1
|
Mutavski Z, Jerković I, Nikolić NĆ, Radman S, Flanjak I, Aladić K, Šubarić D, Vulić J, Jokić S. Comprehensive Phytochemical Profiling of Ulva lactuca from the Adriatic Sea. Int J Mol Sci 2024; 25:11711. [PMID: 39519263 PMCID: PMC11546173 DOI: 10.3390/ijms252111711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 10/26/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
The potential of the green macroalga Ulva lactuca is increasingly recognized, not only for its environmental benefits, but also for its applications in various industries, including food, pharmaceuticals, and cosmetics. Given this insight, a comprehensive analysis of the chemical profile of U. lactuca from the Adriatic Sea was carried out. The hydrodistillate, rich in (Z,Z,Z)-hexadeca-7,10,13-trienal and hexadecanoic acid, underlines its importance for health-related uses, particularly in lipid metabolism and cellular integrity. Fatty acid analysis showed a predominance of palmitic acid and a favorable n-6/n-3 polyunsaturated fatty acid ratio, suggesting that U. lactuca can make a valuable contribution to a balanced diet. In addition, essential amino acids, including leucine, valine, and isoleucine, support its use as a functional ingredient for muscle repair and metabolic health. The ethanol extract contained 56 compounds, including derivatives of fatty acids, phenolic acids, pigments, flavonoids, and steroids. Many of them, such as hexadecasphinganine, azelaic acid, 5-sulfosalicylic acid, and pheophytin a, have proven roles or potentials in promoting human health. These results confirm that U. lactuca is a rich source of bioactive compounds, emphasizing its potential in scientific research and its expanding industrial applications in health, nutrition, and cosmetics.
Collapse
Affiliation(s)
- Zorana Mutavski
- Institute for Medicinal Plants Research “Dr. Josif Pančić”, Tadeuša Košćuška 1, 11000 Belgrade, Serbia; (Z.M.); (N.Ć.N.)
| | - Igor Jerković
- Faculty of Chemistry and Technology, University of Split, Ruđera Boškovića 35, 21000 Split, Croatia;
| | - Nada Ćujić Nikolić
- Institute for Medicinal Plants Research “Dr. Josif Pančić”, Tadeuša Košćuška 1, 11000 Belgrade, Serbia; (Z.M.); (N.Ć.N.)
| | - Sanja Radman
- Faculty of Chemistry and Technology, University of Split, Ruđera Boškovića 35, 21000 Split, Croatia;
| | - Ivana Flanjak
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, Franje Kuhača 18, 31000 Osijek, Croatia; (I.F.); (K.A.); (D.Š.)
| | - Krunoslav Aladić
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, Franje Kuhača 18, 31000 Osijek, Croatia; (I.F.); (K.A.); (D.Š.)
| | - Drago Šubarić
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, Franje Kuhača 18, 31000 Osijek, Croatia; (I.F.); (K.A.); (D.Š.)
| | - Jelena Vulić
- Faculty of Technology Novi Sad, University of Novi Sad, Boulevard cara Lazara 1, 11000 Novi Sad, Serbia;
| | - Stela Jokić
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, Franje Kuhača 18, 31000 Osijek, Croatia; (I.F.); (K.A.); (D.Š.)
| |
Collapse
|
2
|
Chi Y, Li Y, Ding C, Liu X, Luo M, Wang Z, Bi Y, Luo S. Structural and biofunctional diversity of sulfated polysaccharides from the genus Codium (Bryopsidales, Chlorophyta): A review. Int J Biol Macromol 2024; 263:130364. [PMID: 38401579 DOI: 10.1016/j.ijbiomac.2024.130364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/14/2024] [Accepted: 02/20/2024] [Indexed: 02/26/2024]
Abstract
It is believed that polysaccharides will become a focal point for future production of food, pharmaceuticals, and materials due to their ubiquitous and renewable nature, as well as their exceptional properties that have been extensively validated in the fields of nutrition, healthcare, and materials. Sulfated polysaccharides derived from seaweed sources have attracted considerable attention owing to their distinctive structures and properties. The genus Codium, represented by the species C. fragile, holds significance as a vital economic green seaweed and serves as a traditional Chinese medicinal herb. To date, the cell walls of the genus Codium have been found to contain at least four types of sulfated polysaccharides, specifically pyruvylated β-d-galactan sulfates, sulfated arabinogalactans, sulfated β-l-arabinans, and sulfated β-d-mannans. These sulfated polysaccharides exhibit diverse biofunctions, including anticoagulant, immune-enhancing, anticancer, antioxidant activities, and drug-carrying capacity. This review explores the structural and biofunctional diversity of sulfated polysaccharides derived from the genus Codium. Additionally, in addressing the impending challenges within the industrialization of these polysaccharides, encompassing concerns regarding scale-up production and quality control, we outline potential strategies to address these challenges from the perspectives of raw materials, extraction processes, purification technologies, and methods for quality control.
