1
|
Abualzulof GWA, Scandar S, Varfaj I, Dalla Costa V, Sardella R, Filippini R, Piovan A, Marcotullio MC. The Effect of Maturity Stage on Polyphenolic Composition, Antioxidant and Anti-Tyrosinase Activities of Ficus rubiginosa Desf. ex Vent. Extracts. Antioxidants (Basel) 2024; 13:1129. [PMID: 39334788 PMCID: PMC11429051 DOI: 10.3390/antiox13091129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/09/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Ficus spp. are often used as food and in traditional medicine, and their biological activities as anti-inflammatory and diuretic, for wound healing, and as antimicrobial agents have been largely reviewed. The aim of this work was to investigate the polyphenol content and the antioxidant and anti-tyrosinase properties of the extracts from F. rubiginosa, a very poorly explored Ficus species. For this purpose, F. rubiginosa leaves were collected at three different maturity stages (H1, H2, and H3), and the environmentally sustainable methanolic extracts were evaluated for the total phenolic content (TPC), total flavonoid content (TFC), and total catechins content (TCC). The polyphenolic profile was studied using HPLC-UV/DAD and UHPLC-MS, and the antioxidant activity was determined in vitro using DPPH, FRAP, and ABTS assays. The study showed that the H2 extract had higher TPC and TFC values (113.50 mg GA/g and 43.27 mg QE/g, respectively) and significant antioxidant activity. Therefore, the H2 extract was selected to study the anti-tyrosinase activity. The results also showed that H2 was able to bind and inhibit tyrosinase, with rutin being the compound responsible for the measured activity on the enzyme.
Collapse
Affiliation(s)
- Ghaid W. A. Abualzulof
- Department of Pharmaceutical Sciences, University of Perugia, Via Fabretti 48, 06123 Perugia, Italy; (G.W.A.A.); (S.S.); (I.V.); (R.S.)
| | - Samir Scandar
- Department of Pharmaceutical Sciences, University of Perugia, Via Fabretti 48, 06123 Perugia, Italy; (G.W.A.A.); (S.S.); (I.V.); (R.S.)
| | - Ina Varfaj
- Department of Pharmaceutical Sciences, University of Perugia, Via Fabretti 48, 06123 Perugia, Italy; (G.W.A.A.); (S.S.); (I.V.); (R.S.)
| | - Vanessa Dalla Costa
- Department of Pharmaceutical Sciences, University of Padua, Via Marzolo, 5, 35131 Padua, Italy; (V.D.C.); (R.F.)
| | - Roccaldo Sardella
- Department of Pharmaceutical Sciences, University of Perugia, Via Fabretti 48, 06123 Perugia, Italy; (G.W.A.A.); (S.S.); (I.V.); (R.S.)
| | - Raffaella Filippini
- Department of Pharmaceutical Sciences, University of Padua, Via Marzolo, 5, 35131 Padua, Italy; (V.D.C.); (R.F.)
| | - Anna Piovan
- Department of Pharmaceutical Sciences, University of Padua, Via Marzolo, 5, 35131 Padua, Italy; (V.D.C.); (R.F.)
| | - Maria Carla Marcotullio
- Department of Pharmaceutical Sciences, University of Perugia, Via Fabretti 48, 06123 Perugia, Italy; (G.W.A.A.); (S.S.); (I.V.); (R.S.)
| |
Collapse
|
2
|
Wang J, Xiao S, Cai Q, Miao J, Li J. Antioxidant Capacity and Protective Effects on H 2O 2-Induced Oxidative Damage in PC12 Cells of the Active Fraction of Brassica rapa L. Foods 2023; 12:2075. [PMID: 37238893 PMCID: PMC10217163 DOI: 10.3390/foods12102075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/13/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023] Open
Abstract
Brassica rapa L. (BR), a traditional biennial herb belonging to the Brassica species of Brassicaceae, has been widely used for functions of anti-inflammatory, antitumor, antioxidation, antiaging, and regulation of immunity. In this study, antioxidant activity and protective effects on H2O2-induced oxidative damage in PC12 cells of the active fractions of BR were investigated in vitro. Among all active fractions, the ethyl acetate fraction of ethanol extract from BR (BREE-Ea) showed the strongest antioxidant activity. Additionally, it was noted that BREE-Ea and n-butyl alcohol fraction of ethanol extract from BR (BREE-Ba) both have protective effects in oxidatively damaged PC12 cells, while BREE-Ea displayed the best protective effect in all determined experimental doses. Furthermore, flow cytometry (DCFH-DA staining) analysis indicated that BREE-Ea could reduce the H2O2-induced apoptosis in PC12 cells by reducing the production of intracellular reactive oxygen species (ROS) and increasing enzymatic activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px). Moreover, BREE-Ea could decrease the malondialdehyde (MDA) content and reduce the release of extracellular lactic dehydrogenase (LDH) from H2O2-induced PC12 cells. All these results demonstrate that BREE-Ea has a good antioxidant capacity and protective effect on PC12 cells against apoptosis induced by H2O2 and that it can be used as a good edible antioxidant to improve the body's endogenous antioxidant defense.
