1
|
Xiao W, Gao Z, Liu T, Zhong W, Jiang S, He M, Fu F, Li G, Su D, Guo J, Shan Y. Lemon essential oil nanoemulsions: Potential natural inhibitors against Escherichia coli. Food Microbiol 2024; 119:104459. [PMID: 38225037 DOI: 10.1016/j.fm.2023.104459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/28/2023] [Accepted: 12/28/2023] [Indexed: 01/17/2024]
Abstract
Lemon essential oil (LEO) is a common natural antibacterial substance, and encapsulating LEO into nanoemulsions (NEs) can improve their stability and broaden its application. Our study aimed to investigate the bacterial inhibitory effect of LEO-NEs against Escherichia coli (E. coli). Results showed that the minimum inhibitory concentration (MIC) of LEO-NEs was 6.25 mg/mL, and the time-kill curve showed that E. coli were significantly killed by LEO-NEs after 5 h of treatment at 1MIC. Flow-cytometry analysis showed that LEO-NEs adversely affected the cell-membrane depolarisation, cell-membrane integrity, and efflux pump function of E. coli. Confocal laser scanning microscopy demonstrated that 8MIC of LEO-NEs induced changes in the cell-membrane permeability and cell-wall integrity of E. coli. Proteomic results suggested that the mode of action LEO-NEs against E. coli was to enhance bacterial chemotaxis and significantly inhibit ribosomal assembly. They may also affect butyric acid, ascorbic acid and aldehyde metabolism, and sulphur-relay system pathways. In conclusion, LEO-NEs had potential application as a natural antibacterial agent for the control of E. coli in the food industry.
Collapse
Affiliation(s)
- Wenbin Xiao
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, Hunan Province, China; Hunan Agriculture Product Processing Institute, Dongting Laboratory, International Joint Lab on Fruits &Vegetables Processing, Quality and Safety, Hunan Provincial Key Laboratory of Fruits &Vegetables Storage, Processing, Quality and Safety, Hunan Academy of Agricultural Sciences, Changsha, 410125, Hunan Province, China
| | - Zhipeng Gao
- Fisheries College, Hunan Agricultural University, Changsha, 410128, Hunan Province, China
| | - Ting Liu
- Hunan Agriculture Product Processing Institute, Dongting Laboratory, International Joint Lab on Fruits &Vegetables Processing, Quality and Safety, Hunan Provincial Key Laboratory of Fruits &Vegetables Storage, Processing, Quality and Safety, Hunan Academy of Agricultural Sciences, Changsha, 410125, Hunan Province, China
| | - Weiming Zhong
- Fisheries College, Hunan Agricultural University, Changsha, 410128, Hunan Province, China
| | - Sifan Jiang
- Fisheries College, Hunan Agricultural University, Changsha, 410128, Hunan Province, China
| | - Mingwang He
- Fisheries College, Hunan Agricultural University, Changsha, 410128, Hunan Province, China
| | - Fuhua Fu
- Hunan Agriculture Product Processing Institute, Dongting Laboratory, International Joint Lab on Fruits &Vegetables Processing, Quality and Safety, Hunan Provincial Key Laboratory of Fruits &Vegetables Storage, Processing, Quality and Safety, Hunan Academy of Agricultural Sciences, Changsha, 410125, Hunan Province, China
| | - Gaoyang Li
- Hunan Agriculture Product Processing Institute, Dongting Laboratory, International Joint Lab on Fruits &Vegetables Processing, Quality and Safety, Hunan Provincial Key Laboratory of Fruits &Vegetables Storage, Processing, Quality and Safety, Hunan Academy of Agricultural Sciences, Changsha, 410125, Hunan Province, China
| | - Donglin Su
- Hunan Agriculture Product Processing Institute, Dongting Laboratory, International Joint Lab on Fruits &Vegetables Processing, Quality and Safety, Hunan Provincial Key Laboratory of Fruits &Vegetables Storage, Processing, Quality and Safety, Hunan Academy of Agricultural Sciences, Changsha, 410125, Hunan Province, China
| | - Jiajing Guo
- Hunan Agriculture Product Processing Institute, Dongting Laboratory, International Joint Lab on Fruits &Vegetables Processing, Quality and Safety, Hunan Provincial Key Laboratory of Fruits &Vegetables Storage, Processing, Quality and Safety, Hunan Academy of Agricultural Sciences, Changsha, 410125, Hunan Province, China.
