1
|
Ferez-Puche M, Serna-Duque JA, Cuesta A, Sánchez-Ferrer Á, Esteban MÁ. Identification of a Novel β-Defensin Gene in Gilthead Seabream (Sparus aurata). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 26:1219-1230. [PMID: 39259315 PMCID: PMC11541337 DOI: 10.1007/s10126-024-10367-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 08/29/2024] [Indexed: 09/13/2024]
Abstract
The excessive use of antibiotics in aquaculture favors the natural selection of multidrug-resistant bacteria, and antimicrobial peptides (AMPs) could be a promising alternative to this problem. The most studied AMPs in teleost fish are piscidins, hepcidins, and β-defensins. In this work, we have found a new gene (defb2) encoding a type 2 β-defensin in the genome of gilthead seabream, a species chosen for its economic interest in aquaculture. Its open reading frame (192 bp) encodes a protein (71 amino acids) that undergoes proteolytic cleavage to obtain the functional mature peptide (42 amino acids). The genetic structure in three exons and two introns and the six characteristic cysteines are conserved as the main signature of this protein family. In the evolutionary analysis, synteny shows a preservation of chromosomal localization and the phylogenetic tree constructed exposes the differences between both types of β-defensin as well as the similarities between seabream and European seabass. In relation to its basal expression, β-defensin 2 is mostly expressed in the intestine, thymus, skin, and gonads of the gilthead seabream (Sparus aurata). In head kidney leucoytes (HKLs), the expression was very low and did not change significantly when stimulated with various immunocompetent agents. However, the expression was significantly down-regulated in the liver, head-kidney, and blood 4 h post-injection with the fish pathogen Vibrio harveyi. When infected with nodavirus, the expression was downregulated in brain at 7 days post-infection. These results denote a possible complementarity between the expression patterns of β-defensins and hepcidins. Further studies are needed to analyze gene duplications and expression patterns of β-defensins and describe their mechanism of action in seabream and other teleost fish.
Collapse
Affiliation(s)
- M Ferez-Puche
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, 30100, Murcia, Spain
| | - Jhon A Serna-Duque
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, 30100, Murcia, Spain
| | - Alberto Cuesta
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, 30100, Murcia, Spain
| | - Álvaro Sánchez-Ferrer
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Murcia, 30100, Murcia, Spain
| | - María Ángeles Esteban
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, 30100, Murcia, Spain.
| |
Collapse
|
2
|
Neghabi Hajigha M, Hajikhani B, Vaezjalali M, Samadi Kafil H, Kazemzadeh Anari R, Goudarzi M. Antiviral and antibacterial peptides: Mechanisms of action. Heliyon 2024; 10:e40121. [PMID: 39748995 PMCID: PMC11693924 DOI: 10.1016/j.heliyon.2024.e40121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 11/02/2024] [Accepted: 11/04/2024] [Indexed: 01/04/2025] Open
Abstract
Antimicrobial peptides (AMPs) present promising alternatives for addressing bacterial and viral multidrug resistance due to their distinctive properties. Understanding the mechanisms of these compounds is essential for achieving this objective. Therefore, this comprehensive review aims to highlight primary natural sources of AMPs and elucidate various aspects of the modes of action of antiviral and antibacterial peptides (ABPs). It emphasizes that antiviral peptides (AVPs) can disrupt the replication cycle of both enveloped and non-enveloped viruses at several stages, including pre-fusion, fusion, and post-entry into the host cell. Additionally, the review discusses the inhibitory effects of ABPs on bacterial growth, outlining their extracellular actions as well as their intracellular activities following membrane translocation. Factors such as structure, size, electric charge, environmental factors, degrading enzymes, and microbial resistance against AMPs can affect the function of AMPs.
