1
|
Kanchrana M, Gamidi RK, Kumari J, Sriram D, Basavoju S. Design, synthesis, anti-mycobacterial activity, molecular docking and ADME analysis of spiroquinoxaline-1,2,4-oxadiazoles via [3 + 2] cycloaddition reaction under ultrasound irradiation. Mol Divers 2024; 28:3979-3991. [PMID: 38261121 DOI: 10.1007/s11030-023-10790-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 12/04/2023] [Indexed: 01/24/2024]
Abstract
The development of anti-tuberculosis (anti-TB) drugs has become a challenging task in medicinal chemistry. This is because Mycobacterium tuberculosis (TB), the pathogen that causes tuberculosis, has an increasing number of drug-resistant strains, and existing medication therapies are not very effective. This resistance significantly demands new anti-TB drug profiles. Here, we present the design and synthesis of a number of hybrid compounds with previously known anti-mycobacterial moieties attached to quinoxaline, quinoline, tetrazole, and 1,2,4-oxadiazole scaffolds. A convenient ultrasound methodology was employed to attain spiroquinoxaline-1,2,4-oxadiazoles via [3 + 2] cycloaddition of quinoxaline Schiff bases and aryl nitrile oxides at room temperature. This approach avoids standard heating and column chromatography while producing high yields and shorter reaction times. The target compounds 3a-p were well-characterized, and their in vitro anti-mycobacterial activity (anti-TB) was evaluated. Among the screened compounds, 3i displayed promising activity against the Mycobacterium tuberculosis cell line H37Rv, with an MIC99 value of 0.78 µg/mL. However, three compounds (3f, 3h, and 3o) exhibited potent activity with MIC99 values of 6.25 µg/mL. To further understand the binding interactions, the synthesized compounds were docked against the tuberculosis protein 5OEQ using in silico molecular docking. Moreover, the most active compounds were additionally tested for their cytotoxicity against the RAW 264.7 cell line, and the cytotoxicity of compounds 3f, 3h, 3i, and 3o was 27.3, 28.9, 26.4, and 30.2 µg/mL, respectively. These results revealed that the compounds 3f, 3h, 3i, and 3o were less harmful to humans. Furthermore, the synthesized compounds were tested for ADME qualities, and the results suggest that this series is useful for producing innovative and potent anti-tubercular medicines in the future.
Collapse
Affiliation(s)
- Madhu Kanchrana
- Department of Chemistry, National Institute of Technology Warangal, Hanamkonda, Telangana, 506004, India
| | - Rama Krishna Gamidi
- Organic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, Maharashtra, 411008, India
| | - Jyothi Kumari
- Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad, Telangana, 500078, India
| | - Dharmarajan Sriram
- Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad, Telangana, 500078, India
| | - Srinivas Basavoju
- Department of Chemistry, National Institute of Technology Warangal, Hanamkonda, Telangana, 506004, India.
| |
Collapse
|
2
|
Ahmad Khosravi N, Sirous M, Khosravi A, Saki M. A Narrative Review of Bedaquiline and Delamanid: New Arsenals Against Multidrug-Resistant and Extensively Drug-Resistant Mycobacterium tuberculosis. J Clin Lab Anal 2024; 38:e25091. [PMID: 39431709 PMCID: PMC11492330 DOI: 10.1002/jcla.25091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/12/2024] [Accepted: 07/30/2024] [Indexed: 10/22/2024] Open
Abstract
BACKGROUND The treatment of multidrug-resistant (MDR-) and extensively drug-resistant tuberculosis (XDR-TB) is a formidable challenge. Treatment of MDR- and XDR-TB using bedaquiline (BDQ) and delamanid (DLM), two newly introduced medications, is steadily increasing. This narrative review aimed to present a concise overview of the existing information regarding BDQ and DLM, and elucidate their antimicrobial characteristics, resistance mechanisms, synergism with other drugs, and side effects. METHODS To collect the required information about the antimicrobial properties, a search for scientific evidence from the Scopus, PubMed, and Embase databases was performed, and all recently published articles up to May 2024 were considered. RESULTS BDQ had potent antimicrobial effects on various types of nontuberculous mycobacteria (NTM), including rapid-growing and slow-growing species, and MDR/XDR Mycobacterium tuberculosis. The mechanisms of BDQ resistance in M. tuberculosis primarily involve mutations in three genes: atpE, mmpR (Rv0678) and pepQ. BDQ may have synergistic effects when combined with DLM, pyrazinamide, and pretomanid/linezolid. BDQ has a low incidence of side effects. The use of BDQ may prolong the QTc interval. Similarly, DLM showed potent antimicrobial effects on NTM and MDR/XDR M. tuberculosis. The main resistance mechanisms to DLM are induced by mutations in fbiA, fbiB, fbiC, fgd1, and ddn genes. The DLM had synergistic effects with BDQ and moxifloxacin. The DLM also has few side effects in some patients including QTc prolongation. CONCLUSION BDQ and DLM are suitable antibiotics with few side effects for the treatment of MDR/XDR-TB. These antibiotics have synergistic effects when combined with other antituberculosis drugs.