| | - Yang Shan
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, Hunan Province, China; Hunan Agriculture Product Processing Institute, Dongting Laboratory, International Joint Lab on Fruits &Vegetables Processing, Quality and Safety, Hunan Provincial Key Laboratory of Fruits &Vegetables Storage, Processing, Quality and Safety, Hunan Academy of Agricultural Sciences, Changsha, 410125, Hunan Province, China.
| |
Collapse
|
2
|
Veiga-Matos J, Morales AI, Prieto M, Remião F, Silva R. Study Models of Drug-Drug Interactions Involving P-Glycoprotein: The Potential Benefit of P-Glycoprotein Modulation at the Kidney and Intestinal Levels. Molecules 2023; 28:7532. [PMID: 38005253 PMCID: PMC10673607 DOI: 10.3390/molecules28227532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/03/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
P-glycoprotein (P-gp) is a crucial membrane transporter situated on the cell's apical surface, being responsible for eliminating xenobiotics and endobiotics. P-gp modulators are compounds that can directly or indirectly affect this protein, leading to changes in its expression and function. These modulators can act as inhibitors, inducers, or activators, potentially causing drug-drug interactions (DDIs). This comprehensive review explores diverse models and techniques used to assess drug-induced P-gp modulation. We cover several approaches, including in silico, in vitro, ex vivo, and in vivo methods, with their respective strengths and limitations. Additionally, we explore the therapeutic implications of DDIs involving P-gp, with a special focus on the renal and intestinal elimination of P-gp substrates. This involves enhancing the removal of toxic substances from proximal tubular epithelial cells into the urine or increasing the transport of compounds from enterocytes into the intestinal lumen, thereby facilitating their excretion in the feces. A better understanding of these interactions, and of the distinct techniques applied for their study, will be of utmost importance for optimizing drug therapy, consequently minimizing drug-induced adverse and toxic effects.
Collapse
Affiliation(s)
- Jéssica Veiga-Matos
- UCIBIO-Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal;
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Toxicology Unit (Universidad de Salamanca), Group of Translational Research on Renal and Cardiovascular Diseases (TRECARD), Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain; (A.I.M.); (M.P.)
| | - Ana I. Morales
- Toxicology Unit (Universidad de Salamanca), Group of Translational Research on Renal and Cardiovascular Diseases (TRECARD), Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain; (A.I.M.); (M.P.)
| | - Marta Prieto
- Toxicology Unit (Universidad de Salamanca), Group of Translational Research on Renal and Cardiovascular Diseases (TRECARD), Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain; (A.I.M.); (M.P.)
| | - Fernando Remião
- UCIBIO-Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal;
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Renata Silva
- UCIBIO-Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal;
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| |
Collapse
|
3
|
Qun T, Zhou T, Hao J, Wang C, Zhang K, Xu J, Wang X, Zhou W. Antibacterial activities of anthraquinones: structure-activity relationships and action mechanisms. RSC Med Chem 2023; 14:1446-1471. [PMID: 37593578 PMCID: PMC10429894 DOI: 10.1039/d3md00116d] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 05/24/2023] [Indexed: 08/19/2023] Open
Abstract
With the increasing prevalence of untreatable infections caused by antibiotic-resistant bacteria, the discovery of new drugs from natural products has become a hot research topic. The antibacterial activity of anthraquinones widely distributed in traditional Chinese medicine has attracted much attention. Herein, the structure and activity relationships (SARs) of anthraquinones as bacteriostatic agents are reviewed and elucidated. The substituents of anthraquinone and its derivatives are closely related to their antibacterial activities. The stronger the polarity of anthraquinone substituents is, the more potent the antibacterial effects appear. The presence of hydroxyl groups is not necessary for the antibacterial activity of hydroxyanthraquinone derivatives. Substitution of di-isopentenyl groups can improve the antibacterial activity of anthraquinone derivatives. The rigid plane structure of anthraquinone lowers its water solubility and results in the reduced activity. Meanwhile, the antibacterial mechanisms of anthraquinone and its analogs are explored, mainly including biofilm formation inhibition, destruction of the cell wall, endotoxin inhibition, inhibition of nucleic acid and protein synthesis, and blockage of energy metabolism and other substances.