Collapse
Affiliation(s)
- Mahdyeh Neghabi Hajigha
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bahareh Hajikhani
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Vaezjalali
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Samadi Kafil
- Drug Applied Research Center, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Raana Kazemzadeh Anari
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Goudarzi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Sun S. Progress in the Identification and Design of Novel Antimicrobial Peptides Against Pathogenic Microorganisms. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10402-4. [PMID: 39557756 DOI: 10.1007/s12602-024-10402-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2024] [Indexed: 11/20/2024]
Abstract
The occurrence and spread of antimicrobial resistance (AMR) pose a looming threat to human health around the world. Novel antibiotics are urgently needed to address the AMR crisis. In recent years, antimicrobial peptides (AMPs) have gained increasing attention as potential alternatives to conventional antibiotics due to their abundant sources, structural diversity, broad-spectrum antimicrobial activity, and ease of production. Given its significance, there has been a tremendous advancement in the research and development of AMPs. Numerous AMPs have been identified from various natural sources (e.g., plant, animal, human, microorganism) based on either well-established isolation or bioinformatic pipelines. Moreover, computer-assisted strategies (e.g., machine learning (ML) and deep learning (DL)) have emerged as a powerful and promising technology for the accurate prediction and design of new AMPs. It may overcome some of the shortcomings of traditional antibiotic discovery and contribute to the rapid development and translation of AMPs. In these cases, this review aims to appraise the latest advances in identifying and designing AMPs and their significant antimicrobial activities against a wide range of bacterial pathogens. The review also highlights the critical challenges in discovering and applying AMPs.
Collapse
Affiliation(s)
- Shengwei Sun
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, 100 44, Stockholm, Sweden.
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Science for Life Laboratory, Tomtebodavägen 23, 171 65, Solna, Sweden.
| |
Collapse
|
4
|
Huang W, Xiao W, Qin G, Lu Z, Peng X, Liu Y, Lin Q, Sun J. The antibacterial defence role of β-defensin in the seahorse testis. FISH & SHELLFISH IMMUNOLOGY 2024:110022. [PMID: 39542066 DOI: 10.1016/j.fsi.2024.110022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/05/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
Seahorses represent the only known group of animals with male pregnancy. Seahorses have small testis that produce a limited quantity of sperm. To date, the response of this immune-privileged organ to pathogenic infections has not been reported. β-defensin (BD) is an important innate immune defence factor against pathogens in vertebrate testis. To elucidate its immunoprotection in seahorse testis, we identified the Hippocampus erectus β-defensin (HeBD) sequence in its genome via phylogenetic tree and protein-sequence structure analysis. Gene-expression analysis showed that HeBD was highly expressed in the seahorse testis and was significantly upregulated after bacterial infection, indicating that HeBD expression was related to testicular immune responses. Furthermore, antibacterial activity testing demonstrated that the mature HeBD peptide exhibited broad-spectrum aggregation activity but only moderate antibacterial activity. We found that the mature HeBD mature significantly neutralised bacterial endotoxin activity. In conclusion, our results imply that HeBD serves an immunoprotective role in seahorse testis.