Collapse
Affiliation(s)
- Yongzhou Chi
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, Jiangsu 223003, China.
| | - Yang Li
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, Jiangsu 223003, China
| | - Chengcheng Ding
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, Jiangsu 223003, China
| | - Xiao Liu
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, Jiangsu 223003, China
| | - Meilin Luo
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, Jiangsu 223003, China
| | - Zhaoyu Wang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, Jiangsu 223003, China
| | - Yanhong Bi
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, Jiangsu 223003, China
| | - Si Luo
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, Jiangsu 223003, China
| |
Collapse
|
3
|
Frleta Matas R, Radman S, Čagalj M, Šimat V. Influence of Nutrient Deprivation on the Antioxidant Capacity and Chemical Profile of Two Diatoms from Genus Chaetoceros. Mar Drugs 2024; 22:96. [PMID: 38393067 PMCID: PMC10890447 DOI: 10.3390/md22020096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/13/2024] [Accepted: 02/17/2024] [Indexed: 02/25/2024] Open
Abstract
The limited availability of phosphate, nitrogen and silicon in the growth media affects the growth, cellular processes, and metabolism of diatoms. Silicon deficiency primarily affects diatom morphology, while phosphate deficiency reduces the production of nucleic acids and phospholipids. Differences in pigment and protein composition are mainly due to nitrogen deficiency. In this study, Chaetoceros socialis and Chaetoceros costatus were cultured under phosphate, nitrogen, and silicon deprivation conditions. The diatom biomass was collected during the stationary growth phase and extracted with 70% ethanol under ultrasonication. The chemical profiles of the extracts were analyzed by high-performance liquid chromatography with high-resolution mass spectrometry with electrospray ionisation (UHPLC-ESI-HRMS), while the antioxidant capacity was determined by 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging and oxygen radical absorbance capacity (ORAC) assays. Pigments, fatty acids, sterols, and derivatives were detected in both species. The total phenolic content in the extracts ranged from 46.25 ± 1.08 to 89.38 ± 6.21 mg of gallic acid equivalent (GAE)/L and from 29.58 ± 1.08 to 54.17 ± 1.18 mg GAE/L. for C. costatus and C. socialis, respectively. Antioxidant activity was higher in C. costatus extracts, especially those obtained from nitrogen-deprived media. The results of this study contribute to the existing knowledge and the ongoing efforts to overcome application and commercialization barriers of microalgae for wide-ranging potential in different industries.