Collapse
Affiliation(s)
- Nazanin Ahmad Khosravi
- Infectious and Tropical Diseases Research Center, Health Research InstituteAhvaz Jundishapur University of Medical SciencesAhvazIran
- Department of Microbiology, Faculty of MedicineAhvaz Jundishapur University of Medical SciencesAhvazIran
| | - Mehrandokht Sirous
- Department of Microbiology and Parasitology, Faculty of MedicineBushehr University of Medical SciencesBushehrIran
| | - Azar Dokht Khosravi
- Infectious and Tropical Diseases Research Center, Health Research InstituteAhvaz Jundishapur University of Medical SciencesAhvazIran
- Department of Microbiology, Faculty of MedicineAhvaz Jundishapur University of Medical SciencesAhvazIran
| | - Morteza Saki
- Infectious and Tropical Diseases Research Center, Health Research InstituteAhvaz Jundishapur University of Medical SciencesAhvazIran
- Department of Microbiology, Faculty of MedicineAhvaz Jundishapur University of Medical SciencesAhvazIran
| |
Collapse
|
3
|
Negi A, Perveen S, Gupta R, Singh PP, Sharma R. Unraveling Dilemmas and Lacunae in the Escalating Drug Resistance of Mycobacterium tuberculosis to Bedaquiline, Delamanid, and Pretomanid. J Med Chem 2024; 67:2264-2286. [PMID: 38351709 DOI: 10.1021/acs.jmedchem.3c01892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Delamanid, bedaquiline, and pretomanid have been recently added in the anti-tuberculosis (anti-TB) treatment regimens and have emerged as potential solutions for combating drug-resistant TB. These drugs have proven to be effective in treating drug-resistant TB when used in combination. However, concerns have been raised about the eventual loss of these drugs due to evolving resistance mechanisms and certain adverse effects such as prolonged QT period, gastrointestinal problems, hepatotoxicity, and renal disorders. This Perspective emphasizes the properties of these first-in-class drugs, including their mechanism of action, pharmacokinetics/pharmacodynamics profiles, clinical studies, adverse events, and underlying resistance mechanisms. A brief coverage of efforts toward the generation of best-in-class leads in each class is also provided. The ongoing clinical trials of new combinations of these drugs are discussed, thus providing a better insight into the use of these drugs while designing an effective treatment regimen for resistant TB cases.
Collapse
Affiliation(s)
- Anjali Negi
- Infectious Diseases Division, CSIR - Indian Institute of Integrative Medicine, Jammu-180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Summaya Perveen
- Infectious Diseases Division, CSIR - Indian Institute of Integrative Medicine, Jammu-180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Ria Gupta
- Natural Products and Medicinal Chemistry, CSIR - Indian Institute of Integrative Medicine, Jammu-180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Parvinder Pal Singh
- Natural Products and Medicinal Chemistry, CSIR - Indian Institute of Integrative Medicine, Jammu-180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Rashmi Sharma
- Infectious Diseases Division, CSIR - Indian Institute of Integrative Medicine, Jammu-180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
4
|
Rohilla A, Rohilla S. Drug Repositioning: A Monetary Stratagem to Discover a New Application of Drugs. Curr Drug Discov Technol 2024; 21:e101023222023. [PMID: 38629171 DOI: 10.2174/0115701638253929230922115127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 06/29/2023] [Accepted: 08/09/2023] [Indexed: 04/19/2024]
Abstract
Drug repurposing, also referred to as drug repositioning or drug reprofiling, is a scientific approach to the detection of any new application for an already approved or investigational drug. It is a useful policy for the invention and development of new pharmacological or therapeutic applications of different drugs. The strategy has been known to offer numerous advantages over developing a completely novel drug for certain problems. Drug repurposing has numerous methodologies that can be categorized as target-oriented, drug-oriented, and problem-oriented. The choice of the methodology of drug repurposing relies on the accessible information about the drug molecule and like pharmacokinetic, pharmacological, physicochemical, and toxicological profile of the drug. In addition, molecular docking studies and other computer-aided methods have been known to show application in drug repurposing. The variation in dosage for original target diseases and novel diseases presents a challenge for researchers of drug repurposing in present times. The present review critically discusses the drugs repurposed for cancer, covid-19, Alzheimer's, and other diseases, strategies, and challenges of drug repurposing. Moreover, regulatory perspectives related to different countries like the United States (US), Europe, and India have been delineated in the present review.
Collapse
Affiliation(s)
- Ankur Rohilla
- Department of Pharmacology, University Institute of Pharmaceutical Sciences, Chandigarh University, Gharuan, 140413, Mohali, India
| | - Seema Rohilla
- Department of Pharmacy, Panipat Institute of Engineering and Technology, Panipat, Haryana, India
| |
Collapse
|
5
|
Saleh M, Mostafa YA, Kumari J, Thabet MM, Sriram D, Kandeel M, Abdu-Allah HHM. New nitazoxanide derivatives: design, synthesis, biological evaluation, and molecular docking studies as antibacterial and antimycobacterial agents. RSC Med Chem 2023; 14:2714-2730. [PMID: 38107181 PMCID: PMC10718594 DOI: 10.1039/d3md00449j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/05/2023] [Indexed: 12/19/2023] Open
Abstract
A new series inspired by combining fragments from nitazoxanide (NTZ) and 4-aminosalicylic acid (4-ASA) was synthesized and screened for in vitro antibacterial and antimycobacterial activities. The majority showed higher antibacterial potency than NTZ against all the screened strains, notably, 5f, 5j, 5n and 5o with MICs of 0.87-9.00 μM. Compounds 5c, 5n and 5o revealed higher potency than ciprofloxacin against K. pneumoniae, while 5i was equipotent. For E. faecalis, 3b, 5j, and 5k showed higher potency than ciprofloxacin. 5j was more potent against P. aeruginosa than ciprofloxacin, while 5n was more potent against S. aureus with an MIC of 0.87 μM. 5f showed equipotency to ciprofloxacin against H. pylori with an MIC of 1.74 μM. Compounds 3a and 3b (4-azidoNTZ, MIC 4.47 μM) are 2 and 5-fold more potent against Mycobacterium tuberculosis (Mtb H37Rv) than NTZ (MIC 20.23 μM) and safer. 4-Azidation and/or acetylation of NTZ improve both activities, while introducing 1,2,3-triazoles improves the antibacterial activity. Molecular docking studies within pyruvate ferredoxin oxidoreductase (PFOR), glucosamine-6-phosphate synthase (G6PS) and dihydrofolate reductase (DHFR) active sites were performed to explore the possible molecular mechanisms of actions. Acceptable drug-likeness properties were found. This study may shed light on further rational design of substituted NTZ as broad-spectrum more potent antimicrobial candidates.