Collapse
Affiliation(s)
- Wei Huang
- Key Laboratory of Aquatic Ecology and Aquaculture of Tianjin, College of Fisheries, Tianjin Agricultural University, Tianjin 300384, China; CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Wanghong Xiao
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Geng Qin
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Zijian Lu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Xiaoqian Peng
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, China
| | - Ying Liu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen, 361005, China
| | - Qiang Lin
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Jinhui Sun
- Key Laboratory of Aquatic Ecology and Aquaculture of Tianjin, College of Fisheries, Tianjin Agricultural University, Tianjin 300384, China
| |
Collapse
|
5
|
Liu H, Wang S, Zhang Z, Yan H, He T, Wei X, Shi Y, Chen Y, Wang W, Li X. Nanopore-based full-length transcriptome sequencing of the skin in Pseudopleuronectes yokohamae identifies novel antimicrobial peptide genes. FISH & SHELLFISH IMMUNOLOGY 2024; 154:109957. [PMID: 39393612 DOI: 10.1016/j.fsi.2024.109957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/22/2024] [Accepted: 10/09/2024] [Indexed: 10/13/2024]
Abstract
The marbled flounder (Pseudopleuronectes yokohamae) is highly esteemed for its exceptional nutritional value and delicious taste. However, this species has extremely limited transcriptome data, which can offer priceless information for disease protection. In the study, the skin transcriptomic sequencing of P. yokohamae revealed 7.72 GB of clean data using the Nanopore sequencing platform. The results revealed 30,498 transcripts of functional annotations in the P. yokohamae transcriptome. All transcripts were searched in eight functional databases. A total of 10,337 ORFs were obtained, of which 6081 complete ORFs accounted for 58.83% of all predicted CDS. Moreover, 10,195 SSRs were detected. Meanwhile, the non-pecific immunity pathways were investigated for better understanding of the immunological reaction in P. yokohamae, and seven innate immune pathways were identified. The innate-immune related genes were highly expressed in the NOD-like receptor signaling pathway, followed by the C-type lectin receptor signaling pathway, Toll-like receptor signaling pathway, RIG-I-like receptor signaling pathway and Cytosolic DNA-sensing pathway. In this study, four families of antimicrobial peptides (AMPs) in P. yokohamae were analysed for the first time, including piscidins, hepcidins, liver-expressed antimicrobial peptide and defensins. Seven AMPs, including Pypleurocidin-like WF3, Pypleurocidin-like WFX, Pyhepcidin 1, Pyhepcidin-like 1, PyLEAP-2, Pybeta-defensin and Pybeta-defensin-like 1, were further identified. The seven AMPs showed a highly identity in their cDNA and genomic structures and an inducible expression pattern preferable to skin in response to pathogens. The transcriptomic data and investigation of AMPs from P. yokohamae promote a deeper awareness of fish mucosal immunity and provide information in the prevention of fish diseases.
Collapse
Affiliation(s)
- Hui Liu
- Key Laboratory of Applied Biology and Aquaculture of Northern Fishes in Liaoning Province, Dalian Ocean University, Dalian, China; College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| | - Shuai Wang
- Key Laboratory of Applied Biology and Aquaculture of Northern Fishes in Liaoning Province, Dalian Ocean University, Dalian, China; College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| | - Zheng Zhang
- College of Environmental Sciences and Engineering, Dalian Maritime University, Dalian, China
| | - Huixiang Yan
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| | - Tingting He
- Key Laboratory of Applied Biology and Aquaculture of Northern Fishes in Liaoning Province, Dalian Ocean University, Dalian, China; College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| | - Xiaoyan Wei
- Key Laboratory of Applied Biology and Aquaculture of Northern Fishes in Liaoning Province, Dalian Ocean University, Dalian, China; College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| | - Yanyan Shi
- Key Laboratory of Applied Biology and Aquaculture of Northern Fishes in Liaoning Province, Dalian Ocean University, Dalian, China; College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| | - Yan Chen
- Key Laboratory of Applied Biology and Aquaculture of Northern Fishes in Liaoning Province, Dalian Ocean University, Dalian, China; College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| | - Wei Wang
- Key Laboratory of Applied Biology and Aquaculture of Northern Fishes in Liaoning Province, Dalian Ocean University, Dalian, China; College of Fisheries and Life Science, Dalian Ocean University, Dalian, China.
| | - Xuejie Li
- Key Laboratory of Applied Biology and Aquaculture of Northern Fishes in Liaoning Province, Dalian Ocean University, Dalian, China; College of Fisheries and Life Science, Dalian Ocean University, Dalian, China.