Collapse
Affiliation(s)
- Tang Qun
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences 200241 Shanghai China
| | - Tiantian Zhou
- School of Chinese Materia Medica, Guangdong Pharmaceutical University 440113 Guangzhou China
| | - Jiongkai Hao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences 200241 Shanghai China
| | - Chunmei Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences 200241 Shanghai China
- Key laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Research Institute, Chinese Academy of Agricultural Sciences Shanghai 200241 China
| | - Keyu Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences 200241 Shanghai China
- Key laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Research Institute, Chinese Academy of Agricultural Sciences Shanghai 200241 China
| | - Jing Xu
- Huanghua Agricultural and Rural Development Bureau Bohai New Area 061100 Hebei China
| | - Xiaoyang Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences 200241 Shanghai China
- Key laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Research Institute, Chinese Academy of Agricultural Sciences Shanghai 200241 China
| | - Wen Zhou
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences 200241 Shanghai China
- Key laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Research Institute, Chinese Academy of Agricultural Sciences Shanghai 200241 China
| |
Collapse
|
4
|
Almeida MC, Szemerédi N, Durães F, Long S, Resende DISP, Martins da Costa P, Pinto M, Spengler G, Sousa E. Effect of Indole-Containing Pyrazino[2,1- b]quinazoline-3,6-diones in the Virulence of Resistant Bacteria. Antibiotics (Basel) 2023; 12:antibiotics12050922. [PMID: 37237825 DOI: 10.3390/antibiotics12050922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Drug resistance is rising to alarming levels, constituting one of the major threats to global health. The overexpression of efflux pumps and the formation of biofilms constitute two of the most common resistance mechanisms, favoring the virulence of bacteria. Therefore, the research and development of effective antimicrobial agents that can also counteract resistance mechanisms are extremely important. Pyrazino[2,1-b]quinazoline-3,6-diones, from marine and terrestrial organisms and simpler synthetic analogues, were recently disclosed by us as having relevant antimicrobial properties. In this study, using a multi-step approach, it was possible to synthesize new pyrazino[2,1-b]quinazoline-3,6-diones focusing on compounds with fluorine substituents since, to the best of our knowledge, the synthesis of fluorinated fumiquinazoline derivatives had not been attempted before. The new synthesized derivatives were screened for antibacterial activity and, along with previously synthetized pyrazino[2,1-b]quinazoline-3,6-diones, were characterized for their antibiofilm and efflux-pump-inhibiting effects against representative bacterial species and relevant resistant clinical strains. Several compounds showed relevant antibacterial activity against the tested Gram-positive bacterial species with MIC values in the range of 12.5-77 μM. Furthermore, some derivatives showed promising results as antibiofilm agents in a crystal violet assay. The results of the ethidium bromide accumulation assay suggested that some compounds could potentially inhibit bacterial efflux pumps.