Collapse
Affiliation(s)
- Mahmoud Saleh
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University Assiut 71526 Egypt
| | - Yaser A Mostafa
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University Assiut 71526 Egypt
| | - Jyothi Kumari
- Department of Pharmacy, Birla Institute of Technology & Science-Pilani Hyderabad Campus, Jawahar Nagar Hyderabad-500 078 India
| | - Momen M Thabet
- Microbiology and Immunology Department, Faculty of Pharmacy, South Valley University Qena 83523 Egypt
| | - Dharmarajan Sriram
- Department of Pharmacy, Birla Institute of Technology & Science-Pilani Hyderabad Campus, Jawahar Nagar Hyderabad-500 078 India
| | - Mahmoud Kandeel
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University 31982 Al-Ahsa Saudi Arabia
- Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelsheikh University 33516 Kafrelsheikh Egypt
| | - Hajjaj H M Abdu-Allah
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University Assiut 71526 Egypt
| |
Collapse
|
6
|
Verma A, Naik B, Kumar V, Mishra S, Choudhary M, Khan JM, Gupta AK, Pandey P, Rustagi S, Kakati B, Gupta S. Revolutionizing Tuberculosis Treatment: Uncovering New Drugs and Breakthrough Inhibitors to Combat Drug-Resistant Mycobacterium tuberculosis. ACS Infect Dis 2023; 9:2369-2385. [PMID: 37944023 DOI: 10.1021/acsinfecdis.3c00436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Tuberculosis (TB) is a global health threat that causes significant mortality. This review explores chemotherapeutics that target essential processes in Mycobacterium tuberculosis, such as DNA replication, protein synthesis, cell wall formation, energy metabolism, and proteolysis. We emphasize the need for new drugs to treat drug-resistant strains and shorten the treatment duration. Emerging targets and promising inhibitors were identified by examining the intricate biology of TB. This review provides an overview of recent developments in the search for anti-TB drugs with a focus on newly validated targets and inhibitors. We aimed to contribute to efforts to combat TB and improve therapeutic outcomes.
Collapse
Affiliation(s)
- Ankit Verma
- Himalayan School of Biosciences, Swami Rama Himalayan University, Jolly Grant, Dehradun 248016, Uttarakhand, India
| | - Bindu Naik
- Department of Food Science and Technology, Graphic Era Deemed to be University, Bell Road, Clement Town, Dehradun 248002, Uttarakhand, India
| | - Vijay Kumar
- Himalayan School of Biosciences, Swami Rama Himalayan University, Jolly Grant, Dehradun 248016, Uttarakhand, India
| | - Sadhna Mishra
- Faculty of Agricultural Sciences, GLA University, Mathura 281406, UP, India
| | - Megha Choudhary
- Himalayan School of Biosciences, Swami Rama Himalayan University, Jolly Grant, Dehradun 248016, Uttarakhand, India
| | - Javed Masood Khan
- Department of Food Science and Nutrition, Faculty of Food and Agricultural Sciences, King Saud University, 2460, Riyadh 11451, Saudi Arabia
| | - Arun Kumar Gupta
- Department of Food Science and Technology, Graphic Era Deemed to be University, Bell Road, Clement Town, Dehradun 248002, Uttarakhand, India
| | - Piyush Pandey
- Department of Microbiology, Assam University, Silchur 788011, Assam, India
| | - Sarvesh Rustagi
- Department of Food Technology, UCALS, Uttaranchal University, Dehradun 248007, Uttarakhand, India
| | - Barnali Kakati
- Department of Microbiology, Himalayan Institute of Medical Sciences, Swami Rama Himalayan University, Jolly Grant, Dehradun 248016, U.K., India
| | - Sanjay Gupta
- Himalayan School of Biosciences, Swami Rama Himalayan University, Jolly Grant, Dehradun 248016, Uttarakhand, India
| |
Collapse
|
7
|
Bajpai P, Singh AK, Kandagalla S, Chandra P, Kumar Sah V, Kumar P, Grishina M, Verma OP, Pathak P. Oxazoline/amide derivatives against M. tuberculosis: experimental, biological and computational investigations. J Biomol Struct Dyn 2023; 42:13474-13484. [PMID: 37948157 DOI: 10.1080/07391102.2023.2276312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/18/2023] [Indexed: 11/12/2023]
Abstract
Tuberculosis (TB) is a treatable contagious disease that continuously kills approximately 2 million people yearly. Different oxazoline/amide derivatives were synthesized, and their anti-tuberculosis activity was performed against different strains of Mtb. This study designed the anti-Mtb compounds based on amide and oxazoline, two different structural moieties. The compounds were further synthesized and characterized by spectral techniques. Their anti-Tb activity was evaluated against strain (M. tuberculosis: H37Rv). Selectivity and binding affinity of all synthesized compounds (2a-2e, 3a-3e) against PanK in Mtb were investigated through molecular docking. Molecular dynamics simulation studies for the promising compounds 2d and 3e were performed for 100 ns. The stability of these complexes was assessed by calculating the root mean square deviation, solvent-accessible surface area, and gyration radius relative to their parent structures. Additionally, free energy of binding calculations were performed. Among all synthesized compounds, 2d and 3e had comparable antitubercular activity against standard drug, validated by their computational and biological study.