| |
Collapse
|
6
|
Guo M, Peng R, Jin K, Zhang X, Mo H, Li X, Qu F, Tang J, Cao S, Zhou Y, He Z, Mao Z, Fan J, Li J, Liu Z. Effects of Aeromonas infection on the immune system, physical barriers and microflora structure in the intestine of juvenile grass carp (Ctenopharyngodon idella). FISH & SHELLFISH IMMUNOLOGY 2024; 153:109790. [PMID: 39059563 DOI: 10.1016/j.fsi.2024.109790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/11/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
Grass carp (Ctenopharyngodon idella) is an intensively cultured and economically important herbivorous fish species in China, but its culture is often impacted by Aeromonas pathogens such as Aeromonas hydrophila and Aeromonas veronii. In this study, healthy grass carp were separately infected with A. hydrophila or A. veronii for 12, 24, 48 or 72 h. The results showed that the mRNA expression levels of intestinal inflammatory factors (tnf-α, il-1β and il-8), complement factors (c3 and c4), antimicrobial peptides (hepcidin, nk-lysin and β-defensin-1), immunoglobulins (igm and igt), and immune pathway-related signaling molecules (tlr1, tlr2, tlr4, myd88, irak4, irak1, traf6, nf-κb p65 and ap-1) were differentially upregulated in response to A. hydrophila and A. veronii challenge. Additionally, the expression levels of the intestinal pro-apoptotic genes tnfr1, tnfr2, tradd, caspase-8, caspase-3 and bax were significantly increased, whereas the expression of the inhibitory factor bcl-2 was significantly downregulated, indicating that Aeromonas infection significantly induced apoptosis in the intestine of grass carp. Moreover, the expression of intestinal tight junction proteins (occludin, zo-1, claudin b and claudin c) was significantly decreased after infection with Aeromonas. Histopathological analysis indicated the Aeromonas challenge caused severe damage to the intestinal villi with adhesions and detachment of intestinal villi accompanied by severe inflammatory cell infiltration at 12 h and 72 h. The 16S rRNA sequencing results showed that Aeromonas infection significantly altered the structure of the intestinal microflora of the grass carp at the phylum (Proteobacteria, Fusobacteria, Bacteroidetes and Firmicutes) and genus (Proteus, Cetobacterium, Bacteroides, and Aeromonas) levels. Take together, the findings of this study revealed that Aeromonas infection induces an intestinal immune response, triggers cell apoptosis, destroys physical barriers and alters microflora structure in the intestine of juvenile grass carp; the results will help to reveal the pathogenesis of intestinal bacterial diseases in grass carp.
Collapse
Affiliation(s)
- Meixing Guo
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Chemical Engineering, Changsha University, Changsha, 410022, China; State Key Laboratory of Developmental Biology of Freshwater Fish, Department of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Ran Peng
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Chemical Engineering, Changsha University, Changsha, 410022, China; State Key Laboratory of Developmental Biology of Freshwater Fish, Department of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Kelan Jin
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Chemical Engineering, Changsha University, Changsha, 410022, China
| | - Xia Zhang
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Chemical Engineering, Changsha University, Changsha, 410022, China; State Key Laboratory of Developmental Biology of Freshwater Fish, Department of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Huilan Mo
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Chemical Engineering, Changsha University, Changsha, 410022, China
| | - Xiang Li
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Chemical Engineering, Changsha University, Changsha, 410022, China
| | - Fufa Qu
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Chemical Engineering, Changsha University, Changsha, 410022, China.
| | - Jianzhou Tang
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Chemical Engineering, Changsha University, Changsha, 410022, China
| | - Shenping Cao
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Chemical Engineering, Changsha University, Changsha, 410022, China
| | - Yonghua Zhou
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Chemical Engineering, Changsha University, Changsha, 410022, China
| | - Zhimin He
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Chemical Engineering, Changsha University, Changsha, 410022, China
| | - Zhuangwen Mao
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Chemical Engineering, Changsha University, Changsha, 410022, China
| | - Junde Fan
- Yueyang Yumeikang Biotechnology Co., Ltd., Yueyang, 414100, China
| | - Jianzhong Li
- State Key Laboratory of Developmental Biology of Freshwater Fish, Department of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Zhen Liu
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Chemical Engineering, Changsha University, Changsha, 410022, China.
