1
|
Essa AF, El-Hawary SS, Kubacy TM, El-Din A M El-Khrisy E, El-Desoky AH, Elshamy AI, Younis IY. Integration of LC/MS, NMR and Molecular Docking for Profiling of Bioactive Diterpenes from Euphorbia mauritanica L. with in Vitro Anti-SARS-CoV-2 Activity. Chem Biodivers 2023; 20:e202200918. [PMID: 36602020 DOI: 10.1002/cbdv.202200918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 01/04/2023] [Accepted: 01/04/2023] [Indexed: 01/06/2023]
Abstract
In spite of tremendous efforts exerted in the management of COVID-19, the absence of specific treatments and the prevalence of delayed and long-term complications termed post-COVID syndrome still urged all concerned researchers to develop a potent inhibitor of SARS-Cov-2. The hydromethanolic extracts of different parts of E. mauritanica were in vitro screened for anti-SARS-Cov-2 activity. Then, using an integrated strategy of LC/MS/MS, molecular networking and NMR, the chemical profile of the active extract was determined. To determine the optimum target for these compounds, docking experiments of the active extract's identified compounds were conducted at several viral targets. The leaves extract showed the best inhibitory effect with IC50 8.231±0.04 μg/ml. The jatrophane diterpenes were provisionally annotated as the primary metabolites of the bioactive leaves extract based on multiplex of LC/MS/MS, molecular network, and NMR. In silico studies revealed the potentiality of the compounds in the most active extract to 3CLpro, where compound 20 showed the best binding affinity. Further attention should be paid to the isolation of various jatrophane diterpenes from Euphorbia and evaluating their effects on SARS-Cov-2 and its molecular targets.
Collapse
Affiliation(s)
- Ahmed F Essa
- Chemistry of Natural Compounds Department, National Research Center, 33 El Bohouth St., Dokki, Giza, 12622, Egypt
| | - Seham S El-Hawary
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo, 12613, Egypt
| | - Tahia M Kubacy
- Chemistry of Natural Compounds Department, National Research Center, 33 El Bohouth St., Dokki, Giza, 12622, Egypt
| | - Ezz El-Din A M El-Khrisy
- Chemistry of Natural Compounds Department, National Research Center, 33 El Bohouth St., Dokki, Giza, 12622, Egypt
| | - Ahmed H El-Desoky
- Pharmacognosy Department, National Research Center, 33 El Bohouth St., Dokki, Giza, 12622, Egypt
| | - Abdelsamed I Elshamy
- Chemistry of Natural Compounds Department, National Research Center, 33 El Bohouth St., Dokki, Giza, 12622, Egypt
| | - Inas Y Younis
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo, 12613, Egypt
| |
Collapse
|
2
|
Zhan ZJ, Li S, Chu W, Yin S. Euphorbia diterpenoids: isolation, structure, bioactivity, biosynthesis, and synthesis (2013-2021). Nat Prod Rep 2022; 39:2132-2174. [PMID: 36111621 DOI: 10.1039/d2np00047d] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Covering: 2013 to 2021As the characteristic metabolites of Euphorbia plants, Euphorbia diterpenoids have always been a hot topic in related science communities due to their intriguing structures and broad bioactivities. In this review, we intent to provide an in-depth and extensive coverage of Euphorbia diterpenoids reported from 2013 to the end of 2021, including 997 new Euphorbia diterpenoids and 78 known ones with latest progress. Multiple aspects will be summarized, including their occurrences, chemical structures, bioactivities, and syntheses, in which the structure-activity relationship and biosynthesis of this class will be discussed for the first time.
Collapse
Affiliation(s)
- Zha-Jun Zhan
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Shen Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China.
| | - Wang Chu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Sheng Yin
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China.
| |
Collapse
|
3
|
Vică ML, Glevitzky M, Heghedűş-Mîndru RC, Glevitzky I, Matei HV, Balici S, Popa M, Teodoru CA. Potential Effects of Romanian Propolis Extracts against Pathogen Strains. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:2640. [PMID: 35270324 PMCID: PMC8909772 DOI: 10.3390/ijerph19052640] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/19/2022] [Accepted: 02/23/2022] [Indexed: 12/11/2022]
Abstract
The impact of globalization on beekeeping brings new economic, scientific, ecological and social dimensions to this field The present study aimed to evaluate the chemical compositions of eight propolis extracts from Romania, and their antioxidant action and antimicrobial activity against seven species of bacteria, including pathogenic ones: Staphylococcus aureus, Bacillus cereus, Bacillus subtilis, Pseudomonas aeruginosa, Escherichia coli, Listeria monocytogenes and Salmonella enterica serovar Typhimurium. The phenolic compounds, flavonoids and antioxidant activity of propolis extracts were quantified; the presence of flavones and aromatic acids was determined. Quercetin and rutin were identified by HPLC analysis and characterized using molecular descriptors. All propolis samples exhibited antibacterial effects, especially against P. aeruginosa and L. monocytogenes. A two-way analysis of variance was used to evaluate correlations among the diameters of the inhibition zones, the bacteria used and propolis extracts used. Statistical analysis demonstrated that the diameter of the inhibition zone was influenced by the strain type, but no association between the propolis origin and the microbial activity was found.
Collapse
Affiliation(s)
- Mihaela Laura Vică
- Department of Cellular and Molecular Biology, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (M.L.V.); (H.V.M.); (S.B.)
| | - Mirel Glevitzky
- Faculty of Exact Science and Engineering, “1 Decembrie 1918” University of Alba Iulia, 510009 Alba Iulia, Romania; (M.G.); (M.P.)
| | - Ramona Cristina Heghedűş-Mîndru
- Faculty of Food Processing Technology Banat’s, University of Agricultural Sciences and Veterinary Medicine, 300645 Timișoara, Romania;
| | - Ioana Glevitzky
- Doctoral School, Faculty of Engineering, “Lucian Blaga” University of Sibiu, 550025 Sibiu, Romania
| | - Horea Vladi Matei
- Department of Cellular and Molecular Biology, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (M.L.V.); (H.V.M.); (S.B.)
| | - Stefana Balici
- Department of Cellular and Molecular Biology, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (M.L.V.); (H.V.M.); (S.B.)
| | - Maria Popa
- Faculty of Exact Science and Engineering, “1 Decembrie 1918” University of Alba Iulia, 510009 Alba Iulia, Romania; (M.G.); (M.P.)
| | - Cosmin Adrian Teodoru
- Clinical Surgical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550025 Sibiu, Romania;
| |
Collapse
|