Collapse
Affiliation(s)
- Priyanka Bajpai
- Goel Institute of Pharmacy and Sciences, Lucknow, Uttar Pradesh, India
| | - Ankit Kumar Singh
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda, India
| | - Shivanada Kandagalla
- Laboratory of Computational Modeling of Drugs, Higher Medical and Biological School, South Ural State University, Chelyabinsk, Russia
| | - Phool Chandra
- Teerthanker Mahaveer College of Pharmacy, Teerthanker Mahaveer University, Moradabad, India
| | - Vimlendu Kumar Sah
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda, India
| | - Pradeep Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda, India
| | - Maria Grishina
- Laboratory of Computational Modeling of Drugs, Higher Medical and Biological School, South Ural State University, Chelyabinsk, Russia
| | - Om Prakash Verma
- Goel Institute of Pharmacy and Sciences, Lucknow, Uttar Pradesh, India
| | - Prateek Pathak
- Laboratory of Computational Modeling of Drugs, Higher Medical and Biological School, South Ural State University, Chelyabinsk, Russia
- Department of Pharmaceutical Analysis, Quality Assurance and Pharmaceutical Chemistry, School of Pharmacy, GITAM (Deemed to be University), Hyderabad Campus, India
| |
Collapse
|
8
|
Tong E, Zhou Y, Liu Z, Zhu Y, Zhang M, Wu K, Pan J, Jiang J. Bedaquiline Resistance and Molecular Characterization of Rifampicin-Resistant Mycobacterium Tuberculosis Isolates in Zhejiang, China. Infect Drug Resist 2023; 16:6951-6963. [PMID: 37928607 PMCID: PMC10625375 DOI: 10.2147/idr.s429003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/10/2023] [Indexed: 11/07/2023] Open
Abstract
Purpose This study aimed to determine the prevalence and molecular characterization of bedaquiline (BDQ) resistance among rifampicin-resistant tuberculosis (RR-TB) isolates collected from Zhejiang, China. Patients and Methods A total of 245 RR-TB isolates were collected from 19 municipal TB hospitals in Zhejiang province, China between January and December 2021. Microplate assays were used to determine the minimum inhibitory concentrations (MIC) of BDQ. Whole-genome sequencing (WGS) was performed on isolates with MIC values for BDQ ≥ 0.25 μg/mL. Results Five (2.04%) BDQ-resistant strains were isolated from 245 tuberculosis patients. The resistance rate of BDQ was not correlated to the sex, age, treatment history, or occupation of patients. Four BDQ-resistant isolates and three BDQ-sensitive isolates were found to carry Rv0678 mutations, and one BDQ-resistant strain carried both Rv0678 and pepQ mutations. No mutations within the atpE and Rv1979c genes were observed. Conclusion BDQ demonstrated strong in vitro antibacterial activity against RR-TB isolates, and the Rv0678 gene was identified as the primary mechanism contributing to BDQ resistance among RR-TB isolates from Zhejiang, China. Furthermore, in addition to the four currently known resistance-associated genes (atpE, Rv0678, Rv1979c, and pepQ), other mechanisms of resistance to BDQ may exist that need further study.
Collapse
Affiliation(s)
- Enyu Tong
- School of Public Health, Hangzhou Normal University, Hangzhou, 311100, People’s Republic of China
| | - Ying Zhou
- School of Public Health, Hangzhou Normal University, Hangzhou, 311100, People’s Republic of China
| | - Zhengwei Liu
- Tuberculosis Control Department, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, 310051, People’s Republic of China
| | - Yelei Zhu
- Tuberculosis Control Department, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, 310051, People’s Republic of China
| | - Mingwu Zhang
- Tuberculosis Control Department, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, 310051, People’s Republic of China
| | - Kunyang Wu
- Tuberculosis Control Department, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, 310051, People’s Republic of China
| | - Junhang Pan
- Tuberculosis Control Department, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, 310051, People’s Republic of China
| | - Jianmin Jiang
- School of Public Health, Hangzhou Normal University, Hangzhou, 311100, People’s Republic of China
- Tuberculosis Control Department, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, 310051, People’s Republic of China
- Key Laboratory of Vaccine, Prevention and Control of Infectious Disease of Zhejiang Province, Hangzhou, 310051, People’s Republic of China
| |
Collapse
|
9
|
Dube P, Angula KT, Legoabe LJ, Jordaan A, Boitz Zarella JM, Warner DF, Doggett JS, Beteck RM. Quinolone-3-amidoalkanol: A New Class of Potent and Broad-Spectrum Antimicrobial Agent. ACS OMEGA 2023; 8:17086-17102. [PMID: 37214682 PMCID: PMC10193574 DOI: 10.1021/acsomega.3c01406] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/18/2023] [Indexed: 05/24/2023]
Abstract
Herein, we describe 39 novel quinolone compounds bearing a hydrophilic amine chain and varied substituted benzyloxy units. These compounds demonstrate broad-spectrum activities against acid-fast bacterium, Gram-positive and -negative bacteria, fungi, and leishmania parasite. Compound 30 maintained antitubercular activity against moxifloxacin-, isoniazid-, and rifampicin-resistant Mycobacterium tuberculosis, while 37 exhibited low micromolar activities (<1 μg/mL) against World Health Organization (WHO) critical pathogens: Cryptococcus neoformans, Acinetobacter baumannii, and Pseudomonas aeruginosa. Compounds in this study are metabolically robust, demonstrating % remnant of >98% after 30 min in the presence of human, rat, and mouse liver microsomes. Several compounds thus reported here are promising leads for the treatment of diseases caused by infectious agents.
Collapse
Affiliation(s)
- Phelelisiwe
S. Dube
- Centre
of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom 2520, South Africa
| | - Klaudia T. Angula
- Centre
of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom 2520, South Africa
| | - Lesetja J. Legoabe
- Centre
of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom 2520, South Africa
| | - Audrey Jordaan
- SAMRC/NHLS/UCT
Molecular Mycobacteriology Research Unit, Department of Pathology, University of Cape Town Observatory, Cape Town 7925, South Africa
- Institute
of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch, Cape Town 7701, South Africa
| | - Jan M. Boitz Zarella
- Division
of Infectious Diseases, VA Portland Healthcare
System, Portland, Oregon 97239, United States
| | - Digby F. Warner
- SAMRC/NHLS/UCT
Molecular Mycobacteriology Research Unit, Department of Pathology, University of Cape Town Observatory, Cape Town 7925, South Africa
- Institute
of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch, Cape Town 7701, South Africa
- Wellcome
Centre for Infectious Diseases Research in Africa (CIDRI-Africa),
Faculty of Health Sciences, University of
Cape Town, Rondebosch, Cape Town 7701, South Africa
| | - J. Stone Doggett
- Division
of Infectious Diseases, VA Portland Healthcare
System, Portland, Oregon 97239, United States
| | - Richard M. Beteck
- Centre
of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom 2520, South Africa
| |
Collapse
|
10
|
du Preez C, Legoabe LJ, Jordaan A, Jesumoroti OJ, Warner DF, Beteck RM. Arylnitro monocarbonyl curcumin analogues: Synthesis and in vitro antitubercular evaluation. Chem Biol Drug Des 2023; 101:717-726. [PMID: 36350112 DOI: 10.1111/cbdd.14174] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 10/07/2022] [Accepted: 11/02/2022] [Indexed: 11/10/2022]
Abstract
Curcumin is a natural product that has been reported to exhibit myriad pharmacological properties, one of which is antitubercular activity. It demonstrates antitubercular activity by directly inhibiting Mycobacterium tuberculosis (M.tb) and also enhances immune responses that ultimately lead to the elimination of M.tb by macrophages. This natural product is, however, unstable, and several analogues, noticeably monocarbonyl analogues, have been synthesized to overcome this challenge. Curcumin and its monocarbonyl analogues reported so far exhibit moderate antitubercular activity in the range of 7 to 16 μM. Herein, we report a straightforward synthesis of novel monocarbonyl curcumin analogues, their antitubercular activity, and the structure-activity relationship. The hit compound from this study, 3a, exhibits potent MIC90 values in the range of 0.2 to 0.9 μM in both ADC and CAS media.
