1
|
Stepanenko I, Babak MV, Spengler G, Hammerstad M, Popovic-Bijelic A, Shova S, Büchel GE, Darvasiova D, Rapta P, Arion VB. Coumarin-Based Triapine Derivatives and Their Copper(II) Complexes: Synthesis, Cytotoxicity and mR2 RNR Inhibition Activity. Biomolecules 2021; 11:biom11060862. [PMID: 34207929 PMCID: PMC8230303 DOI: 10.3390/biom11060862] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/21/2021] [Accepted: 05/27/2021] [Indexed: 02/03/2023] Open
Abstract
A series of thiosemicarbazone-coumarin hybrids (HL1-HL3 and H2L4) has been synthesised in 12 steps and used for the preparation of mono- and dinuclear copper(II) complexes, namely Cu(HL1)Cl2 (1), Cu(HL2)Cl2 (2), Cu(HL3)Cl2 (3) and Cu2(H2L4)Cl4 (4), isolated in hydrated or solvated forms. Both the organic hybrids and their copper(II) and dicopper(II) complexes were comprehensively characterised by analytical and spectroscopic techniques, i.e., elemental analysis, ESI mass spectrometry, 1D and 2D NMR, IR and UV–vis spectroscopies, cyclic voltammetry (CV) and spectroelectrochemistry (SEC). Re-crystallisation of 1 from methanol afforded single crystals of copper(II) complex with monoanionic ligand Cu(L1)Cl, which could be studied by single crystal X-ray diffraction (SC-XRD). The prepared copper(II) complexes and their metal-free ligands revealed antiproliferative activity against highly resistant cancer cell lines, including triple negative breast cancer cells MDA-MB-231, sensitive COLO-205 and multidrug resistant COLO-320 colorectal adenocarcinoma cell lines, as well as in healthy human lung fibroblasts MRC-5 and compared to those for triapine and doxorubicin. In addition, their ability to reduce the tyrosyl radical in mouse R2 protein of ribonucleotide reductase has been ascertained by EPR spectroscopy and the results were compared with those for triapine.
Collapse
Affiliation(s)
- Iryna Stepanenko
- Institute of Inorganic Chemistry, University of Vienna, Währinger Strasse 42, A-1090 Vienna, Austria
- Correspondence: (I.S.); (V.B.A.)
| | - Maria V. Babak
- Drug Discovery Lab, Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR 518057, China;
| | - Gabriella Spengler
- Department of Medical Microbiology, Albert Szent-Györgyi Health Center and Faculty of Medicine, University of Szeged, Semmelweis utca 6, H-6725 Szeged, Hungary;
| | - Marta Hammerstad
- Section for Biochemistry and Molecular Biology, Department of Biosciences, University of Oslo, P.O. Box 1066, Blindern, NO-0316 Oslo, Norway;
| | - Ana Popovic-Bijelic
- Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12–16, 11158 Belgrade, Serbia;
| | - Sergiu Shova
- “Petru Poni” Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda 41A, 700487 Iasi, Romania;
| | | | - Denisa Darvasiova
- Faculty of Chemical and Food Technology, Institute of Physical Chemistry and Chemical Physics, Slovak University of Technology in Bratislava, Radlinského 9, SK-812 37 Bratislava, Slovakia; (D.D.); (P.R.)
| | - Peter Rapta
- Faculty of Chemical and Food Technology, Institute of Physical Chemistry and Chemical Physics, Slovak University of Technology in Bratislava, Radlinského 9, SK-812 37 Bratislava, Slovakia; (D.D.); (P.R.)
| | - Vladimir B. Arion
- Institute of Inorganic Chemistry, University of Vienna, Währinger Strasse 42, A-1090 Vienna, Austria
- Correspondence: (I.S.); (V.B.A.)
| |
Collapse
|
2
|
Madajska K, Szymańska IB. New Volatile Perfluorinated Amidine-Carboxylate Copper(II) Complexes as Promising Precursors in CVD and FEBID Methods. MATERIALS (BASEL, SWITZERLAND) 2021; 14:3145. [PMID: 34201158 PMCID: PMC8230148 DOI: 10.3390/ma14123145] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 12/05/2022]
Abstract
In the present study, we have synthesised and characterised newly copper(II) complexes with the general formula [Cu2(NH2(NH=)CC2F5)2(µ-O2CRF)4], where RF = CF3, C2F5, C3F7, C4F9. Infrared spectroscopy, mass spectrometry with electron ionisation (EI MS), and density-functional theory (DFT) calculations were used to confirm compounds' composition and structure. The volatility of the compounds was studied using thermal analysis (TGA), EI MS mass spectrometry, variable temperature infrared spectroscopy (VT IR), and sublimation experiments. Research has revealed that these compounds are the source of metal carriers in the gas phase. The thermal decomposition mechanism over reduced pressure was proposed. TGA studies demonstrated that copper transfer to the gaseous phase occurs even at atmospheric pressure. Two selected complexes [Cu2(NH2(NH=)CC2F5)2(µ-O2CC2F5)4] and [Cu2(NH2(NH=)CC2F5)2(µ-O2CC3F7)4] were successful used as chemical vapour deposition precursors. Copper films were deposited with an evaporation temperature of 393 K and 453 K, respectively, and a decomposition temperature in the range of 573-633 K without the use of hydrogen. The microscopic observations made to investigate the interaction of the [Cu2(NH2(NH=)CC2F5)2(µ-O2CC2F5)4] with the electron beam showed that the ligands are completely lost under transmission electron microscopy analysis conditions (200 keV), and the final product is copper(II) fluoride. In contrast, the beam energy in scanning electron microscopy (20 keV) was insufficient to break all coordination bonds. It was shown that the Cu-O bond is more sensitive to the electron beam than the Cu-N bond.
Collapse
Affiliation(s)
| | - Iwona Barbara Szymańska
- Department of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland;
| |
Collapse
|
3
|
Dicopper(II)-EDTA Chelate as a Bicephalic Receptor Model for a Synthetic Adenine Nucleoside. Pharmaceuticals (Basel) 2021; 14:ph14050426. [PMID: 34063288 PMCID: PMC8147406 DOI: 10.3390/ph14050426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 04/28/2021] [Accepted: 04/29/2021] [Indexed: 11/17/2022] Open
Abstract
In the extensive field of metal ions, their interactions with nucleic acids, and their constituents, the main aim of this work is to develop a metal chelate suitable to recognize two molecules of an adenine nucleoside. For this purpose, the dinuclear chelate Cu2 (µ-EDTA) (ethylenediaminetetraacetate(4-) ion (EDTA)) is chosen as a bicephalic receptor model for N9-(2-hydroxyethyl)adenine (9heade). A one-pot synthesis is reported to obtain the compound [Cu2(µ2-EDTA)(9heade)2(H2O)4]·3H2O, which has been characterized by single-crystal X-ray diffraction and various spectral, thermal, and magnetic methods. The complex unit is a centro-symmetric molecule, where each Cu (II) center is chelated by a half-EDTA, and is further surrounded by an N7-dentate 9heade nucleoside and two non-equivalent trans-O-aqua molecules. The metal chelate-nucleoside molecular recognition is referred to as an efficient cooperation between the Cu-N7(9heade) coordination bond and a (9heade)N6-H···O(carboxyl, EDTA) interligand interaction. Theoretical calculations are also made to account for the relevance of this interaction. The extreme weakness with which each water molecule binds to the metal center disturbs the thermal stability and the infrared (FT-IR) and electron spin resonance (ESR) spectra of the compound.
Collapse
|