1
|
Xiang H, Wu Y, Zhang Y, Hong Y, Xu Y. Obtusifolin inhibits podocyte apoptosis by inactivating NF-κB signaling in acute kidney injury. Cytotechnology 2024; 76:559-569. [PMID: 39188647 PMCID: PMC11344750 DOI: 10.1007/s10616-024-00638-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 06/18/2024] [Indexed: 08/28/2024] Open
Abstract
Acute kidney injury (AKI) is a common clinical condition and is associated with unacceptable morbidity and mortality. Obtusifolin is an anthraquinone extracted from the seeds of Cassia obtusifolia with anti-inflammatory properties. This study focused on the role and mechanism of obtusifolin in AKI. The mouse podocyte cell line MPC5 was exposed to lipopolysaccharide (LPS) to establish a cell model of AKI. The viability of MPC5 cells treated with obtusifolin and/or LPS was detected by 3-(4, 5-Dimethylthiazol-2-yl)-2,5diphenyltetrazolium bromide assay. Cell apoptosis was analyzed by flow cytometry. The levels of podocyte injury- and apoptosis-related proteins as well as the nuclear factor-kappaB (NF-κB) signaling pathway was examined using western blotting analysis. The renal protective effects of obtusifolin were determined using an LPS-induced mouse model of AKI. Serum creatinine and blood urea nitrogen levels were measured. Hematoxylin-eosin staining of kidney sections was performed to evaluate renal histology. We found that MPC5 cells treated with LPS showed suppressed cell viability (p < 0.01) and increased cell apoptosis (p < 0.001). LPS reduced the protein expression of Bcl-2, nephrin, and synaptopodin as well as increased the protein levels of Bax and Cleaved Caspase-3 in podocytes in a concentration-dependent manner (p < 0.01). In addition, 10 μg/ml LPS-repressed cell viability was rescued by obtusifolin in a concentration-dependent manner (p < 0.01). Moreover, LPS-induced increase in MPC5 cell apoptosis was reversed by obtusifolin treatment (p < 0.01). Obtusifolin administration ameliorated LPS-induced kidney injury and reduced blood urea nitrogen and serum creatinine levels in mice (p < 0.001). Additionally, obtusifolin inhibited LPS-induced activation of NF-κB signaling in vitro and in vivo (p < 0.01). Overall, obtusifolin was effective in protecting renal function against LPS-induced AKI via inactivation of NF-κB signaling, which suggested that obtusifolin may act as a valuable agent for AKI therapy.
Collapse
Affiliation(s)
- Haiyan Xiang
- Department of Nephrology, Wuhan Sixth Hospital, Affiliated Hospital of Jianghan University, No.168, Jiang ’an District, Wuhan, Hubei China
| | - Yan Wu
- Department of Nephrology, Wuhan Sixth Hospital, Affiliated Hospital of Jianghan University, No.168, Jiang ’an District, Wuhan, Hubei China
| | - Yun Zhang
- Department of Nephrology, Wuhan Sixth Hospital, Affiliated Hospital of Jianghan University, No.168, Jiang ’an District, Wuhan, Hubei China
| | - Yuanhao Hong
- Department of Nephrology, Wuhan Sixth Hospital, Affiliated Hospital of Jianghan University, No.168, Jiang ’an District, Wuhan, Hubei China
| | - Yaling Xu
- Department of Nephrology, Wuhan Sixth Hospital, Affiliated Hospital of Jianghan University, No.168, Jiang ’an District, Wuhan, Hubei China
| |
Collapse
|
2
|
Su J, Tao Y, Liu J, Sun J, Zeng Y, Meng X, Fan G, Zhang Y. Tibetan medicine Qi-Sai-Er-Sang-Dang-Song Decoction inhibits TNF-α-induced rheumatoid arthritis in human fibroblast-like synoviocytes via regulating NOTCH1/NF-κB/NLRP3 pathway. JOURNAL OF ETHNOPHARMACOLOGY 2023; 310:116402. [PMID: 36966850 DOI: 10.1016/j.jep.2023.116402] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/08/2023] [Accepted: 03/16/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Qi-Sai-Er-Sang-Dang-Song Decoction (QSD, ཆུ་སེར་སེང་ལྡེང་སུམ་ཐང་།), a Tibetan classical herbal formula, is commonly used in Tibetan hospital preparation for the treatment of rheumatoid arthritis (RA). Its efficacy is to relieve inflammation, dispel cold, remove dampness, and alleviate pain. However, its anti-RA mechanism is still unclear. AIM OF THE STUDY This study aimed to investigate the effect of QSD on rheumatoid arthritis and explore its anti-inflammatory mechanism against human fibroblast-like synoviocytes (HFLSs) by regulating the notch family of receptors (NOTCH1)/Nuclear factor-κB (NF-κB)/nucleotide-binding (NLRP3) pathway. MATERIALS AND METHODS We used ultra-performance liquid chromatography coupled with Q-TOF mass spectrometry (UPLC-Q-TOF-MS) to identify the chemical composition of QSD. Then, HFLSs were exposed to drug-containing serum. The effect of QSD drug-containing serum on HFLS viability was detected using the cell counting kit-8 (CCK-8) assay. Next, we explored the anti-inflammatory effect of QSD using enzyme-linked immunosorbent assay (ELISA) for inflammatory factors, such as interleukin-18 (IL-18), interleukin-1β (IL-1β), and interleukin-6 (IL-6). The expression of NOTCH-related proteins, a member of the NOTCH1, Cleaved NOTCH1, hairy and enhancer of split-1 (HES-1), NF-κB p65, NF-κB pp65, NLRP3, and delta-like 1 (DLL-1), was examined using western blotting. Furthermore, the relative mRNA expression levels of