Collapse
Affiliation(s)
- Charné du Preez
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| | - Lesetja J Legoabe
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| | - Audrey Jordaan
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, Department of Pathology, University of Cape Town, Observatory, South Africa
| | - Omobolanle J Jesumoroti
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| | - Digby F Warner
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, Department of Pathology, University of Cape Town, Observatory, South Africa.,Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch, South Africa.,Faculty of Health Sciences, Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa), University of Cape Town, Rondebosch, South Africa
| | - Richard M Beteck
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| |
Collapse
|
11
|
Machine Learning Prediction of Mycobacterial Cell Wall Permeability of Drugs and Drug-like Compounds. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020633. [PMID: 36677691 PMCID: PMC9863426 DOI: 10.3390/molecules28020633] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 12/30/2022] [Accepted: 12/30/2022] [Indexed: 01/11/2023]
Abstract
The cell wall of Mycobacterium tuberculosis and related organisms has a very complex and unusual organization that makes it much less permeable to nutrients and antibiotics, leading to the low activity of many potential antimycobacterial drugs against whole-cell mycobacteria compared to their isolated molecular biotargets. The ability to predict and optimize the cell wall permeability could greatly enhance the development of novel antitubercular agents. Using an extensive structure-permeability dataset for organic compounds derived from published experimental big data (5371 compounds including 2671 penetrating and 2700 non-penetrating compounds), we have created a predictive classification model based on fragmental descriptors and an artificial neural network of a novel architecture that provides better accuracy (cross-validated balanced accuracy 0.768, sensitivity 0.768, specificity 0.769, area under ROC curve 0.911) and applicability domain compared with the previously published results.
Collapse
|
12
|
Synthesis and Assessment of the In Vitro and Ex Vivo Activity of Salicylate Synthase (Mbti) Inhibitors as New Candidates for the Treatment of Mycobacterial Infections. Pharmaceuticals (Basel) 2022; 15:ph15080992. [PMID: 36015139 PMCID: PMC9413995 DOI: 10.3390/ph15080992] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/04/2022] [Accepted: 08/08/2022] [Indexed: 11/16/2022] Open
Abstract
Tuberculosis (TB) causes millions of deaths every year, ranking as one of the most dangerous infectious diseases worldwide. Because several pathogenic strains of M. tuberculosis (Mtb) have developed resistance against most of the established anti-TB drugs, new therapeutic options are urgently needed. An attractive target for the development of new anti-TB agents is the salicylate synthase MbtI, the first enzyme of the mycobacterial siderophore biochemical machinery, absent in human cells. In this work, a set of analogues of 5-(3-cyanophenyl)furan-2-carboxylic acid (I), the most potent MbtI inhibitor identified to date, was synthesized, characterized, and tested to further elucidate the structural requirements for achieving an efficient MbtI inhibition and potent antitubercular activity. The structure–activity relationships (SAR) discussed herein evidenced the importance of the side chain linked to the phenyl moiety to improve the in vitro antimycobacterial activity. In detail, 1f emerged as the most effective analogue against the pathogen, acting without cytotoxicity issues. To deepen the understanding of its mechanism of action, we established a fluorescence-based screening test to quantify the pathogen infectivity within host cells, using MPI-2 murine cells, a robust surrogate for alveolar macrophages. The set-up of the new assay demonstrates significant potential to accelerate the discovery of new anti-TB drugs.
Collapse
|
13
|
Reddy DS, Sinha A, Kumar A, Saini VK. Drug re-engineering and repurposing: A significant and rapid approach to tuberculosis drug discovery. Arch Pharm (Weinheim) 2022; 355:e2200214. [PMID: 35841594 DOI: 10.1002/ardp.202200214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/14/2022] [Accepted: 06/17/2022] [Indexed: 01/11/2023]
Abstract
The prevalence of tuberculosis (TB) remains the leading cause of death from a single infectious agent, ranking it above all other contagious diseases. The problem to tackle this disease seems to become even worse due to the outbreak of SARS-CoV-2. Further, the complications related to drug-resistant TB, prolonged treatment regimens, and synergy between TB and HIV are significant drawbacks. There are several drugs to treat TB, but there is still no rapid and accurate treatment available. Intensive research is, therefore, necessary to discover newer molecular analogs that can probably eliminate this disease within a short span. An increase in efficacy can be achieved through re-engineering old TB-drug families and repurposing known drugs. These two approaches have led to the production of newer classes of compounds with novel mechanisms to treat multidrug-resistant strains. With respect to this context, we discuss structural aspects of developing new anti-TB drugs as well as examine advances in TB drug discovery. It was found that the fluoroquinolone, oxazolidinone, and nitroimidazole classes of compounds have greater potential to be further explored for TB drug development. Most of the TB drug candidates in the clinical phase are modified versions of these classes of compounds. Therefore, here we anticipate that modification or repurposing of these classes of compounds has a higher probability to reach the clinical phase of drug development. The information provided will pave the way for researchers to design and identify newer molecular analogs for TB drug development and also broaden the scope of exploring future-generation potent, yet safer anti-TB drugs.