Collapse
Affiliation(s)
- Mariana C Almeida
- Laboratório de Química Orgânica e Farmacêutica, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- CIIMAR--Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal
| | - Nikoletta Szemerédi
- Department of Medical Microbiology, Albert Szent-Gyorgyi Health Center and Albert Szent-Gyorgyi Medical School, University of Szeged, Semmelweis utca 6, 6725 Szeged, Hungary
| | - Fernando Durães
- Laboratório de Química Orgânica e Farmacêutica, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- CIIMAR--Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal
| | - Solida Long
- Laboratório de Química Orgânica e Farmacêutica, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Department of Bioengineering, Royal University of Phnom Penh, Russian Confederation Blvd, Phnom Penh 12156, Cambodia
| | - Diana I S P Resende
- Laboratório de Química Orgânica e Farmacêutica, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- CIIMAR--Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal
| | - Paulo Martins da Costa
- CIIMAR--Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Madalena Pinto
- Laboratório de Química Orgânica e Farmacêutica, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- CIIMAR--Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal
| | - Gabriella Spengler
- Department of Medical Microbiology, Albert Szent-Gyorgyi Health Center and Albert Szent-Gyorgyi Medical School, University of Szeged, Semmelweis utca 6, 6725 Szeged, Hungary
| | - Emília Sousa
- Laboratório de Química Orgânica e Farmacêutica, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- CIIMAR--Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal
| |
Collapse
|
5
|
Bonito C, Ferreira RJ, Ferreira MJ, Durães F, Sousa E, Gillet JP, Cordeiro MNS, dos Santos DJVA. Probing the Allosteric Modulation of P-Glycoprotein: A Medicinal Chemistry Approach Toward the Identification of Noncompetitive P-Gp Inhibitors. ACS OMEGA 2023; 8:11281-11287. [PMID: 37008154 PMCID: PMC10061618 DOI: 10.1021/acsomega.2c08273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/01/2023] [Indexed: 06/19/2023]
Abstract
A medicinal chemistry approach combining in silico and in vitro methodologies was performed aiming at identifying and characterizing putative allosteric drug-binding sites (aDBSs) at the interface of the transmembrane- and nucleotide-binding domains (TMD-NBD) of P-glycoprotein. Two aDBSs were identified, one in TMD1/NBD1 and another one in TMD2/NBD2, by means of in silico fragment-based molecular dynamics and characterized in terms of size, polarity, and lining residues. From a small library of thioxanthone and flavanone derivatives, experimentally described to bind at the TMD-NBD interfaces, several compounds were identified to be able to decrease the verapamil-stimulated ATPase activity. An IC50 of 81 ± 6.6 μM is reported for a flavanone derivative in the ATPase assays, providing evidence for an allosteric efflux modulation in P-glycoprotein. Molecular docking and molecular dynamics gave additional insights on the binding mode on how flavanone derivatives may act as allosteric inhibitors.
Collapse
Affiliation(s)
- Cátia
A. Bonito
- LAQV@REQUIMTE,
Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, Porto 4169-007, Portugal
| | - Ricardo J. Ferreira
- Red
Glead Discovery AB, Medicon
Village, Scheelevägen 8, Lund 223 63, Sweden
| | - Maria-José.
U. Ferreira
- Research
Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, Lisbon 1649-003, Portugal
| | - Fernando Durães
- Interdisciplinary
Centre of Marine and Environmental Research (CIIMAR) & Laboratory
of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences,
Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira 228, Porto 4050-313, Portugal
| | - Emília Sousa
- Interdisciplinary
Centre of Marine and Environmental Research (CIIMAR) & Laboratory
of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences,
Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira 228, Porto 4050-313, Portugal
| | - Jean-Pierre Gillet
- Laboratory
of Molecular Cancer Biology, URPhyM, NARILIS, Faculty of Medicine, University of Namur, Namur 5000, Belgium
| | - M. Natália
D. S. Cordeiro
- LAQV@REQUIMTE,
Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, Porto 4169-007, Portugal
| | - Daniel J. V. A. dos Santos
- CBIOS-Center
for Research in Biosciences & Health Technologies, Lusófona University, Campo Grande, 376, Lisboa 1749-024, Portugal
| |
Collapse
|
6
|
Coppola D, Buonocore C, Palisse M, Tedesco P, de Pascale D. Exploring Oceans for Curative Compounds: Potential New Antimicrobial and Anti-Virulence Molecules against Pseudomonas aeruginosa. Mar Drugs 2022; 21:9. [PMID: 36662182 PMCID: PMC9865402 DOI: 10.3390/md21010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/16/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Although several antibiotics are already widely used against a large number of pathogens, the discovery of new antimicrobial compounds with new mechanisms of action is critical today in order to overcome the spreading of antimicrobial resistance among pathogen bacteria. In this regard, marine organisms represent a potential source of a wide diversity of unique secondary metabolites produced as an adaptation strategy to survive in competitive and hostile environments. Among the multidrug-resistant Gram-negative bacteria, Pseudomonas aeruginosa is undoubtedly one of the most important species due to its high intrinsic resistance to different classes of antibiotics on the market and its ability to cause serious therapeutic problems. In the present review, we first discuss the general mechanisms involved in the antibiotic resistance of P. aeruginosa. Subsequently, we list the marine molecules identified up until now showing activity against P. aeruginosa, dividing them according to whether they act as antimicrobial or anti-virulence compounds.