| |
Collapse
|
7
|
P AP, V AM, V AV, K A, S N, S MM, Singh ISB, Philip R. A Novel Beta-Defensin Isoform from Malabar Trevally, Carangoides malabaricus (Bloch & Schneider, 1801), an Arsenal Against Fish Bacterial Pathogens: Molecular Characterization, Recombinant Production, and Mechanism of Action. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 26:696-715. [PMID: 38922559 DOI: 10.1007/s10126-024-10338-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 06/09/2024] [Indexed: 06/27/2024]
Abstract
Antimicrobial peptides (AMPs), including beta-defensin from fish, are a crucial class of peptide medicines. The focus of the current study is the molecular and functional attributes of CmDef, a 63-amino acid beta-defensin AMP from Malabar trevally, Carangoides malabaricus. This peptide demonstrated typical characteristics of AMPs, including hydrophobicity, amphipathic nature, and +2.8 net charge. The CmDef was recombinantly expressed and the recombinant peptide, rCmDef displayed a strong antimicrobial activity against bacterial fish pathogens with an MIC of 8 µM for V. proteolyticus and 32 µM for A. hydrophila. The E. tarda and V. harveyi showed an inhibition of 94% and 54%, respectively, at 32 µM concentration. No activity was observed against V. fluvialis and V. alginolyticus. The rCmDef has a multimode of action that exerts an antibacterial effect by membrane depolarization followed by membrane permeabilization and ROS production. rCmDef also exhibited anti-cancer activities in silico without causing hemolysis. The peptide demonstrated stability under various conditions, including different pH levels, temperatures, salts, and metal ions (KCl and CaCl2), and remained stable in the presence of proteases such as trypsin and proteinase K at concentrations up to 0.2 µg/100 µl. The strong antibacterial efficacy and non-cytotoxic nature suggest that rCmDef is a single-edged sword that can contribute significantly to aquaculture disease management.
Collapse
Affiliation(s)
- Athira P P
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, Kerala, 682016, India
| | - Anju M V
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, Kerala, 682016, India
| | - Anooja V V
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, Kerala, 682016, India
| | - Archana K
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, Kerala, 682016, India
| | - Neelima S
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, Kerala, 682016, India
| | - Muhammed Musthafa S
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, Kerala, 682016, India
| | - I S Bright Singh
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, Kerala, 682016, India
| | - Rosamma Philip
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, Kerala, 682016, India.
| |
Collapse
|
8
|
Velumani K, Arasu A, Issac PK, Kishore Kumar MS, Guru A, Arockiaraj J. Advancements of fish-derived peptides for mucormycosis: a novel strategy to treat diabetic compilation. Mol Biol Rep 2023; 50:10485-10507. [PMID: 37917415 DOI: 10.1007/s11033-023-08882-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/03/2023] [Indexed: 11/04/2023]
Abstract
Mucormycosis, an extremely fatal fungal infection, is a major hurdle in the treatment of diabetes consequences. The increasing prevalence and restricted treatment choices urge the investigation of novel therapeutic techniques. Because of their effective antimicrobial characteristics and varied modes of action, fish-derived peptides have lately emerged as viable options in the fight against mucormycosis. This review examines the potential further application of fish-derived peptides in diagnosing and managing mucormycosis in relation to diabetic complications. First, we examine the pathophysiology of mucormycosis and the difficulties in treating it in diabetics. We emphasize the critical need for alternative therapeutic methods for tackling the limitations of currently available antifungal medicines. The possibility of fish-derived peptides as an innovative approach to combat mucormycosis is then investigated. These peptides, derived from several fish species, provide wide antimicrobial properties against a variety of diseases. They also have distinct modes of action, such as rupture of cell membranes, suppression of development, and modification of the host immunological response. Furthermore, we investigate the problems and prospects connected with the clinical application of fish-derived peptides. Ultimately, future advances in fish-derived peptides, offer interesting avenues for the management of mucormycosis in the context of diabetic comorbidities. More research and clinical trials are needed to properly investigate these peptide's therapeutic potential and pave the way for their adoption into future antifungal therapies.