Collapse
Affiliation(s)
- Roberta Frleta Matas
- Center of Excellence for Science and Technology-Integration of Mediterranean Region (STIM), Faculty of Science, University of Split, Rudera Boškovića 35, 21000 Split, Croatia;
| | - Sanja Radman
- Department of Food Technology and Biotechnology, Faculty of Chemistry and Technology, University of Split, Ruđera Boškovića 35, 21000 Split, Croatia
| | - Martina Čagalj
- University Department of Marine Studies, University of Split, Rudera Boškovića 37, 21000 Split, Croatia;
| | - Vida Šimat
- University Department of Marine Studies, University of Split, Rudera Boškovića 37, 21000 Split, Croatia;
| |
Collapse
|
4
|
Radman S, Čagalj M, Šimat V, Jerković I. Seasonal Monitoring of Volatiles and Antioxidant Activity of Brown Alga Cladostephus spongiosus. Mar Drugs 2023; 21:415. [PMID: 37504946 PMCID: PMC10381622 DOI: 10.3390/md21070415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/14/2023] [Accepted: 07/20/2023] [Indexed: 07/29/2023] Open
Abstract
Cladostephus spongiosus was harvested once a month during its growing season (from May to August) from the Adriatic Sea. Algal volatile organic compounds (VOCs) were obtained by headspace solid-phase microextraction (HS-SPME) and hydrodistillation (HD) and analysed by gas chromatography and mass spectrometry (GC-MS). The effects of air drying and growing season on VOCs were determined. Two different extraction methods (ultrasound-assisted extraction (UAE) and microwave-assisted extraction (MAE)) were used to obtain ethanolic extracts of C. spongiosus. In addition, the seasonal antioxidant potential of the extracts was determined, and non-volatile compounds were identified from the most potent antioxidant extract. Aliphatic compounds (e.g., pentadecane) were predominantly found by HS-SPME/GC-MS. Hydrocarbons were more than twice as abundant in the dry samples (except in May). Aliphatic alcohols (e.g., hexan-1-ol, octan-1-ol, and oct-1-en-3-ol) were present in high percentages and were more abundant in the fresh samples. Hexanal, heptanal, nonanal, and tridecanal were also found. Aliphatic ketones (octan-3-one, 6-methylhept-5-en-2-one, and (E,Z)-octa-3,5-dien-2-one) were more abundant in the fresh samples. Benzene derivatives (e.g., benzyl alcohol and benzaldehyde) were dominant in the fresh samples from May and August. (E)-Verbenol and p-cymen-8-ol were the most abundant in dry samples in May. HD revealed aliphatic compounds (e.g., heptadecane, pentadecanal, (E)-heptadec-8-ene, (Z)-heptadec-3-ene), sesquiterpenes (germacrene D, epi-bicyclosesquiphellandrene, gleenol), diterpenes (phytol, pachydictyol A, (E)-geranyl geraniol, cembra-4,7,11,15-tetraen-3-ol), and others. Among them, terpenes were the most abundant (except for July). Seasonal variations in the antioxidant activity of the ethanolic extracts were evaluated via different assays. MAE extracts showed higher peroxyl radical inhibition activity from 55.1 to 74.2 µM TE (Trolox equivalents). The highest reducing activity (293.8 µM TE) was observed for the May sample. Therefore, the May MAE extract was analysed via high-performance liquid chromatography with high-resolution mass spectrometry and electrospray ionisation (UHPLC-ESI-HRMS). In total, 17 fatty acid derivatives, 9 pigments and derivatives, and 2 steroid derivatives were found. The highest content of pheophorbide a and fucoxanthin, as well as the presence of other pigment derivatives, could be related to the observed antioxidant activity.
Collapse
Affiliation(s)
- Sanja Radman
- Department of Organic Chemistry, Faculty of Chemistry and Technology, University of Split, R. Boškovića 35, 21000 Split, Croatia
| | - Martina Čagalj
- Department of Marine Studies, University of Split, R. Boškovića 37, 21000 Split, Croatia; (M.Č.); (V.Š.)
| | - Vida Šimat
- Department of Marine Studies, University of Split, R. Boškovića 37, 21000 Split, Croatia; (M.Č.); (V.Š.)