Collapse
Affiliation(s)
- Dinesh S Reddy
- Centre for Nano and Material Sciences, Jain University, Bangalore, India
| | - Anamika Sinha
- Centre for Nano and Material Sciences, Jain University, Bangalore, India
| | - Amit Kumar
- Centre for Nano and Material Sciences, Jain University, Bangalore, India
| | - Vipin K Saini
- Materials and Environmental Chemistry Research Laboratory, School of Environment & Natural Resources, Doon University, Dehradun, India
| |
Collapse
|
14
|
Kapadiya KM, Kavadia KM, Khedkar VM, Dholaria PV, Jivani AJ, Khunt RC. Synthesis of fluoro-rich pyrimidine-5-carbonitriles as antitubercular agents against H37Rv receptor. HETEROCYCL COMMUN 2022. [DOI: 10.1515/hc-2022-0010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
The purpose of this study was to prepare various derivatives of 4-amino-2-(3-fluoro-5-(trifluoromethyl)phenyl)-6-arylpyrimidine-5-carbonitrile (6a–6h) using a three-step procedure. The derivatives were screened in vitro for activity against Mycobacterium tuberculosis strain H37Rv. The activity was expressed as the minimum inhibitory concentration (MIC) in μg/mL (μM). Eight compounds showed activity against Mtb H37Rv, and among them, 6f showed the best value of MIC, IC50 (53 μM) and IC90 (62 μM). Minimum bactericidal concentration of compound 6f was higher than its MIC and was more time-dependent than the concentration. Compound 6f was more active against M. tuberculosis H37Rv under low oxygen than metronidazole and did not show good potency in different treatments and non-tuberculous mycobacteria. Furthermore, a molecular docking study against mycobacterial enoyl-ACP reductase (InhA) could provide valuable insights into the plausible mechanism of action, which could set the theme for lead optimization.
Collapse
Affiliation(s)
- Khushal M. Kapadiya
- Department of Chemistry, Bio-Research and Characterization Centre, School of Science, RK University , Rajkot- 360 020 , Gujarat , India
| | - Kishor M. Kavadia
- Department of Chemistry, Chemistry Research Laboratory, Saurashtra University , Rajkot- 360 005 , Gujarat , India
| | - Vijay M. Khedkar
- Department of Pharmaceutical Chemistry, School of Pharmacy, Vishwakarma University , Pune , Maharashtra, 411 048 , India
| | - Piyush V. Dholaria
- Department of Chemistry, Bio-Research and Characterization Centre, School of Science, RK University , Rajkot- 360 020 , Gujarat , India
| | - Amita J. Jivani
- Department of Chemistry, Chemistry Research Laboratory, Saurashtra University , Rajkot- 360 005 , Gujarat , India
| | - Ranjan C. Khunt
- Department of Chemistry, Chemistry Research Laboratory, Saurashtra University , Rajkot- 360 005 , Gujarat , India
| |
Collapse
|
15
|
Angula KT, Legoabe LJ, Jordaan A, Warner DF, Beteck RM. Investigation of quinolone-tethered aminoguanidine as novel antibacterial agents. Arch Pharm (Weinheim) 2022; 355:e2200172. [PMID: 35674486 DOI: 10.1002/ardp.202200172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/10/2022] [Accepted: 05/19/2022] [Indexed: 11/05/2022]
Abstract
A recent study identified quinolone-based thiosemicarbazone with an MIC90 value of 2 µM against Mycobacterium tuberculosis (Mtb). Herein, we report further optimization of the previous hit, which led to the discovery of quinolone-tethered aminoguanidine molecules with generally good antitubercular activity. Compounds 7f and 8e emerged as the hits of the series with submicromolar antitubercular activity, exhibiting MIC90 values of 0.49/0.90 and 0.49/0.60 µM, respectively, in the 7H9 CAS GLU Tx medium. This shows a fivefold increase in antitubercular activity compared to the previous study. Target compounds were also screened against ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) pathogens. However, the series generally exhibited poor antibacterial activities, with only compounds 8d and 8e demonstrating >50% growth inhibition of Staphylococcus aureus and Pseudomonas aeruginosa at 32 µg/ml. The compounds displayed selective antitubercular activity as they showed no cytotoxicity effects against two noncancerous human cell lines. In silico studies predict 7f to have good solubility, no inhibitory effect on cytochrome P450 isoenzymes, and to be a non-pan-assay interfering compound.
Collapse
Affiliation(s)
- Klaudia T Angula
- Department of Pharmaceutical Chemistry, Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| | - Lesetja J Legoabe
- Department of Pharmaceutical Chemistry, Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| | - Audrey Jordaan
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, Department of Pathology, University of Cape Town, Observatory, South Africa
| | - Digby F Warner
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, Department of Pathology, University of Cape Town, Observatory, South Africa.,Molecular Mycobacteriology Research Unit, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch, South Africa.,Department of Pathology, Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Faculty of Health Sciences, University of Cape Town, Rondebosch, South Africa
| | - Richard M Beteck
- Department of Pharmaceutical Chemistry, Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| |
Collapse
|
16
|
Fernandes GFS, Thompson AM, Castagnolo D, Denny WA, Dos Santos JL. Tuberculosis Drug Discovery: Challenges and New Horizons. J Med Chem 2022; 65:7489-7531. [PMID: 35612311 DOI: 10.1021/acs.jmedchem.2c00227] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Over the past 2000 years, tuberculosis (TB) has claimed more lives than any other infectious disease. In 2020 alone, TB was responsible for 1.5 million deaths worldwide, comparable to the 1.8 million deaths caused by COVID-19. The World Health Organization has stated that new TB drugs must be developed to end this pandemic. After decades of neglect in this field, a renaissance era of TB drug discovery has arrived, in which many novel candidates have entered clinical trials. However, while hundreds of molecules are reported annually as promising anti-TB agents, very few successfully progress to clinical development. In this Perspective, we critically review those anti-TB compounds published in the last 6 years that demonstrate good in vivo efficacy against Mycobacterium tuberculosis. Additionally, we highlight the main challenges and strategies for developing new TB drugs and the current global pipeline of drug candidates in clinical studies to foment fresh research perspectives.