Collapse
Affiliation(s)
- Daniela Coppola
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Ammiraglio Ferdinando Acton 55, 80133 Naples, Italy
| | - Carmine Buonocore
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Ammiraglio Ferdinando Acton 55, 80133 Naples, Italy
| | - Morgan Palisse
- Département des Sciences de la Vie et de la Terre, Université de Caen Normandie, Boulevard Maréchal Juin CS, CEDEX, 14032 Caen, France
| | - Pietro Tedesco
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Ammiraglio Ferdinando Acton 55, 80133 Naples, Italy
| | - Donatella de Pascale
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Ammiraglio Ferdinando Acton 55, 80133 Naples, Italy
| |
Collapse
|
7
|
Pereira D, Durães F, Szemerédi N, Freitas-da-Silva J, Pinto E, Martins-da-Costa P, Pinto M, Correia-da-Silva M, Spengler G, Sousa E, Cidade H. New Chalcone-Triazole Hybrids with Promising Antimicrobial Activity in Multidrug Resistance Strains. Int J Mol Sci 2022; 23:14291. [PMID: 36430768 PMCID: PMC9697807 DOI: 10.3390/ijms232214291] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/09/2022] [Accepted: 11/16/2022] [Indexed: 11/19/2022] Open
Abstract
Resistance to antibiotics is an emerging problem worldwide, which leads to an increase in morbidity and mortality rates. Several mechanisms are attributed to bacterial resistance, overexpression of efflux pumps being one of the most prominent. As an attempt to develop new effective antimicrobial drugs, which could be able to act against resistant bacterial strains and considering the antimicrobial potential of flavonoids and triazolyl flavonoid derivatives, in particular chalcones, a small library of chalcone derivatives was synthesized and evaluated for its potential to act as antimicrobials and/or adjuvants in combination with antibiotics towards resistant bacteria. Although only compound 7 was able to act as antibacterial, compounds 1, 2, 4, 5, 7, and 9 revealed to be able to potentiate the activity of antibiotics in resistant bacteria. Moreover, five compounds (3, 5-8) demonstrated to be effective inhibitors of efflux pumps in Salmonella enterica serovar Typhimurium SL1344, and four compounds (1, 3, 7, and 10) showed higher ability than reserpine to inhibit biofilm formation of resistant Staphylococcus aureus 272123. Together, our results showed the potential of these compounds regarding reversion of bacterial resistance.