NOTCH1, NF-κB p65, NLRP3, DLL-1, and HES-1 were detected using real-time quantitative (RT-qPCR). To explore the mechanism underlying the anti-RA effect of QSD, we the used the NOTCH signaling pathway inhibitor LY411575 and transfection with a NOTCH1 siRNA. In addition, we employed immunofluorescence to determine the expression of HES-1 and NF-κB p65 in vitro. RESULT Our results revealed that QSD ameliorated inflammation in HFLSs. Compared with the model group, the QSD drug-containing serum group had obviously down-regulated levels of IL-18, IL-1β, and IL-6. Consistently, the CCK-8 results showed that the QSD drug-containing serum had no obvious toxicity towards HFLSs. Moreover, both LY411575 and siNOTCH1, QSD could reduce NOTCH1, NLRP3, and HES-1 protein expression levels, and LY411575 could significantly inhibit the expression levels of NF-κB p65, NF-κB pp65, and Cleaved NOTCH1 (p < 0.05). siNOTCH1 could also suppress the expression of DLL-1. The RT-qPCR results indicated that QSD could downregulate the relative mRNA expression levels of NOTCH1, NF-κB p65, NLRP3, DLL-1, and HES-1 in HFLSs (p < 0.05). In the immunofluorescence experiment, the fluorescence intensities of HES-1 and NF-κB p65 in HFLSs were found to decrease after exposure to QSD drug-containing serum (p < 0.05). Ultimately, 44 chemical components were detected in QSD using UPLC-Q-TOF-MS. CONCLUSION This study reveals that the QSD can markedly ameliorate inflammation induced by TNF-α on HFLS. The effect of QSD on HFLS may be exerted by inhibition of the NOTCH1/NF-κB/NLRP3 signaling pathway.
Collapse
Affiliation(s)
- Jinsong Su
- Research Institute of Integrated TCM and Western Medicine, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, PR China
| | - Yiwen Tao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, PR China
| | - Jia Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, PR China
| | - Jiayi Sun
- Research Institute of Integrated TCM and Western Medicine, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, PR China
| | - Yong Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, PR China
| | - Xianli Meng
- Research Institute of Integrated TCM and Western Medicine, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, PR China
| | - Gang Fan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, PR China.
| | - Yi Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, PR China.
| |
Collapse
|
3
|
Chen Y, Chen X, Yang X, Gao P, Yue C, Wang L, Wu T, Jiang T, Wu H, Tang L, Wang Z. Cassiae Semen: A comprehensive review of botany, traditional use, phytochemistry, pharmacology, toxicity, and quality control. JOURNAL OF ETHNOPHARMACOLOGY 2023; 306:116199. [PMID: 36702448 DOI: 10.1016/j.jep.2023.116199] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/07/2023] [Accepted: 01/18/2023] [Indexed: 05/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cassiae Semen, belonging to the family Leguminosae, is derived from the dry mature seeds of Cassia obtusifolia L. or Cassia tora L. and has long been used as a laxative, hepatoprotective, improve eyesight, and antidiabetic complications medicine or functional food in Asia. AIMS OF THE REVIEW This review summarizes the integrated research progress of botany, traditional uses, phytochemistry, pharmacology, toxicity, and quality control of Cassiae Semen. Additionally, the emerging challenges and possible developing directions are discussed as well. MATERIALS AND METHODS The information on Cassiae Semen was collected from published scientific materials, including ancient books of traditional Chinese Medicine; Ph.D. and M. Sc. dissertations; monographs on medicinal plants; pharmacopoeia of various countries and electronic databases, such as PubMed, Web of Science, ACS, Science Direct, J-STAGE, Springer link, Taylor, CNKI and Google Scholar, etc. RESULTS: First, the traditional uses and plant origins of Cassiae Semen are outlined. Secondly, approximately 137 compounds, including anthraquinones, naphthopyranones, naphthalenes, flavones, polysaccharides and other compounds, have been isolated and identified from Cassia obtusifolia L. and Cassia tora L. Third, the pharmacological activities and mechanisms of crude extract of Cassiae Semen and its main bioactive compounds are summarized. Moreover, the processing, toxicity, and quality control are introduced briefly. CONCLUSIONS Cassiae Semen is a frequently used Chinese Materia Medica with pharmacological effects that mainly affect the digestive system, cardiovascular systems and nervous system. This review summarized its botany, traditional uses, phytochemistry, and pharmacology, it also exhibited recent scientific research advances and gaps, which provide a deeper insight into the understanding and application of Cassiae Semen. In future research on Cassiae Semen, more attention should be given to the pharmacological activities of naphthopyranones and polysaccharides and the mechanism of action for improving eye diseases. Meanwhile, it is essential to focus on strengthening the study on the pharmacokinetics research and the safety evaluation of related health products research.