Collapse
Affiliation(s)
- Kadhirmathiyan Velumani
- Institute of Biotechnology, Department of Medical Biotechnology and Integrative Physiology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai, Tamil Nadu, 602 105, India
| | - Abirami Arasu
- Department of Microbiology, SRM Arts and Science College, Kattankulathur, Chennai, Tamil Nadu, 603 203, India
| | - Praveen Kumar Issac
- Institute of Biotechnology, Department of Medical Biotechnology and Integrative Physiology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai, Tamil Nadu, 602 105, India.
| | - Meenakshi Sundaram Kishore Kumar
- Biomedical Research Unit and Laboratory Animal Centre (BRULAC), Department of Anatomy, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600 077, India
| | - Ajay Guru
- Department of Cariology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu, 603203, India.
| |
Collapse
|
9
|
Gago F. Computational Approaches to Enzyme Inhibition by Marine Natural Products in the Search for New Drugs. Mar Drugs 2023; 21:100. [PMID: 36827141 PMCID: PMC9961086 DOI: 10.3390/md21020100] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/26/2023] [Accepted: 01/28/2023] [Indexed: 02/03/2023] Open
Abstract
The exploration of biologically relevant chemical space for the discovery of small bioactive molecules present in marine organisms has led not only to important advances in certain therapeutic areas, but also to a better understanding of many life processes. The still largely untapped reservoir of countless metabolites that play biological roles in marine invertebrates and microorganisms opens new avenues and poses new challenges for research. Computational technologies provide the means to (i) organize chemical and biological information in easily searchable and hyperlinked databases and knowledgebases; (ii) carry out cheminformatic analyses on natural products; (iii) mine microbial genomes for known and cryptic biosynthetic pathways; (iv) explore global networks that connect active compounds to their targets (often including enzymes); (v) solve structures of ligands, targets, and their respective complexes using X-ray crystallography and NMR techniques, thus enabling virtual screening and structure-based drug design; and (vi) build molecular models to simulate ligand binding and understand mechanisms of action in atomic detail. Marine natural products are viewed today not only as potential drugs, but also as an invaluable source of chemical inspiration for the development of novel chemotypes to be used in chemical biology and medicinal chemistry research.
Collapse
Affiliation(s)
- Federico Gago
- Department of Biomedical Sciences & IQM-CSIC Associate Unit, School of Medicine and Health Sciences, University of Alcalá, E-28805 Madrid, Alcalá de Henares, Spain
| |
Collapse
|
10
|
Abarike E, Dandi S, Ampofo-Yeboah A. A blend of Guava, Bitter, and Neem Leaf extracts improves haematology and resistance to co-infection of Streptococcus agalactiae and Aeromonas jandaie but not Liver health in Nile tilapia. FISH AND SHELLFISH IMMUNOLOGY REPORTS 2022; 3:100066. [DOI: 10.1016/j.fsirep.2022.100066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/03/2022] [Accepted: 08/16/2022] [Indexed: 01/12/2023] Open
|
11
|
Iram D, Kindarle UA, Sansi MS, Meena S, Puniya AK, Vij S. Peptidomics-based identification of an antimicrobial peptide derived from goat milk fermented by Lactobacillus rhamnosus (C25). J Food Biochem 2022; 46:e14450. [PMID: 36226982 DOI: 10.1111/jfbc.14450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 09/03/2022] [Accepted: 09/20/2022] [Indexed: 01/14/2023]
Abstract
Antimicrobial peptides (AMPs) are emerging as promising novel drug applicants. In the present study, goat milk was fermented using Lactobacillus rhamnosus C25 to generate bioactive peptides (BAPs). The peptide fractions generated were separated using ultrafiltration membranes with molecular weight cut-offs of 3, 5, and 10 kDa, and their antimicrobial activity toward Gram-positive and Gram-negative bacteria was investigated. Isolated AMPs were characterized using RP-HPLC and identified by LC-MS/MS. A total of 569 sequences of peptides were identified by mass spectrometry. Out of the 569, 36 were predicted as AMPs, 21 were predicted as cationic, and out of 21, 6 AMPs were helical peptides. In silico analysis indicated that the majority of peptides were antimicrobial and cationic in nature, an important factor for peptide interaction with the negative charge membrane of bacteria. The results showed that the peptides of <5 kDa exhibited maximum antibacterial activity against E. faecalis, E. coli, and S. typhi. Further, molecular docking was used to evaluate the potent MurD