| | - Igor Jerković
- Department of Organic Chemistry, Faculty of Chemistry and Technology, University of Split, R. Boškovića 35, 21000 Split, Croatia
| |
Collapse
|
5
|
Matijević G, Babić S, Maršavelski A, Stipaničev D, Repec S, Čož-Rakovac R, Klobučar G. Estimating risk of cardiovascular pharmaceuticals in freshwaters using zebrafish embryotoxicity test - statins threat revealed. CHEMOSPHERE 2023; 313:137574. [PMID: 36528155 DOI: 10.1016/j.chemosphere.2022.137574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
Cardiovascular pharmaceuticals (CVPs) are globally present in inland waters and have also been found in the sediment and plasma of fish from the Sava River, Croatia. Based on the previous research, CVPs amiodarone (AMI), ramipril (RAM), simvastatin (SIM), and verapamil (VER) have been selected for this study. Their effect has been investigated, individually and in a mixture, on the development of the zebrafish embryo Danio rerio (Hamilton, 1822) within the first 96 h of development. Upon exposure to environmentally relevant concentrations of tested CVPs (0.1, 1, and 10 μg/L) zebrafish survival and development as apparent from observed morphological abnormalities, heartbeat rates and changes in behavior, hatching success, larval length and oxidative stress level were monitored. The CVP causing the highest mortality and pathological changes was SIM (1 and 10 μg/L), which corresponds well with the observed effects during zebrafish exposure to CVPs' mixtures (4 and 40 μg/L). All pharmaceuticals affected cardiac function and decreased heart rate. SIM (1 μg/L), VER and RAM (10 μg/L) decreased larval length, while induced oxidative stress was recorded in the SIM- and VER-exposed specimens. Behavioral alterations of zebrafish were observed only in AMI-treated group (10 μg/L). Our amino acid sequence comparison and structural and docking analysis showed a highly conserved binding site between human and zebrafish HMG-CoA reductase for SIM and its main metabolite simvastatin acid. Using these ecotoxicological bioassays on a zebrafish model with particular emphasis on sublethal endpoints, the risk of CVPs, especially statins, for fish in inland waters has been identified.
Collapse
Affiliation(s)
- Gabrijela Matijević
- Ruđer Bošković Institute, Laboratory for Biotechnology in Aquaculture, Division of Materials Chemistry, Bijenička 54, Zagreb, Croatia
| | - Sanja Babić
- Ruđer Bošković Institute, Laboratory for Biotechnology in Aquaculture, Division of Materials Chemistry, Bijenička 54, Zagreb, Croatia; Ruđer Bošković Institute, Center of Excellence for Marine Bioprospecting (BioProCro), Bijenička 54, Zagreb, Croatia
| | - Aleksandra Maršavelski
- University of Zagreb, Faculty of Science, Department of Chemistry, Horvatovac 102a, Zagreb, Croatia
| | - Draženka Stipaničev
- Croatian Waters, Central Water Management Laboratory, Ulica Grada Vukovara 220, 10000, Zagreb, Croatia
| | - Siniša Repec
- Croatian Waters, Central Water Management Laboratory, Ulica Grada Vukovara 220, 10000, Zagreb, Croatia
| | - Rozelindra Čož-Rakovac
- Ruđer Bošković Institute, Laboratory for Biotechnology in Aquaculture, Division of Materials Chemistry, Bijenička 54, Zagreb, Croatia; Ruđer Bošković Institute, Center of Excellence for Marine Bioprospecting (BioProCro), Bijenička 54, Zagreb, Croatia
| | - Göran Klobučar
- University of Zagreb, Faculty of Science, Department of Biology, Rooseveltov Trg 6, Zagreb, Croatia.
| |
Collapse
|
6
|
Čagalj M, Radman S, Šimat V, Jerković I. Detailed Chemical Prospecting of Volatile Organic Compounds Variations from Adriatic Macroalga Halopteris scoparia. Molecules 2022; 27:4997. [PMID: 35956941 PMCID: PMC9370346 DOI: 10.3390/molecules27154997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022] Open
Abstract
The present study aimed to isolate volatile organic compounds (VOCs) from fresh (FrHSc) and air-dried (DrHSc) Halopteris scoparia (from the Adriatic Sea) by headspace solid-phase microextraction (HS-SPME) and hydrodistillation (HD) and to analyse them by gas chromatography and mass spectrometry (GC-MS). The impact of the season of growth (May-September) and air-drying on VOC composition was studied for the first time, and the obtained data were elaborated by principal component analysis (PCA). The most abundant headspace compounds were benzaldehyde, pentadecane (a chemical marker of brown macroalgae), and pentadec-1-ene. Benzaldehyde abundance decreased after air-drying while an increment of benzyl alcohol after drying was noticed. The percentage of pentadecane and heptadecane increased after drying, while pentadec-1-ene abundance decreased. Octan-1-ol decreased from May to September. In HD-FrHSc, terpenes were the most abundant in June, July, and August, while, in May and September, unsaturated aliphatic compounds were dominant. In HD-DrHSc terpenes, unsaturated and saturated aliphatic compounds dominated. (E)-Phytol was the most abundant compound in HD-FrHSc through all months except September. Its abundance increased from May to August. Two more diterpene alcohols (isopachydictyol A and cembra-4,7,11,15-tetraen-3-ol) and sesquiterpene alcohol gleenol were also detected in high abundance. Among aliphatic compounds, the dominant was pentadec-1-ene with its peak in September, while pentadecane was present with lower abundance. PCA (based on the dominant compound analyses) showed distinct separation of the fresh and dried samples. No correlation was found between compound abundance and temperature change. The results indicate great seasonal variability of isolated VOCs, as well among fresh and dried samples, which is important for further chemical biodiversity studies.