Collapse
Affiliation(s)
- Yingying Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing, 100700, China
| | - Xiaoxu Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing, 100700, China
| | - Xiaoyun Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing, 100700, China
| | - Peiyun Gao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing, 100700, China
| | - Chunyu Yue
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing, 100700, China
| | - Lixia Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing, 100700, China
| | - Tong Wu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing, 100700, China
| | - Tong Jiang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing, 100700, China
| | - Hongwei Wu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing, 100700, China
| | - Liying Tang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing, 100700, China.
| | - Zhuju Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing, 100700, China.
| |
Collapse
|
4
|
Potent and Selective Inhibition of CYP1A2 Enzyme by Obtusifolin and Its Chemopreventive Effects. Pharmaceutics 2022; 14:pharmaceutics14122683. [PMID: 36559174 PMCID: PMC9786103 DOI: 10.3390/pharmaceutics14122683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/29/2022] [Accepted: 11/29/2022] [Indexed: 12/05/2022] Open
Abstract
Obtusifolin, a major anthraquinone component present in the seeds of Cassia tora, exhibits several biological activities, including the amelioration of memory impairment, prevention of breast cancer metastasis, and reduction of cartilage damage in osteoarthritis. We aimed to evaluate the inhibitory effects of obtusifolin and its analogs on CYP1A enzymes, which are responsible for activating procarcinogens, and investigate its inhibitory mechanism and chemopreventive effects. P450-selective substrates were incubated with human liver microsomes (HLMs) or recombinant CYP1A1 and CYP1A2 in the presence of obtusifolin and its four analogs. After incubation, the samples were analyzed using liquid chromatography-tandem mass spectrometry. Molecular docking simulations were performed using the crystal structure of CYP1A2 to identify the critical interactions between anthraquinones and human CYP1A2. Obtusifolin potently and selectively inhibited CYP1A2-mediated phenacetin O-deethylation (POD) with a Ki value of 0.031 µM in a competitive inhibitory manner in HLMs, whereas it exhibited negligible inhibitory effect against other P450s (IC50 > 28.6 µM). Obtusifolin also inhibited CYP1A1- and CYP1A2-mediated POD and ethoxyresorufin O-deethylation with IC50 values of <0.57 µM when using recombinant enzymes. Our molecular docking models suggested that the high CYP1A2 inhibitory activity of obtusifolin may be attributed to the combination of hydrophobic interactions and hydrogen bonding. This is the first report of selective and potent inhibitory effects of obtusifolin against CYP1A, indicating their potential chemopreventive effects.
Collapse
|
5
|
Transcriptome and HPLC Analysis Reveal the Regulatory Mechanisms of Aurantio-Obtusin in Space Environment-Induced Senna obtusifolia Lines. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19020898. [PMID: 35055719 PMCID: PMC8776150 DOI: 10.3390/ijerph19020898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/05/2022] [Accepted: 01/10/2022] [Indexed: 01/25/2023]
Abstract
Senna obtusifolia is a famous medicinal plant that is widely used in Asian countries. Its seed plays an important role in the treatment of many diseases because it contains various anthraquinones and flavonoids. Our previous studies have indicated that three space environment-induced S. obtusifolia lines (SP-lines) i.e., QC10, QC29, and QC46, have higher seed yield and aurantio-obtusin (AO) content. However, the underlying mechanism of higher AO content in SP-lines is still unknown. Herein, transcriptome sequencing and HPLC were employed to analyze the differences between SP-lines and ground control (GC3) and elucidate the regulatory mechanisms of AO accumulation in SP-lines. The results show that 4002 differentially expressed genes (DEGs) were identified in SP-lines versus (vs.) GC3. DEGs in the QC10 vs. GC3, QC29 vs. GC3, and QC46 vs. GC3 comparisons were classified into 28, 36, and 81 GO terms and involved in 63, 74, and 107 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. KEGG pathway and gene expression analysis revealed that DEGs involved in anthraquinone pathways were significantly elevated in QC10 and QC46. Integrating the results of GO annotation, KEGG enrichment, and gene expression analysis, we propose that the elevated genes such as DAHPS, DHQS, and MenB enhance the metabolic flux in the anthraquinone pathway and promote AO content in QC10 and QC46. Taken together, this study elucidated the mechanism of AO content in SP-lines and provides valuable genetic information for S. obtusifolia. In addition, to the best of our knowledge, this study presents the first transcriptome analysis of environment-induced medicinal plants and paves the way to select elite S. obtusifolia varieties in the future.
Collapse
|