ligase inhibitors. On the basis of ligand binding energy, six predicted AMPs were selected and then analyzed by AutoDock tools. Among the six AMPs, peptides IGHFKLIFSLLRV (-7.5 kcal/mol) and KSFCPAPVAPPPPT (-7.6 kcal/mol), were predicted as a high-potent antimicrobial. Based on these findings, in silico investigations reveal that proteins of goat milk are a potential source of AMPs. This is for the first time that the antimicrobial peptides produced by Lactobacillus rhamnosus (C25) fermentation of goat milk have been identified via LC-MS/MS and predicted as AMPs, cationic charges, helical structure in nature, and potent MurD ligase inhibitors. These peptides can be synthesized and improved for use as antimicrobial agents. PRACTICAL APPLICATIONS: Goat milk is considered a high-quality source of milk protein. According to this study, goat milk protein is a potential source of AMPs, Fermentation can yield goat milk-derived peptides with a broad antibacterial activity spectrum at a low cost. The approach described here could be beneficial in that the significant AMPs can be synthesized and used in the pharmaceutical and food industries.
Collapse
Affiliation(s)
- Daraksha Iram
- Antimicrobial Peptides, Biofunctional Probiotics & Peptidomics Laboratory, Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, India
| | - Uday Arun Kindarle
- Antimicrobial Peptides, Biofunctional Probiotics & Peptidomics Laboratory, Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, India
| | - Manish Singh Sansi
- Biofunctional Peptidomics & Metabolic Syndrome Laboratory, Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, India
| | - Sunita Meena
- Biofunctional Peptidomics & Metabolic Syndrome Laboratory, Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, India
| | - Anil Kumar Puniya
- Anaerobic Microbial Fermentation Laboratory, Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, India
| | - Shilpa Vij
- Antimicrobial Peptides, Biofunctional Probiotics & Peptidomics Laboratory, Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, India
| |
Collapse
|
12
|
Iram D, Sansi MS, Zanab S, Vij S, Ashutosh, Meena S. In silico identification of antidiabetic and hypotensive potential bioactive peptides from the sheep milk proteins-a molecular docking study. J Food Biochem 2022; 46:e14137. [PMID: 35352361 DOI: 10.1111/jfbc.14137] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 01/21/2022] [Accepted: 02/06/2022] [Indexed: 01/04/2023]
Abstract
An in silico approach was used for hydrolysis of sheep milk proteins (α-s1, α-s2, β-casein, κ-Cn, α-lactalbumin, and β-lactoglobulin) by gastrointestinal enzymes in order to generate bioactive peptides (BAPs) that can inhibit ACE and DPP-IV. Sheep milk proteins showed higher similarity with goat milk proteins. These data were acquired via the Clustal Omega tool to perform sequence alignment analysis. The BIOPEP-UWM database was used to examine the ability of sheep milk protein sequences to generate BAPs, which included a description of their potential bioactivity as well as the frequency of fragments with specified activities. Using the "Enzyme(s) action" tool (BIOPEP-UWM), digestive enzymes pepsin, trypsin, and chymotrypsin, and three enzyme combinations were selected to computationally hydrolyze milk proteins for obtaining information about ACE and DPP-IV inhibitory peptides. Other online programs were used to test potential peptides for bioactivity, toxicity, and physicochemical properties. BAPs produced from PTC-hydrolyzed proteins were analyzed using a peptide ranker, and their inhibitory effects on ACE and DPP-IV were determined using molecular docking. Consequently, the results of molecular docking analysis show that the peptide PSGAW (αS1-Cn f155-159) binds to DPP-IV with binding energy (-8.9 kcal/mol). But in the case of ACE, two potential BAPs were selected: QPPQPL (β-Cn f161-166) and PSGAW. These two BAPs revealed a higher binding affinity for ACE with a binding energy of -9.8 kcal/mol. Thus, the results showed that sheep milk proteins were a promising source of antidiabetic and hypotensive peptides. However, experimental and pre-clinical studies are necessary to assay their therapeutic effects. PRACTICAL APPLICATIONS: Sheep milk proteins are known as a high-quality milk protein resource. Effective enzymatic hydrolysis of sheep milk proteins can release bioactive peptides and also release potential ACE and DPP-IV inhibitory peptides. This in silico study specifies a theoretical root for sheep milk proteins as a novel source of potential bioactive peptides and may offer guidance for invitro hydrolysis of proteins for the production of bioactive peptides valuable for human consumption.