Collapse
Affiliation(s)
- Daniela Pereira
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, FFUP—Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, 4450-208 Matosinhos, Portugal
| | - Fernando Durães
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, FFUP—Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, 4450-208 Matosinhos, Portugal
| | - Nikoletta Szemerédi
- Department of Medical Microbiology, Albert Szent-Györgyi Health Center and Albert Szent-Györgyi Medical School, University of Szeged, 6725 Szeged, Hungary
| | - Joana Freitas-da-Silva
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, 4450-208 Matosinhos, Portugal
- ICBAS—Institute of Biomedical Sciences Abel Salazar, University of Porto, 4050-313 Porto, Portugal
| | - Eugénia Pinto
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, 4450-208 Matosinhos, Portugal
- Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Paulo Martins-da-Costa
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, 4450-208 Matosinhos, Portugal
- ICBAS—Institute of Biomedical Sciences Abel Salazar, University of Porto, 4050-313 Porto, Portugal
| | - Madalena Pinto
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, FFUP—Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, 4450-208 Matosinhos, Portugal
| | - Marta Correia-da-Silva
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, FFUP—Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, 4450-208 Matosinhos, Portugal
| | - Gabriella Spengler
- Department of Medical Microbiology, Albert Szent-Györgyi Health Center and Albert Szent-Györgyi Medical School, University of Szeged, 6725 Szeged, Hungary
| | - Emília Sousa
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, FFUP—Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, 4450-208 Matosinhos, Portugal
| | - Honorina Cidade
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, FFUP—Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, 4450-208 Matosinhos, Portugal
| |
Collapse
|
8
|
Cardoso J, Freitas-Silva J, Durães F, Carvalho DT, Gales L, Pinto M, Sousa E, Pinto E. Antifungal Activity of a Library of Aminothioxanthones. Antibiotics (Basel) 2022; 11:1488. [PMID: 36358143 PMCID: PMC9686595 DOI: 10.3390/antibiotics11111488] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 08/19/2023] Open
Abstract
Fungal infections are one of the main causes of mortality and morbidity worldwide and taking into account the increasing incidence of strains resistant to classical antifungal drugs, the development of new agents has become an urgent clinical need. Considering that thioxanthones are bioisosteres of xanthones with known anti-infective actions, their scaffolds were selected for this study. A small library of synthesized aminothioxanthones (1-10) was evaluated for in vitro antifungal activity against Candida albicans, Aspergillus fumigatus, and Trichophyton rubrum; for the active compounds, the spectrum was further extended to other clinically relevant pathogenic fungi. The results showed that only compounds 1, 8, and 9 exhibited inhibitory and broad-spectrum antifungal effects. Given the greater antifungal potential presented, compound 1 was the subject of further investigations to study its anti-virulence activity and in an attempt to elucidate its mechanism of action; compound 1 seems to act predominantly on the cellular membrane of C. albicans ATCC 10231, altering its structural integrity, without binding to ergosterol, while inhibiting two important virulence factors-dimorphic transition and biofilm formation-frequently associated with C. albicans pathogenicity and resistance. In conclusion, the present work proved the usefulness of thioxanthones in antifungal therapy as new models for antifungal agents.
Collapse
Affiliation(s)
- Joana Cardoso
- Laboratory de Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, 4450-208 Matosinhos, Portugal
| | - Joana Freitas-Silva
- Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, 4450-208 Matosinhos, Portugal
| | - Fernando Durães
- Laboratory de Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, 4450-208 Matosinhos, Portugal
| | - Diogo Teixeira Carvalho
- Laboratory de Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Laboratory of Research in Pharmaceutical Chemistry, Department of Food and Drugs, Faculty of Pharmaceutical Sciences, Federal University of Alfenas, Alfenas 37137-001, Brazil
| | - Luís Gales
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal
- Institute of Molecular and Cellular Biology (i3S-IBMC), University of Porto, 4200-135 Porto, Portugal
| | - Madalena Pinto
- Laboratory de Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, 4450-208 Matosinhos, Portugal
| | - Emília Sousa
- Laboratory de Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, 4450-208 Matosinhos, Portugal
| | - Eugénia Pinto
- Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, 4450-208 Matosinhos, Portugal
| |
Collapse
|
9
|