Collapse
Affiliation(s)
- Martina Čagalj
- Department of Marine Studies, University of Split, Ruđera Boškovića 37, 21000 Split, Croatia
| | - Sanja Radman
- Department of Organic Chemistry, Faculty of Chemistry and Technology, University of Split, Ruđera Boškovića 35, 21000 Split, Croatia
| | - Vida Šimat
- Department of Marine Studies, University of Split, Ruđera Boškovića 37, 21000 Split, Croatia
| | - Igor Jerković
- Department of Organic Chemistry, Faculty of Chemistry and Technology, University of Split, Ruđera Boškovića 35, 21000 Split, Croatia
| |
Collapse
|
7
|
Vladić J, Jerković I, Radman S, Molnar Jazić J, Ferreira A, Maletić S, Gouveia L. Supercritical CO 2 Extract from Microalga Tetradesmus obliquus: The Effect of High-Pressure Pre-Treatment. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123883. [PMID: 35745004 PMCID: PMC9231020 DOI: 10.3390/molecules27123883] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/31/2022] [Accepted: 06/14/2022] [Indexed: 11/16/2022]
Abstract
High-pressure pre-treatment followed by supercritical carbon dioxide (ScCO2) extraction (300 bar, 40 °C) was applied for the attainment of the lipophilic fraction of microalga Tetradesmus obliquus. The chemical profile of supercritical extracts of T. obliquus was analyzed by ultra-high-performance liquid chromatography-high-resolution mass spectrometry with electrospray ionization (UHPLC-ESI-HRMS). Moreover, the impact of ScCO2 on the microbiological and metal profile of the biomass was monitored. The application of the pre-treatment increased the extraction yield approximately three-fold compared to the control. In the obtained extracts (control and pre-treated extracts), the identified components belonged to triacylglyceroles, fatty acid derivatives, diacylglycerophosphocholines and diacylglycerophosphoserines, pigments, terpenes, and steroids. Triacylglycerols (65%) were the most dominant group of compounds in the control extract. The pre-treatment decreased the percentage of triacylglycerols to 2%, while the abundance of fatty acid derivatives was significantly increased (82%). In addition, the pre-treatment led to an increase in the percentages of carotenoids, terpenoids, and steroids. Furthermore, it was determined that ScCO2 extraction reduced the number of microorganisms in the biomass. Considering its microbiological and metal profiles, the biomass after ScCO2 can potentially be used as a safe and important source of organic compounds.
Collapse
Affiliation(s)
- Jelena Vladić
- Faculty of Technology, University of Novi Sad, Bulevar Cara Lazara 1, 21102 Novi Sad, Serbia; or
| | - Igor Jerković
- Faculty of Chemistry and Technology, University of Split, Ruđera Boškovića 35, 21000 Split, Croatia;
- Correspondence: (I.J.); (L.G.)
| | - Sanja Radman
- Faculty of Chemistry and Technology, University of Split, Ruđera Boškovića 35, 21000 Split, Croatia;
| | - Jelena Molnar Jazić
- Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21102 Novi Sad, Serbia; (J.M.J.); (S.M.)
| | - Alice Ferreira
- LNEG, National Laboratory of Energy and Geology I.P., Bioenergy and Biorefineries Unit, Paço Lumiar 22, 1649-038 Lisbon, Portugal;
| | - Snežana Maletić
- Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21102 Novi Sad, Serbia; (J.M.J.); (S.M.)