Collapse
Affiliation(s)
- Jin Wang
- College of Life Science and Technology, Xinjiang University, Urumqi 830000, China; (J.W.); (S.X.); (Q.C.)
| | - Shuang Xiao
- College of Life Science and Technology, Xinjiang University, Urumqi 830000, China; (J.W.); (S.X.); (Q.C.)
| | - Qi Cai
- College of Life Science and Technology, Xinjiang University, Urumqi 830000, China; (J.W.); (S.X.); (Q.C.)
| | - Jing Miao
- Pharmaceutical Institute, Xinjiang University, Urumqi 830000, China
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Xinjiang University, Urumqi 830000, China
| | - Jinyao Li
- College of Life Science and Technology, Xinjiang University, Urumqi 830000, China; (J.W.); (S.X.); (Q.C.)
- Pharmaceutical Institute, Xinjiang University, Urumqi 830000, China
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Xinjiang University, Urumqi 830000, China
| |
Collapse
|
3
|
Prunus lusitanica L. Fruits as a Novel Source of Bioactive Compounds with Antioxidant Potential: Exploring the Unknown. Antioxidants (Basel) 2022; 11:antiox11091738. [PMID: 36139810 PMCID: PMC9495831 DOI: 10.3390/antiox11091738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/19/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
Prunus lusitanica L., also known as Portuguese laurel or locally known as ‘azereiro’, is a rare species with ornamental and ecological value. Only two studies regarding the bioactivity and chemical composition of its leaves were reported to date. Thus, the present study aims to qualitatively and quantitatively evaluate the phenolic profile, through HPLC-PAD-ESI-MS/MS (high-performance liquid chromatography–photodiode array detection–electrospray ionization tandem mass spectrometry), as well as the radical scavenging capacity, through ABTS (2,2’-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid) and DPPH (2,2-diphenyl-1 picrylhydrazyl), and the reducing power (FRAP, ferric reducing antioxidant power) assays, of P. lusitanica fruits during a 4-year study. In total, 28 compounds were identified and quantified in the fruits, including 21 hydroxycinnamic acids (60.3%); 2 flavan-3-ols (27.9%), 2 anthocyanins (10.5%), 2 flavonols (1.0%), and 1 secoiridoid (0.3%). High antioxidant capacity was observed, with ABTS values ranging from 7.88 to 10.69 mmol TE (Trolox equivalents)/100 g fw (fresh weight), DPPH values from 5.18 to 8.17 mmol TE/100 g fw, and FRAP values from 8.76 to 11.76 mmol TE/100 g fw. According to these results, it can be concluded that these are rich sources of phenolic compounds with very promising antioxidant capacity and, therefore, with potential applications in the food and/or phytopharmaceutical sectors.
Collapse
|
4
|
Muema FW, Liu Y, Zhang Y, Chen G, Guo M. Flavonoids from Selaginella doederleinii Hieron and Their Antioxidant and Antiproliferative Activities. Antioxidants (Basel) 2022; 11:antiox11061189. [PMID: 35740086 PMCID: PMC9229023 DOI: 10.3390/antiox11061189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/02/2022] [Accepted: 06/09/2022] [Indexed: 01/13/2023] Open
Abstract
Selaginella doederleinii Hieron. (S. doederleinii) is a traditional herb that is widely used in China to treat several ailments, but mainly cancer. Studies have been carried out to determine the phytochemicals ascribed to its pharmacological activity. However, both phytochemical and pharmacological profiles have not been fully explored as few compounds have been reported. This study evaluated the flavonoid content of the ethanol extract and its four fractions (petroleum ether, dichloromethane, ethyl acetate, and n-butanol) together with their antioxidant activity (DPPH and FRAP assays). Further, the antiproliferative activity was evaluated. Two new secondary metabolites (1 and 3) were isolated from S. doederleinii, which comprised of an apigenin skeleton with a phenyl attached at C-8 of ring A and an acetyl group. Additionally, other known metabolites 2 and 4–16 were isolated, whereby compounds 2, 4, 5, 8, 12, 15, and 16 were reported for the first time in this species. These compounds were evaluated for their antioxidative potentials by both DPPH and FRAP assays, and for their antiproliferative activities by the MTT assay on three human cancer cell lines: colon cancer (HT-29), cervical cancer (HeLa), and lung cancer (A549). Compound 7 exhibited the best activity on the three cancer cell lines (HT-29, HeLa, A549) by inhibiting the rate of growth of the cancer cells in a dose-dependent manner with IC50 values of 27.97, 35.47, and 20.71 µM, respectively. The structure–activity relationship of the pure compounds was highlighted in this study. Hence, the study enriched both the phytochemical and pharmacological profiles of S. doederleinii.
Collapse
Affiliation(s)
- Felix Wambua Muema
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (F.W.M.); (Y.L.); (Y.Z.); (G.C.)
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
- Innovation Academy for Drug Discovery and Development, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ye Liu
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (F.W.M.); (Y.L.); (Y.Z.); (G.C.)
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
- Innovation Academy for Drug Discovery and Development, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yongli Zhang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (F.W.M.); (Y.L.); (Y.Z.); (G.C.)
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
- Innovation Academy for Drug Discovery and Development, Chinese Academy of Sciences, Shanghai 201203, China
| | - Guilin Chen
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (F.W.M.); (Y.L.); (Y.Z.); (G.C.)
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
- Innovation Academy for Drug Discovery and Development, Chinese Academy of Sciences, Shanghai 201203, China
| | - Mingquan Guo
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (F.W.M.); (Y.L.); (Y.Z.); (G.C.)
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
- Innovation Academy for Drug Discovery and Development, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: ; Tel.: +86-027-8770-0850
| |
Collapse
|