Collapse
Affiliation(s)
- Guilherme F S Fernandes
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, United Kingdom
| | - Andrew M Thompson
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Daniele Castagnolo
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, United Kingdom
| | - William A Denny
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Jean L Dos Santos
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800903, Brazil
| |
Collapse
|
17
|
Dhameliya TM, Devani AA, Patel KA, Shah KC. Comprehensive Coverage on Anti‐mycobacterial Endeavour Reported in 2021. ChemistrySelect 2022. [DOI: 10.1002/slct.202200921] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
| | - Aanal A. Devani
- L. M. College of Pharmacy, Navrangpura Ahmedabad 380 009 Gujarat India
| | - Krupa A. Patel
- L. M. College of Pharmacy, Navrangpura Ahmedabad 380 009 Gujarat India
| | - Kashvi C. Shah
- L. M. College of Pharmacy, Navrangpura Ahmedabad 380 009 Gujarat India
| |
Collapse
|
18
|
New Quinoline-Urea-Benzothiazole Hybrids as Promising Antitubercular Agents: Synthesis, In Vitro Antitubercular Activity, Cytotoxicity Studies, and In Silico ADME Profiling. Pharmaceuticals (Basel) 2022; 15:ph15050576. [PMID: 35631402 PMCID: PMC9146500 DOI: 10.3390/ph15050576] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 01/30/2023] Open
Abstract
A series of 25 new benzothiazole−urea−quinoline hybrid compounds were synthesized successfully via a three-step synthetic sequence involving an amidation coupling reaction as a critical step. The structures of the synthesized compounds were confirmed by routine spectroscopic tools (1H and 13C NMR and IR) and by mass spectrometry (HRMS). In vitro evaluation of these hybrid compounds for their antitubercular inhibitory activity against the Mycobacterium tuberculosis H37Rv pMSp12::GPF bioreporter strain was undertaken. Of the 25 tested compounds, 17 exhibited promising anti-TB activities of less than 62.5 µM (MIC90). Specifically, 13 compounds (6b, 6g, 6i−j, 6l, 6o−p, 6r−t, and 6x−y) showed promising activity with MIC90 values in the range of 1−10 µM, while compound 6u, being the most active, exhibited sub-micromolar activity (0.968 µM) in the CAS assay. In addition, minimal cytotoxicity against the HepG2 cell line (cell viability above 75%) in 11 of the 17 compounds, at their respective MIC90 concentrations, was observed, with 6u exhibiting 100% cell viability. The hybridization of the quinoline, urea, and benzothiazole scaffolds demonstrated a synergistic relationship because the activities of resultant hybrids were vastly improved compared to the individual entities. In silico ADME predictions showed that the majority of these compounds have drug-like properties and are less likely to potentially cause cardiotoxicity (QPlogHERG > −5). The results obtained in this study indicate that the majority of the synthesized compounds could serve as valuable starting points for future optimizations as new antimycobacterial agents.
Collapse
|
19
|
Angelova VT, Pencheva T, Vassilev N, K-Yovkova E, Mihaylova R, Petrov B, Valcheva V. Development of New Antimycobacterial Sulfonyl Hydrazones and 4-Methyl-1,2,3-thiadiazole-Based Hydrazone Derivatives. Antibiotics (Basel) 2022; 11:antibiotics11050562. [PMID: 35625207 PMCID: PMC9137698 DOI: 10.3390/antibiotics11050562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/19/2022] [Accepted: 04/19/2022] [Indexed: 12/03/2022] Open
Abstract
Fifteen 4-methyl-1,2,3-thiadiazole-based hydrazone derivatives 3a–d and sulfonyl hydrazones 5a–k were synthesized. They were characterized by 1H-NMR, 13C NMR, and HRMS. Mycobacterium tuberculosis strain H37Rv was used to assess their antimycobacterial activity. All compounds demonstrated significant minimum inhibitory concentrations (MIC) from 0.07 to 0.32 µM, comparable to those of isoniazid. The cytotoxicity was evaluated using the standard MTT-dye reduction test against human embryonic kidney cells HEK-293T and mouse fibroblast cell line CCL-1. 4-Hydroxy-3-methoxyphenyl substituted 1,2,3-thiadiazole-based hydrazone derivative 3d demonstrated the highest antimycobacterial activity (MIC = 0.0730 µM) and minimal associated cytotoxicity against two normal cell lines (selectivity index SI = 3516, HEK-293, and SI = 2979, CCL-1). The next in order were sulfonyl hydrazones 5g and 5k with MIC 0.0763 and 0.0716 µM, respectively, which demonstrated comparable minimal cytotoxicity. All compounds were subjected to ADME/Tox computational predictions, which showed that all compounds corresponded to Lipinski’s Ro5, and none were at risk of toxicity. The suitable scores of molecular docking performed on two crystallographic structures of enoyl-ACP reductase (InhA) provide promising insight into possible interaction with the InhA receptor. The 4-methyl-1,2,3-thiadiazole-based hydrazone derivatives and sulfonyl hydrazones proved to be new classes of lead compounds having the potential of novel candidate antituberculosis drugs.