| | - Luisa Gouveia
- LNEG, National Laboratory of Energy and Geology I.P., Bioenergy and Biorefineries Unit, Paço Lumiar 22, 1649-038 Lisbon, Portugal;
- GreenCoLab—Green Ocean Technologies and Products Collaborative Laboratory, Centro de Ciências do Mar do Algarve, Universidade do Algarve, Campus Gambelas, Edifício 7, 8005-139 Faro, Portugal
- Correspondence: (I.J.); (L.G.)
| |
Collapse
|
8
|
In Vivo and In Vitro Antioxidant Activity of Less Polar Fractions of Dasycladus vermicularis (Scopoli) Krasser 1898 and the Chemical Composition of Fractions and Macroalga Volatilome. Pharmaceuticals (Basel) 2022; 15:ph15060743. [PMID: 35745662 PMCID: PMC9229249 DOI: 10.3390/ph15060743] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/10/2022] [Accepted: 06/10/2022] [Indexed: 11/17/2022] Open
Abstract
The present research is a comprehensive investigation of Dasycladus vermicularis (Scopoli) Krasser 1898 from the Adriatic Sea (Croatia) regarding volatilome-volatile organic compounds (VOCs, mostly nonpolar compounds) and less polar nonvolatile compounds for the first time. Headspace solid-phase microextraction (HS-SPME) and hydrodistillation (HD) were used showing the great volatilome variability among fresh (HS-FrDV and HD-FrDV) and dried (HS-DrDV and HD-DrDV) samples after GC-MS analysis. Aromatic aldehydes were dominant in both fresh and air-dried HS samples with benzaldehyde as the most abundant in fresh samples and decreasing 2.7-3.7 times after drying together with 2-phenylbut-2-enal that was not present after drying. Aliphatic compounds (unsaturated hydrocarbons in HS-FrDV; saturated hydrocarbons in HS-DrDV) were also present. C11-hydrocarbons (dictyopterpene C' and dictyopterpene D') were detected in HS-FrDV. (E)-Phytol was the most dominant compound in HD-FrDV and HD-DrDV. Diterpene alcohols (cembra-4,7,11,15-tetraen-3-ol and (Z)-falcarinol) and sesquiterpene alcohol, cubenol, were dominant in HD-FrDV, and their abundance decreased after drying. C13-norisoprenoides (α-ionone and β-ionone) increased after drying. Aliphatic compounds were present in both HD-FrDV and HD-DrDV samples. The less polar nonvolatile compounds in the obtained fractions F3 and F4 were analysed and identified by UHPLC-ESI(+)-HRMS. Identified compounds belonged to a group of pigments (7 compounds), fatty acid derivatives (13 compounds), as well as steroids and terpenes (10 compounds). Porphyrin-based compounds (C55H74N4O5-7), xanthophylls, sphingolipid compounds, fatty acid amides, and phytosterols represented the majority of identified compounds. By implementing both in vitro and in vivo assays for antioxidant activity determination, F3 showed a higher activity than F4. Inhibitory concentrations (IC50) for F3 and F4 were 498.00 ± 0.01 µg/mL and 798.00 ± 0.81 µg/mL, respectively, while a 1.5-fold reduction in the ROS level was observed after pre-treatment of zebrafish larvae with 45 µg/mL of F3.
Collapse
|
9
|
Cikoš AM, Šubarić D, Roje M, Babić J, Jerković I, Jokić S. Recent advances on macroalgal pigments and their biological activities (2016–2021). ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
10
|
Koteska D, Sanchez Garcia S, Wagner-Döbler I, Schulz S. Identification of Volatiles of the Dinoflagellate Prorocentrum cordatum. Mar Drugs 2022; 20:371. [PMID: 35736174 PMCID: PMC9230497 DOI: 10.3390/md20060371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/17/2022] [Accepted: 05/25/2022] [Indexed: 11/21/2022] Open
Abstract
The dinoflagellate Prorocentrum cordatum, often called P. minimum, is a potentially toxic alga found in algal blooms. Volatile compounds released by the alga might carry important information, e.g., on its physiological state, and may act as chemical messengers. We report here the identification of volatile organic compounds emitted by two strains, xenic P. cordatum CCMP 1529 and axenic P. cordatum CCMP 1329. The volatiles released during culture were identified despite their low production rates, using sensitive methods such as open-system-stripping analysis (OSSA) on Tenax TA desorption tubes, thermodesorption, cryofocusing and GC/MS-analysis. The analyses revealed 16 compounds released from the xenic strain and 52 compounds from the axenic strain. The majority of compounds were apocarotenoids, aromatic compounds and small oxylipins, but new natural products such as 3,7-dimethyl-4-octanolide were also identified and synthesized. The large difference of compound composition between xenic and axenic algae will be discussed.
