, Yichang, China
| |
Collapse
|
15
|
Wang Y, Zhou C, Liu J, Shi Q, Huang S, Yang C, Li T, Chen Y, Xiong B. Increased Liquefactive Necrosis Formation After Transarterial Chemoembolization Combined with Molecular Targeted Agents Plus Immune Checkpoint Inhibitors for Hepatocellular Carcinoma. Cancer Manag Res 2021; 13:6935-6941. [PMID: 34522136 PMCID: PMC8434848 DOI: 10.2147/cmar.s328812] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 08/28/2021] [Indexed: 12/24/2022] Open
Abstract
PURPOSE In clinical practice, we found some of the patients who received transarterial chemoembolization (TACE) with molecular targeted agents (MTGs) plus immune checkpoint inhibitors (ICIs) for hepatocellular carcinoma (HCC) had obvious liquefactive necrosis formation within the tumor and some even progressed to a liver abscess, which seems more frequent than patients who received other treatments. Thus, we aim to identify this condition and analyze the potential risk factors. PATIENTS AND METHODS Medical records of 72 consecutive patients with intermediate (BCLC B) and advanced (BCLC C) HCC who received TACE plus MTGs combined with (n=30) or without (n=42) ICIs were reviewed. Liquefactive necrosis formation was defined as the presence of obvious liquefactive necrosis within the tumor that required intervention. RESULTS The liquefactive necrosis rate was higher in the TACE+MTGs+ICIs group than in the TACE+MTGs group (30% vs 4.8%, P=0.006). Moreover, 18.2% (2/11) of the patients with liquefactive necrosis within the tumor had a bacterial infection. We then take the binary logistic regression analysis model to identify the predictors of liquefactive necrosis formation, and which showed the tumor size (P=0.006, OR=1.355, 95% CI: 1.090-1.684), alpha-fetoprotein level (P=0.036, OR=6.745, 95% CI: 1.130-40.262) and treatment modality (P=0.015, OR=11.717, 95% CI: 1.617-84.887) were the independent risk factor for liquefactive necrosis formation within the tumor. CONCLUSION Patients with HCC who received TACE combined with MTGs plus ICIs have increased liquefactive necrosis formation, and the larger tumor size and higher alpha-fetoprotein level were associated with more liquefactive necrosis formation within the tumor.
Collapse
Affiliation(s)
- Yingliang Wang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
- Hubei Key Laboratory of Molecular Imaging, Wuhan, 430022, People’s Republic of China
| | - Chen Zhou
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
- Hubei Key Laboratory of Molecular Imaging, Wuhan, 430022, People’s Republic of China
| | - Jiacheng Liu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
- Hubei Key Laboratory of Molecular Imaging, Wuhan, 430022, People’s Republic of China
| | - Qin Shi
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
- Hubei Key Laboratory of Molecular Imaging, Wuhan, 430022, People’s Republic of China
| | - Songjiang Huang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
- Hubei Key Laboratory of Molecular Imaging, Wuhan, 430022, People’s Republic of China
| | - Chongtu Yang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
- Hubei Key Laboratory of Molecular Imaging, Wuhan, 430022, People’s Republic of China
| | - Tongqiang Li
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
- Hubei Key Laboratory of Molecular Imaging, Wuhan, 430022, People’s Republic of China
| | - Yang Chen
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
- Hubei Key Laboratory of Molecular Imaging, Wuhan, 430022, People’s Republic of China
| | - Bin Xiong
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
- Hubei Key Laboratory of Molecular Imaging, Wuhan, 430022, People’s Republic of China
| |
Collapse
|
16
|
Zhang Y, Chen X, Cao Y, Yang Z. C8B in Complement and Coagulation Cascades Signaling Pathway is a predictor for Survival in HBV-Related Hepatocellular Carcinoma Patients. Cancer Manag Res 2021; 13:3503-3515. [PMID: 33911900 PMCID: PMC8075182 DOI: 10.2147/cmar.s302917] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 03/25/2021] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVE The role of the complement and coagulation cascades signaling pathway in the pathogenesis of cancers remains uncertain. This study aimed to investigate the associations between enriched differentially expressed genes (DEGs) in this pathway and hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC) patients. MATERIALS AND METHODS Clinical and gene expression data of the Gene Expression Omnibus (GEO) series profile GSE14520 were downloaded. The "Limma" package was used to screen the DEGs and the "clusterProfiler" package was used to identify the complement and coagulation cascades pathway and enriched significant genes. Cox regression analysis, the Kaplan-Meier method, and the nomogram model were used to address the correlations between significantly enriched DEGs in the complement and coagulation cascades pathway and HCC survival. RESULTS A total of 220 HBV-related HCC patients were enrolled in this study. The complement and coagulation cascades pathway was significantly enriched by 37 DEGs (p-value < 0.05 and adjusted p-value < 0.05). Complement 8 beta chain (C8B) expression levels had protective effects on overall survival (OS) and recurrence-free survival (RFS) in HBV-related HCC patients. High levels of C8B contributed to favorable OS and RFS in this population (both p < 0.01), even after adjustment of clinicopathological characteristics including tumor node metastasis (TNM) staging, Barcelona Clinic liver cancer (BCLC) staging, gender, and fibrinogen beta chain (FGB) expression (all p < 0.05). CONCLUSION C8B in the complement and coagulation cascades signaling pathway serves as a predictive candidate for survival in HBV-related HCC patients.
Collapse
Affiliation(s)
- Yuan Zhang
- Department of Integrative Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, People’s Republic of China
| | - Xiaorong Chen
- Department of Integrative Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, People’s Republic of China
| | - Yajuan Cao
- Clinical Translation Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, People’s Republic of China
- Yajuan Cao Clinical Translation Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, People’s Republic of China Email
| | - Zongguo Yang
- Department of Integrative Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, People’s Republic of China
- Correspondence: Zongguo Yang Department of Integrative Medicine, Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Road, Shanghai, 201508, People’s Republic of China Email
| |
Collapse
|