Collapse
Affiliation(s)
- Violina T. Angelova
- Department of Chemistry, Faculty of Pharmacy, Medical University, 1431 Sofia, Bulgaria;
- Correspondence: or (V.T.A.); (V.V.)
| | - Tania Pencheva
- Department of QSAR and Molecular Modeling, Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria;
| | - Nikolay Vassilev
- Laboratory “Nuclear Magnetic Resonance”, Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria;
| | - Elena K-Yovkova
- Faculty of Computer Systems and Technologies, Technical University, 1756 Sofia, Bulgaria;
| | - Rositsa Mihaylova
- Laboratory “Drug Metabolism and Drug Toxicity”, Department “Pharmacology, Pharmacotherapy and Toxicology”, Faculty of Pharmacy, Medical University, 1431 Sofia, Bulgaria;
| | - Boris Petrov
- Department of Chemistry, Faculty of Pharmacy, Medical University, 1431 Sofia, Bulgaria;
| | - Violeta Valcheva
- Laboratory of Molecular Biology of Mycobacteria, Department of Infectious Microbiology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
- Correspondence: or (V.T.A.); (V.V.)
| |
Collapse
|
20
|
Dhawan B, Akhter G, Hamid H, Kesharwani P, Alam MS. Benzoxaboroles: New emerging and versatile scaffold with a plethora of pharmacological activities. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132057] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
21
|
Prospects of Using Pharmacologically Active Compounds for the Creation of Antimycobacterial Drugs. Pharm Chem J 2022. [DOI: 10.1007/s11094-021-02544-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
22
|
Design, Synthesis and In Vitro Antimicrobial Activity of 6-(1H-Benzimidazol-2-yl)-3,5-dimethyl-4-oxo-2-thio-3,4-dihydrothieno[2,3-d]pyrimidines. Sci Pharm 2021. [DOI: 10.3390/scipharm89040049] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The rapid development in bacterial resistance to many groups of known antibiotics forces the researchers to discover antibacterial drug candidates with previously unknown mechanisms of action, one of the most relevant being the inhibition of tRNA (Guanine37-N1)-methyltransferase (TrmD). The discovery of selective TrmD inhibitors in the series of carboxamide derivatives of thienopyrimidines became a background for further modification of the similar structures aimed at the development of promising antibacterial agents. As part of this research, we carried out the construction of heterocyclic hybrids bearing the moieties of thieno[2,3-d]pyrimidine and benzimidazole starting from 3,5-dimethyl-4-oxo-2-thioxo-1H-thieno[2,3-d]pyrimidine-6-carboxylic acid, which was used as the pivotal intermediate. The hybrid molecule of 6-(1H-benzimidazol-2-yl)-3,5-dimethyl-2-thioxo-1H-thieno[2,3-d]pyrimidin-4-one prepared via condensation of the carboxylic acid with ortho-phenylenediamine was further alkylated with aryl/hetaryl chloroacetamides and benzyl chloride to produce the series of S-alkyl derivatives. The results of molecular docking studies for the obtained series of S-alkyl benzimidazole-thienopyrimidines showed their high affinity to the TrmD isolated from the P. aeruginosa. The results of antimicrobial activity screening revealed the antimicrobial properties for all of the studied molecules against both Gram-positive and Gram-negative bacteria and the Candida albicans fungal strain. The highest antimicrobial activity was determined for 2-{[6-(1H-benzimidazol-2-yl)-3,5-dimethyl-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidin-2-yl]thio}-N-(4-isopropylphenyl)acetamide, which also had the highest affinity to the TrmD inhibitor’s binding site according to the docking studies results.
Collapse
|
23
|
Fan D, Wang B, Stelitano G, Savková K, Shi R, Huszár S, Han Q, Mikušová K, Chiarelli LR, Lu Y, Qiao C. Structural and Activity Relationships of 6-Sulfonyl-8-Nitrobenzothiazinones as Antitubercular Agents. J Med Chem 2021; 64:14526-14539. [PMID: 34609861 DOI: 10.1021/acs.jmedchem.1c01049] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The benzothiazinone (BTZ) scaffold compound PBTZ169 kills Mycobacterium tuberculosis by inhibiting the essential flavoenzyme DprE1, consequently blocking the synthesis of the cell wall component arabinans. While extraordinarily potent against M. tuberculosis with a minimum inhibitory concentration (MIC) less than 0.2 ng/mL, its low aqueous solubility and bioavailability issues need to be addressed. Here, we designed and synthesized a series of 6-methanesulfonyl substituted BTZ analogues; further exploration introduced five-member aromatic heterocycles as linkers to attach an aryl group as the side chain. Our work led to the discovery of a number of BTZ derived compounds with potent antitubercular activity. The optimized compounds 6 and 38 exhibited MIC 47 and 30 nM, respectively. Compared to PBTZ169, both compounds displayed increased aqueous solubility and higher stability in human liver microsomes. This study suggested that an alternative side-chain modification strategy could be implemented to improve the druglike properties of the BTZ-based compounds.
Collapse
Affiliation(s)
- Dongguang Fan
- College of Pharmaceutical Sciences, Soochow University, 199 Renai Road, Suzhou 215123, P. R. China
| | - Bin Wang
- Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Department of Pharmacology, Beijing Tuberculosis and Thoracic Tumor Research, Beijing Chest Hospital, 97 Ma Chang Street, Beijing 101149, P. R. China
| | - Giovanni Stelitano
- Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9, 27100 Pavia, Italy
| | - Karin Savková
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, Ilkovičova 6, 842 15 Bratislava, Slovakia
| | - Rui Shi
- College of Pharmaceutical Sciences, Soochow University, 199 Renai Road, Suzhou 215123, P. R. China
| | - Stanislav Huszár
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, Ilkovičova 6, 842 15 Bratislava, Slovakia
| | - Quanquan Han
- College of Pharmaceutical Sciences, Soochow University, 199 Renai Road, Suzhou 215123, P. R. China
| | - Katarína Mikušová
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, Ilkovičova 6, 842 15 Bratislava, Slovakia
| | - Laurent R Chiarelli
- Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9, 27100 Pavia, Italy
| | - Yu Lu
- Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Department of Pharmacology, Beijing Tuberculosis and Thoracic Tumor Research, Beijing Chest Hospital, 97 Ma Chang Street, Beijing 101149, P. R. China
| | - Chunhua Qiao
- College of Pharmaceutical Sciences, Soochow University, 199 Renai Road, Suzhou 215123, P. R. China
| |
Collapse
|