Collapse
Affiliation(s)
- Diana Koteska
- Institute of Organic Chemistry, Technische Universität Braunschweig, 38106 Braunschweig, Germany;
| | - Selene Sanchez Garcia
- Institute of Microbiology, Technische Universität Braunschweig, 38106 Braunschweig, Germany; (S.S.G.); (I.W.-D.)
| | - Irene Wagner-Döbler
- Institute of Microbiology, Technische Universität Braunschweig, 38106 Braunschweig, Germany; (S.S.G.); (I.W.-D.)
| | - Stefan Schulz
- Institute of Organic Chemistry, Technische Universität Braunschweig, 38106 Braunschweig, Germany;
| |
Collapse
|
11
|
Bio-Based Products from Mediterranean Seaweeds: Italian Opportunities and Challenges for a Sustainable Blue Economy. SUSTAINABILITY 2022. [DOI: 10.3390/su14095634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Seaweeds are attracting increasing attention as an alternative healthy food and renewable drugs source and as agents of climate change mitigation that provide essential ecosystem services. In this context, seaweeds represent marine resources capable of supporting and pursuing the objectives of the Sustainable Blue Economy and the Bio-Based Circular Economy. In this review, we analyze the state of seaweed bio-based products and research on the Mediterranean Sea from the last 20 years. Results of this analysis show a large number of investigations focusing on antimicrobial, antioxidant and anti-inflammatory activities compared to on biofuels and bioplastics. Attempts at seaweed farming, although generally very limited, are present in Israel and some North African countries. Lastly, we focus on the Italian situation—including research, companies and legislation on seaweed production—and we discuss gaps, perspectives and challenges for the potential development of a sustainable seaweed industry according to the Sustainable Blue Economy.
Collapse
|
12
|
Perković L, Djedović E, Vujović T, Baković M, Paradžik T, Čož-Rakovac R. Biotechnological Enhancement of Probiotics through Co-Cultivation with Algae: Future or a Trend? Mar Drugs 2022; 20:142. [PMID: 35200671 PMCID: PMC8880515 DOI: 10.3390/md20020142] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/08/2022] [Accepted: 02/12/2022] [Indexed: 12/18/2022] Open
Abstract
The diversity of algal species is a rich source of many different bioactive metabolites. The compounds extracted from algal biomass have various beneficial effects on health. Recently, co-culture systems between microalgae and bacteria have emerged as an interesting solution that can reduce the high contamination risk associated with axenic cultures and, consequently, increase biomass yield and synthesis of active compounds. Probiotic microorganisms also have numerous positive effects on various aspects of health and represent potent co-culture partners. Most studies consider algae as prebiotics that serve as enhancers of probiotics performance. However, the extreme diversity of algal organisms and their ability to produce a plethora of metabolites are leading to new experimental designs in which these organisms are cultivated together to derive maximum benefit from their synergistic interactions. The future success of these studies depends on the precise experimental design of these complex systems. In the last decade, the development of high-throughput approaches has enabled a deeper understanding of global changes in response to interspecies interactions. Several studies have shown that the addition of algae, along with probiotics, can influence the microbiota, and improve gut health and overall yield in fish, shrimp, and mussels aquaculture. In the future, such findings can be further explored and implemented for use as dietary supplements for humans.
Collapse
Affiliation(s)
- Lucija Perković
- Laboratory for Aquaculture Biotechnology, Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia; (L.P.); (E.D.); (T.V.); (M.B.); (R.Č.-R.)
| | - Elvis Djedović
- Laboratory for Aquaculture Biotechnology, Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia; (L.P.); (E.D.); (T.V.); (M.B.); (R.Č.-R.)
| | - Tamara Vujović
- Laboratory for Aquaculture Biotechnology, Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia; (L.P.); (E.D.); (T.V.); (M.B.); (R.Č.-R.)
| | - Marija Baković
- Laboratory for Aquaculture Biotechnology, Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia; (L.P.); (E.D.); (T.V.); (M.B.); (R.Č.-R.)
| | - Tina Paradžik
- Laboratory for Aquaculture Biotechnology, Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia; (L.P.); (E.D.); (T.V.); (M.B.); (R.Č.-R.)