Collapse
Affiliation(s)
- Daraksha Iram
- Dairy Microbiology Division, National Dairy Research Institute, Karnal, India
| | - Manish Singh Sansi
- Animal Biochemistry Division, National Dairy Research Institute, Karnal, India
| | | | - Shilpa Vij
- Dairy Microbiology Division, National Dairy Research Institute, Karnal, India
| | - Ashutosh
- Animal Physiology Division, National Dairy Research Institute, Karnal, Haryana, India
| | - Sunita Meena
- Animal Biochemistry Division, National Dairy Research Institute, Karnal, India
| |
Collapse
|
13
|
Yu SS, Zhao ZH, Gong XF, Fan XL, Lin ZH, Chen J. Antimicrobial and immunomodulatory activity of beta-defensin from the Chinese spiny frog (Quasipaa spinosa). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 126:104264. [PMID: 34551359 DOI: 10.1016/j.dci.2021.104264] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 09/18/2021] [Accepted: 09/18/2021] [Indexed: 06/13/2023]
Abstract
The β-defensins are important components of the vertebrate innate immune system. While mammalian β-defensins have wide-ranging antibacterial and immunomodulatory activities, those of amphibians remain largely uncharacterised. In this study, β-defensin cDNA was identified from the skin transcriptome of the Chinese spiny frog Quasipaa spinosa. This β-defensin (QS-BD) consists of a signal and a mature peptide. Sequence alignments with other amphibian β-defensins showed conservation of the functional mature peptide and that its closest relative is β-defensin from Zhangixalus puerensis. Synthetic QS-BD showed antibacterial activity against Vibrio vulnificus, Vibrio harveyi, Streptococcus iniae, and Aeromonas hydrophila. QS-BD showed bactericidal activity by destroying the cell membrane integrity, but did not hydrolyse genomic DNA. QS-BD treatment promoted respiratory bursts and upregulated the expression of interleukin-1β and tumour necrosis factor-α in the murine leukemic monocyte/macrophage cell line RAW264.7. This is the first demonstration of immunomodulatory activity by an amphibian β-defensin.
Collapse
Affiliation(s)
- Shui-Sheng Yu
- College of Ecology, Lishui University, Lishui, 323000, China; Ecological Forestry Development Center of Suichang County, Lishui, 323000, China
| | - Zeng-Hui Zhao
- College of Ecology, Lishui University, Lishui, 323000, China
| | - Xiao-Fei Gong
- College of Ecology, Lishui University, Lishui, 323000, China; Ecological Forestry Development Center of Suichang County, Lishui, 323000, China
| | - Xiao-Li Fan
- College of Ecology, Lishui University, Lishui, 323000, China
| | - Zhi-Hua Lin
- College of Ecology, Lishui University, Lishui, 323000, China.
| | - Jie Chen
- College of Ecology, Lishui University, Lishui, 323000, China.
| |
Collapse
|