Enantioselectivity of Chiral Derivatives of Xanthones in Virulence Effects of Resistant Bacteria. Pharmaceuticals (Basel) 2021; 14:ph14111141. [PMID: 34832923 PMCID: PMC8623869 DOI: 10.3390/ph14111141] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/04/2021] [Accepted: 11/09/2021] [Indexed: 12/04/2022] Open
Abstract
Antimicrobial peptides are one of the lines of defense produced by several hosts in response to bacterial infections. Inspired by them and recent discoveries of xanthones as bacterial efflux pump inhibitors, chiral amides with a xanthone scaffold were planned to be potential antimicrobial adjuvants. The chiral derivatives of xanthones were obtained by peptide coupling reactions between suitable xanthones with enantiomerically pure building blocks, yielding derivatives with high enantiomeric purity. Among 18 compounds investigated for their antimicrobial activity against reference strains of bacteria and fungi, antibacterial activity for the tested strains was not found. Selected compounds were also evaluated for their potential to inhibit bacterial efflux pumps. Compound (R,R)-8 inhibited efflux pumps in the Gram-positive model tested and three compounds, (S,S)-8, (R)-17 and (R,S)-18, displayed the same activity in the Gram-negative strain used. Studies were performed on the inhibition of biofilm formation and quorum-sensing, to which the enantiomeric pair 8 displayed activity for the latter. To gain a better understanding of how the active compounds bind to the efflux pumps, docking studies were performed. Hit compounds were proposed for each activity, and it was shown that enantioselectivity was noticeable and must be considered, as enantiomers displayed differences in activity.
Collapse
|
10
|
Durães F, Szemerédi N, Kumla D, Pinto M, Kijjoa A, Spengler G, Sousa E. Metabolites from Marine-Derived Fungi as Potential Antimicrobial Adjuvants. Mar Drugs 2021; 19:475. [PMID: 34564137 PMCID: PMC8470461 DOI: 10.3390/md19090475] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 08/12/2021] [Accepted: 08/21/2021] [Indexed: 12/22/2022] Open
Abstract
Marine-derived fungi constitute an interesting source of bioactive compounds, several of which exhibit antibacterial activity. These acquire special importance, considering that antimicrobial resistance is becoming more widespread. The overexpression of efflux pumps, capable of expelling antimicrobials out of bacterial cells, is one of the most worrisome mechanisms. There has been an ongoing effort to find not only new antimicrobials, but also compounds that can block resistance mechanisms which can be used in combination with approved antimicrobial drugs. In this work, a library of nineteen marine natural products, isolated from marine-derived fungi of the genera Neosartorya and Aspergillus, was evaluated for their potential as bacterial efflux pump inhibitors as well as the antimicrobial-related mechanisms, such as inhibition of biofilm formation and quorum-sensing. Docking studies were performed to predict their efflux pump action. These compounds were also tested for their cytotoxicity in mouse fibroblast cell line NIH/3T3. The results obtained suggest that the marine-derived fungal metabolites are a promising source of compounds with potential to revert antimicrobial resistance and serve as an inspiration for the synthesis of new antimicrobial drugs.
Collapse
Affiliation(s)
- Fernando Durães
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (F.D.); (M.P.)
- CIIMAR–Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Novo Edifício do Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal; (D.K.); (A.K.)
| | - Nikoletta Szemerédi
- Department of Medical Microbiology, Albert Szent-Györgyi Health Center, Faculty of Medicine, University of Szeged, Semmelweis utca 6, 6725 Szeged, Hungary;
| | - Decha Kumla
- CIIMAR–Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Novo Edifício do Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal; (D.K.); (A.K.)
- ICBAS–Institute of Biomedical Sciences Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Madalena Pinto
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (F.D.); (M.P.)
- CIIMAR–Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Novo Edifício do Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal; (D.K.); (A.K.)
| | - Anake Kijjoa
- CIIMAR–Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Novo Edifício do Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal; (D.K.); (A.K.)
- ICBAS–Institute of Biomedical Sciences Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Gabriella Spengler
- Department of Medical Microbiology, Albert Szent-Györgyi Health Center, Faculty of Medicine, University of Szeged, Semmelweis utca 6, 6725 Szeged, Hungary;
| | - Emília Sousa
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (F.D.); (M.P.)
- CIIMAR–Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Novo Edifício do Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal; (D.K.); (A.K.)
| |
Collapse
|