- Center of Excellence for Marine Bioprospecting (BioProCro), Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Rozelindra Čož-Rakovac
- Laboratory for Aquaculture Biotechnology, Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia; (L.P.); (E.D.); (T.V.); (M.B.); (R.Č.-R.)
- Center of Excellence for Marine Bioprospecting (BioProCro), Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| |
Collapse
|
13
|
Radman S, Čižmek L, Babić S, Cikoš AM, Čož-Rakovac R, Jokić S, Jerković I. Bioprospecting of Less-Polar Fractions of Ericaria crinita and Ericaria amentacea: Developmental Toxicity and Antioxidant Activity. Mar Drugs 2022; 20:57. [PMID: 35049912 PMCID: PMC8781977 DOI: 10.3390/md20010057] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/02/2022] [Accepted: 01/03/2022] [Indexed: 12/23/2022] Open
Abstract
Ericaria crinita and Ericaria amentacea from the Adriatic Sea (Croatia) were investigated with respect to the presence of less-polar compounds for the first time after fractionation by solid-phase extraction (SPE). The composition of less-polar fractions of freeze-dried E. crinita (FdEc) and E. amentacea (FdEa) were analyzed by high-performance liquid chromatography-high-resolution mass spectrometry with electrospray ionization (UHPLC-ESI-HRMS). The major identified compounds were: amides of higher aliphatic acids (palmitoleamide, linoleamide, palmitamide, oleamide and erucamide) and related compounds, carotenoid (fucoxanthin), chlorophyll derivatives (pheophytin a and b and their derivatives) and higher terpenes (loliolide, isoamijiol with its oxidation product), β-stigmasterol and (3β,6α)-14-methylergosta-8,24(28)-diene-3,6-diol). The toxic effects observed on the less-polar fractions obtained from Ericaria species on zebrafish Danio rerio embryos could be associated with the high abundance of all five detected amides. The antioxidant activity of the fractions was evaluated by means of five independent assays, including the reduction of the radical cation (ABTS), the oxygen radical absorbance capacity (ORAC), ferric-reducing antioxidant power (FRAP), the 2,2-diphenyl-1-picryl-hydrazyl (DPPH) assay and the Folin-Ciocalteu method. A higher antioxidant activity of E. amentacea in comparison to that of the E. crinita fractions was found with IC50 concentrations of 0.072 and 1.177 mg/mL, respectively. The correlation between the activity and the chemical composition revealed that the synergistic effect of different compounds impacted their antioxidant response.
Collapse
Affiliation(s)
- Sanja Radman
- Department of Organic Chemistry, Faculty of Chemistry and Technology, University of Split, Ruđera Boškovića 35, 21000 Split, Croatia;
| | - Lara Čižmek
- Laboratory for Aquaculture Biotechnology, Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia; (L.Č.); (S.B.); (R.Č.-R.)
| | - Sanja Babić
- Laboratory for Aquaculture Biotechnology, Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia; (L.Č.); (S.B.); (R.Č.-R.)
| | - Ana-Marija Cikoš
- Department of Process Engineering, Faculty of Food Technology, Josip Juraj Strossmayer University of Osijek, Franje Kuhača 18, 31000 Osijek, Croatia; (A.-M.C.); (S.J.)
| | - Rozelindra Čož-Rakovac
- Laboratory for Aquaculture Biotechnology, Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia; (L.Č.); (S.B.); (R.Č.-R.)
| | - Stela Jokić
- Department of Process Engineering, Faculty of Food Technology, Josip Juraj Strossmayer University of Osijek, Franje Kuhača 18, 31000 Osijek, Croatia; (A.-M.C.); (S.J.)
| | - Igor Jerković
- Department of Organic Chemistry, Faculty of Chemistry and Technology, University of Split, Ruđera Boškovića 35, 21000 Split, Croatia;
| |
Collapse
|